
Distributed Management of CPU Resources for Time-Sensitive Applications

Georgios Chasparis, Martina Maggio, Karl-Erik Årzén, Enrico Bini
Lund University, Sweden

Abstract— The number of applications sharing the same
embedded device is increasing dramatically. Very efficient
mechanisms (resource managers) for assigning the CPU time
to all demanding applications are needed. Unfortunately, exist-
ing optimization-based resource managers consume too much
resource themselves. In this paper, we address the problem
of distributed convergence to fair allocation of CPU resources
for time-sensitive applications. We propose a novel resource
management framework where both applications and the re-
source manager act independently trying to maximize their own
performance measure according to a utility-based adjustment
process. Contrary to prior work on centralized optimization
schemes, the proposed framework exhibits adaptivity and
robustness to changes both in the number and nature of
applications, while it assumes minimum information available
to both applications and the resource manager. It is shown an-
alytically that fair resource allocation can be achieved through
the proposed adjustment process when the CPU is overloaded.
Experiments using the TrueTime Matlab toolbox show the
validity of the proposed approach.

I. INTRODUCTION

A current trend in embedded computing is that the num-
ber of applications that should share the same execution
platform increases. This is due to the increase in capacity
of new hardware platforms, e.g., through the use of multi-
core techniques, as well as the increase of user demands.
An example includes the move from federated to integrated
system architectures in the automotive industry.

As the number of applications increases, the need for
better mechanisms for controlling the execution behavior
of the applications becomes apparent. Increasingly often,
virtualization or resource reservation techniques [1], [2] are
used. According to these techniques, each reservation is
viewed as a virtual processor executing at a fraction of the
speed of the physical processor, i.e., the bandwidth of the
reservation, while the tasks in the different reservations are
temporally isolated from each other. Another trend in embed-
ded computing is an increase in temporal uncertainty, both
due to the increased hardware complexity, e.g., shared cache
hierarchies, and the increased chip density. Hence, using
dynamic adaptation is crucial. In the resource reservation
case this means that the bandwidth assignment is decided
on-line based on feedback from the applications.

An orthogonal dimension along which the performance of
an application can be tuned is the selection of its service
level. It is assumed that an application is able to execute

This work was supported by the Linneaus Center LCCC, the Swedish VR
project n.2011-3635 “Feedback-based resource management for embedded
multicore platform”, and the Marie Curie Intra European Fellowship within
the 7th European Community Framework Programme.

at different service levels, where a higher service level
implies a higher quality-of-service (QoS) at the price of
higher resource consumption. Examples are adjustable video
resolutions, the amount of data sent through a socket channel
to render a web page, and the possibility to execute a
controller at different sampling rates.

The typical solution to this problem is the implementation
of a resource manager (RM), which is in charge of:
− assigning the resources to each application;
− monitoring the use of resources and possibly adjusting

the assignment based on measurements;
− assigning the service levels to each application, so that

an overall delivered quality is maximized.
This is often done through the use of optimization and
feedback from the application.

Resource managers that are based on the concept of
feedback, monitor the progress of the applications and adjust
the resource management based on measurements [3], [4]. In
these early approaches, however, quality adjustment was not
considered. Cucinotta et al. [5] proposed an inner loop to
control the resource allocation nested within an outer loop
that controls the overall delivered quality.

Optimization-based resource managers have also received
a considerable attention [6], [7]. These approaches, however,
rely on the solution of a centralized optimization problem
that determines both the amount of the assigned resources
and the service levels of all applications [6], [8], [9]. In the
context of networking, Johansson et al. [10] modeled the ser-
vice provided by a set of servers to workloads belonging to
different classes as a utility maximization problem. However,
there is no notion of adjustment of the service level of the
applications.

An example of combined use of optimization and feedback
was developed in the ACTORS project [9], [11]. In that
project, applications provide a table to the RM describing
the required amount of CPU resources and the expected QoS
achieved at each supported service level [9], [11]. In the
multi-core case, applications are partitioned over the cores
and the amount of resources is given for each individual
partition. Then, the RM decides the service level of all appli-
cations and how the partitions should be mapped to physical
cores using a combination of integer linear programming
(ILP) and first-fit bin-packing.

On-line centralized optimization schemes have several
weaknesses. First, the complexity of the solvers used to
implement the RM (such as ILP solvers) grows significantly
with the number of applications. Hence, it is impractical to
have a RM that optimally assigns resources at the price of

2013 American Control Conference (ACC)
Washington, DC, USA, June 17-19, 2013

978-1-4799-0178-4/$31.00 ©2013 AACC 5305

a large consumption of resources by the RM itself. Second,
to enable a meaningful formulation of a cost function in
such optimization problems, the RM must compare the
quality delivered by different applications. This comparison
is unnatural because the concept of quality is extremely
application dependent. Finally, solving for both the amount
of assigned resources and the service levels for all applica-
tions, as in most centralized schemes [6], [8], [9], could be
computationally demanding. Besides, a proper assignment of
service levels requires application knowledge. In particular,
the application must inform the RM about its available
service levels and the expected consumed resources at each
service level. Thus, service levels would better be assigned
by the applications rather than the RM.

To this end, distributed optimization schemes have recently
attracted considerable attention. Subrata et al. [12] consid-
ered a cooperative game formulation for job allocation to
several service providers in grid computing. Job arrivals fol-
low a Poisson process and a centralized optimization problem
is formulated for computing Nash bargaining solutions. Wei
et al. [13] proposed a non-cooperative game-theoretic formu-
lation to allocate computational resources to a given number
of tasks in cloud computing. Tasks have full knowledge of
the available resources and try to maximize their own utility
function. Similarly, Grosu and Chronopoulos [14] formulated
the load balancing problem among different users as a non-
cooperative game and then studied the properties and the
computation of Nash equilibria.

In this paper, the problem differs significantly from the
grid computing setup of [12] or the load balancing problem
of [14], [13] in cloud-computing services. In particular, we
are concerned with the problem of allocating CPU resources
among several applications, while applications are able to
adjust their own service levels. Under the proposed scheme,
both applications and the RM act independently trying to
maximize their own performance measure (utility) according
to a utility-based adjustment process. Naturally, this frame-
work can be interpreted as a strategic-interaction (or game)
among applications and the RM. It is shown analytically
that fair resource allocation can be achieved in a distributed
fashion through the proposed adjustment process when the
CPU is overloaded. Experiments using the TrueTime Matlab
toolbox show the validity of our proposed approach.

The remainder of the paper is organized as follows. The
overall framework is described in Section II. The details
of the resources and service levels adjustment policies are
given in Section III and the convergence analysis is presented
in Section IV. In Section V the approach is evaluated
experimentally and Section VI presents concluding remarks.

II. FRAMEWORK

A. Resource manager & applications

The overall framework is illustrated in Figure 1. A set I
of n applications are competing with each other for CPU
resources. Let i be a representative element of set I, i.e.,
an application. Since we allow applications to dynamically
join or leave, the number n is not constant over time.

The resources are managed by a RM making sure that the
overall allocated resources does not exceed the available ones
(i.e. the number of cores).

setting
service

aware
service

setting
service

aware
service

virtual
platform

virtual
platform

resource
manager

virtual
platform

0
1

unaware
service

0
1

0
1

s1

app1 app2
sn

appn

RM
λ1

λ2

λn

v1 v2 vn

f1 f2 fn

Fig. 1. Resource management framework.

The RM allocates resources to each application i ∈ I
through a Constant Bandwidth Server (CBS) [2] with period
Pi and budget Qi. Hence, application i is assigned a virtual
platform with bandwidth vi = Qi/Pi corresponding to a
fraction of the computing power of a single CPU. The
quantity vi can also be interpreted as speed (relative to the
CPU full speed) at which the i is running. Obviously not all
speeds vi are feasible, since the sum of them cannot exceed
the number m of available CPU’s. Formally, we define the
set of feasible speed assignments, (v1, . . . , vn), as

V =
{

v = (v1, ..., vn) ∈ [0, 1]n :

n∑
i=1

vi ≤ m
}
. (1)

Each application i ∈ I may change its service level si ∈
Si , [si,∞), where si > 0 is the minimum possible service
level of i. Examples of service levels are: the accuracy of an
iterative optimization routine, the details of an MPEG player,
the sampling frequency of a controller, etc. The service level
si is an internal state of application i. Hence, it is written/read
by i only. Let also s = (s1, ..., sn) be the service level profile
of all applications evolving within S , S1 × ...× Sn.
B. The matching function

The goal of the proposed resource management framework
is to compute, for each application i, a matching between the
service level si set by i and the speed vi assigned by the RM.

Definition 2.1 (Matching function): The quality of the
matching between a service level si and a speed vi of
application i is defined by the matching function fi : Si ×
[0, 1]→ R with the following properties:
− if |fi(si, vi)| ≤ δ, then the matching is perfect;
− if fi(si, vi) < −δ, then the matching is scarce;
− if fi(si, vi) > δ, then the matching is abundant.

with δ being a system parameter.
A perfect matching between si and vi describes a situation

in which application i has the right amount of resources vi
when it runs at service level si. A scarce (resp., abundant)
matching describes the situation when either increasing vi or
decreasing si (resp., decreasing vi or increasing si) is needed
to move towards a perfect matching.

Notice that the service levels {si} are internal states of the
applications, while the virtual platforms {vi} belong to the
RM space. Hence, neither the RM nor the applications have

5306

a complete knowledge of the matching function fi. In fact,
the matching function is only measured during run-time. The
only properties that we require from any implementation of
fi are the following.
(P1) si 6= 0 ⇒ fi(si, 0) < −δ, that is, the matching must

certainly be scarce if no resources are assigned;
(P2) si ≥ s′i ⇒ fi(si, vi) ≤ fi(s

′
i, vi), if application i

lowers its service level, then the matching function
should increase,

(P3) vi ≥ v′i ⇒ fi(si, vi) ≥ fi(si, v
′
i), if the bandwidth

of application i decreases, then the matching function
should also decrease.

For a real-time application, we define a time-sensitive
matching function as follows:

fi =
Di

Ri
− 1,

where Di denotes a soft-deadline of the application, and Ri
denotes the job response time, that is the time elapsing from
the start time to the finishing time of a job. For several classes
of applications the above matching function can be rewritten
with respect to si and vi as follows:

fi = βi
vi
si
− 1. (2)

For example, for multimedia applications, the soft deadline
Di can be considered constant, while the response time can
be defined as Ri = Ci/vi, where Ci = αisi is the execution
time per job (at a service level si) and vi is the speed of
execution. Similarly, in control applications, Ri = Ci/vi
where Ci denotes nominal time of execution, while the
soft deadline Di is considered inverse proportional to the
sampling frequency (or service level) si, i.e., Di = αi/si.
Both cases lead to a matching function with the form of (2).

C. Adjustment weights

When |fi| > δ some adjustment of the service level si
or the virtual platform vi is needed, in order to establish
a better matching. We introduce the weight λi ∈ [0, 1] to
represent the importance that the RM assigns to application
i when adjusting its virtual platform vi. As we shall see in
a forthcoming section, the weights {λi} will determine the
direction of adjustment of the virtual platforms {vi} by the
RM, where applications with higher importance than others
will be receiving a larger proportion of this adjustment. For
the remainder of the paper, the weights {λi} are considered
given and determined by the RM.

III. ADJUSTMENT DYNAMICS

Below, we introduce a learning procedure under which the
applications and the RM adapt to possible changes in their
“environment” (other applications) trying to improve their
own performance.

A. RM adjustment

To simplify the implementation, the RM updates the
bandwidth ṽi = vi/m, normalized with respect to the number
of cores. The unused bandwidth and its normalized version

are defined, respectively, by

vr = m−
n∑
i=1

vi, ṽr =
vr
m

= 1−
n∑
i=1

ṽi. (3)

At time t = 0, 1, 2, ..., the RM assigns resources according
to the following rule:1

1) It measures performance fi = fi(t) for each i ∈ I.
2) It updates the normalized resource allocation vector

ṽ , (ṽ1, ..., ṽn) as follows:

ṽi(t+ 1) = ΠṼi

[
ṽi(t) + ε(t)grm,i(t)

]
(4)

for each i = 1, ..., n, where

grm,i(t) , −λifi(t) +

n∑
j=1

λjfj(t)ṽi(t),

and ΠṼi denotes the projection onto the feasible set
Ṽi , [0, 1/m]. The unused bandwidth is updated
according to (3).

3) It computes the original values of bandwidths by
setting vi(t+ 1) = mṽi(t+ 1).

4) It updates the time t← t+ 1 and repeats.
We will consider a diminishing step-size sequence

ε(t) ,
1

t+ 1
.

According to recursion (4), we should expect that vi in-
creases when i performs poorly compared with the group
of applications, i.e., when λifi is small compared to∑n
j=1 λjfj ṽi.
The above algorithm exhibits several nice properties. In

particular, recursion (4) ensures that the virtual platforms
vi(t) are feasible according to (1) for sufficiently large t.
Furthermore, due to property (P1) and for λi > 0, there
exists t′ such that vi(t) > 0 for all t > t′, i.e., the virtual
platforms will be nonzero for all future times. Note though
that this might not be the case when λi = 0.

In some cases, we will use vector notation for (4),

ṽ(t+ 1) = Π̃{Ṽi} [ṽ(t) + ε(t)grm(t)] (5)

where grm(t) , −Λf(t) +
(
1TΛf(t)

)
ṽ(t), with Λ ,

diag {λi}i, f , [fi]i and Π̃{Ṽi}[·] denotes the combination
of projections on Vi’s, i.e.,

Π̃{Ṽi}[ṽ] ,
(

ΠṼ1 [ṽ1], ...,ΠṼn [ṽn]
)
.

We will use the notation Ṽ , Ṽ1 × ...× Ṽn to denote the
space of ṽ.

B. Applications adjustment

The RM provides information to all applications to guide
their selection of a proper service level. This information will
be closely related to the performance of each application i
as measured by the matching function fi.

1Although the performance fi of application i is a function of both the
service level si and the virtual platform vi, the RM simply receives an
instance of this function. Thus, we abuse notation by simply writing fi =
fi(t).

5307

We will consider an adjustment process for the service
levels of each application which has the generic form:

si(t+ 1) = ΠSi [si(t) + ε(t)gapp,i(t)] , (6)

where the term gapp,i(t) captures an “observation” sent by the
RM to the application and depends on the matching function
fi. In particular, we would like this observation to be zero
when the matching function is zero.

In several cases, we will use the more compact form:

s(t+ 1) = Π̃{Si} [s(t) + ε(t)gapp(t)] . (7)

where s , [si]i and gapp , [gapp,i]i.
Below, we identify two candidates for the observation term

gapp,i.
1) Scheme (a): The first scheme is rather generic and

independent of the specific form of the matching function
fi. It simply defines gapp,i(t) , fi(t). Naturally, in this case,
the specifications we set above are satisfied.

2) Scheme (b): The second scheme takes into account
the specific form of the matching function (2). Assuming
that application i could read vi(t), a natural way for the
application to adjust its service level is to simply set si(t+
1) = βivi(t), since, according to (2), if si matches βivi, the
matching function will become zero. However, setting the
next service level si(t + 1) according to this rule relies on
a careful estimation of βi, which may be unavailable. From
the (possibly non-zero) measurement fi(t) at time t we can
estimate βi as

βi = (1 + fi(t))
si(t)

vi(t− 1)
,

in which case, the service level update rule becomes

si(t+ 1) = (1 + fi(t))
vi(t)

vi(t− 1)
si(t). (8)

The above recursion may exhibit large incremental differ-
ences, si(t + 1) − si(t), which is not desirable. Hence, we
introduce a smoother update rule for the service level si that
exhibits the same stationary points of (8), by setting:

gapp,i(t) , (1 + fi(t))
vi(t)

vi(t− 1)
si(t)− si(t). (9)

In words, we should expect that si decreases when fi < 0
and vi(t)/vi(t − 1) < 1, i.e., when the application is doing
poorly and the assigned resources have been decreased. The
term vi(t)/vi(t − 1) provides a look-ahead information to
the application about the expectation over future resources.

C. Resource allocation game

Briefly, we would like to note that the above framework
naturally introduces a strategic-form game (cf., [15]) between
the applications and the RM. Note that a strategic-form game
is defined as a collection of: (i) a set of players P , which
here is defined as the set of applications I and the RM,
(ii) a set of available actions, Ap, for each player p ∈ P ,
which is defined as the set of available service levels for
an application i or the set of available virtual platforms for
the RM; and (iii) a set of utilities or performance measures,
up : Ap → R, for each player p. The selection of these utility

functions is open-ended. A candidate selection, motivated by
the dynamics presented above could be as follows:
− for each i ∈ I, uapp,i : Si × [0, 1]→ R, such that

∇siuapp,i(si, vi) = fi(si, vi);

− for the RM, urm : S × V → R, such that, for each i,

∇viurm(s,v) = −λifi(si, vi) +

n∑
j=1

λjfj(sj , vj)ṽi.

Under such strategic-form game formulation, each appli-
cation would prefer to select si that makes the matching
function fi equal to zero, while the RM would prefer to
select a virtual platform allocation that would be “fair” to
all applications. Furthermore, under this framework the ad-
justment dynamics presented before introduce a natural way
for searching for a Nash equilibrium allocation (cf. [15]).

IV. CONVERGENCE ANALYSIS

In this section, we analyze the asymptotic behavior of the
adjustment dynamics of the RM (5) and the applications (7).
For the remainder of the paper, we will consider scheme (b)
for the applications adjustment presented in Section III-B.

For the sake of analysis, we will abuse notation by taking
the observation signals grm,i and gapp,i as functions of the
service levels and virtual platforms. In particular, for the
RM adjustment, the observation signal grm,i(t) is replaced
by grm,i : S × Ṽ such that:

grm,i(s, ṽ) , −λifi(si, vi) +

n∑
j=1

λjfj(sj , vj)ṽi,

where vi = mṽi. Likewise, the observation signal gapp,i(t)
in the application i’s adjustment is replaced by the function
gapp,i : Si × Ṽi such that:

gapp,i(si, ṽi, yi) = (1 + fi(si, vi))
ṽi(t)

yi(t)
si(t)− si(t),

where

yi(t+ 1) = yi(t) + ε(t) (ṽi(t)− yi(t)) . (10)

The reason for introducing the new state variable y ,
(y1, ..., yn) is to deal with the different time indices in (9).
The state variable y represents a low-pass filter of ṽ, and
for sufficiently large time t remains positive due to (P1).

The asymptotic behavior of the overall adjustment de-
scribed by (5), (7) and (10), can be characterized as follows:

Proposition 4.1: The overall recursion (5), (7) and (10)
is such that the sequence {(s(t), ṽ(t),y(t))} converges2 to
some limit set of the ODE:

(ṡ, ˙̃v, ẏ) = g(s, ṽ,y) + z(t), (11)

where g , (gapp,grm, ṽ − y) and z , (zapp, zrm, 0) is
the minimum force required to drive ṽi(t) to Ṽi and si(t)
back to Si. Finally, if E ⊂ S × Ṽ × [0, 1]n is a locally
asymptotically stable set in the sense of Lyapunov3 for (11)
and (s(t), ṽ(t),y(t)) is in some compact set in the domain
of attraction of E, then (s(t), ṽ(t),y(t))→ E.

2By x(t) → A for a set A, we mean limt→∞ dist(x(t), A) = 0.
3See [16, Definition 3.1].

5308

Proof: The proof is based on Theorem 2.1 in [17].
The above proposition relates the asymptotic behavior of

the overall discrete-time recursion with the limit sets of the
ODE (11). Since the stationary points4 of the vector field g
are invariant sets of the ODE (11), then they are also can-
didate attractors for the recursion. In the following sections,
we analyze the convergence properties of the recursion with
respect to the stationary points of the ODE (11).

A. Stationary points

Lemma 4.1 (Stationary Points): Any stationary point of
the ODE (11) satisfies all the following conditions:
(C1)

∑
i λifi(s

∗
i , v
∗
i)ṽ∗j = λjfj(s

∗
j , v
∗
j), or

{ṽ∗j = 1/m ∧ fj(s∗j , v∗j) ≤ 0};
(C2) fj(s

∗
j , v
∗
j) = 0, or {s∗j = sj ∧ fj(s∗j , v∗j) ≤ 0},

(C3) y∗j = ṽ∗j ,
for all j ∈ I. Furthermore, the set of stationary points is
non-empty.

Proof: Condition (C1) is an immediate consequence of
setting grm,j(s∗, ṽ∗)+zrm,j = 0, j ∈ I. Likewise, conditions
(C2) and (C3) follow directly from setting gapp,j(s∗, ṽ∗, yi)+
zrm,j = 0 and yj = ṽj , j ∈ I.

Regarding existence of stationary points, and without loss
of generality, we restrict attention to the allocations (s, ṽ)
for which fi(si, vi) ≤ 0 for all i ∈ I (since, if there
exists application i for which fi(si, vi) > 0, then i may
always increase si to match vi without affecting the matching
functions of the other applications). Under this restriction, we
consider two cases: (a) there exists s∗ ∈ S and ṽ∗ ∈ Ṽ such
that fj(s∗j , v

∗
j) = 0 for all j ∈ I; and (b) there exists at

least one j ⊂ I such that fj(sj , vj) < 0 for all sj ∈ Sj
and ṽj ∈ Ṽj . In case (a), (s∗, ṽ∗, ṽ∗) is a stationary point
of the ODE (11). In case (b),

∑
i λifi(si, vi) < 0 for the

allocations under consideration. Then, condition (C1) gives:

ṽ∗ = h(s∗, ṽ∗) ,
Λf(s∗,v∗)

1TΛf(s∗,v∗)
, (12)

where v∗ = m ṽ∗. Since the function h(s∗, ·) is continuous
on a convex and compact set Ṽ , by Brower’s fixed point
theorem (cf., [18, Corollary 6.6]) h(s∗, ·) has a fixed point.
If the fixed point suggests ṽ∗j > 1/m for all j ∈ J ⊆ I, then
set ṽ∗ ≡ 1/m for all j ∈ J and resolve (12) to compute a
stationary point for the rest of applications I\J . This process
will define a stationary point.

In words, the above lemma states that at a stationary
point, application i is either performing sufficiently good
(i.e., fj(s∗j , v

∗
j) = 0), or it performs poorly but i) its service

level si cannot be decreased any further (i.e., fj(s∗j , v
∗
j) ≤ 0,

s∗j = sj), and/or ii) its virtual platform vi cannot be increased
any further (i.e., fj(s∗j , v

∗
j) ≤ 0, ṽ∗j = 1/m).

Note that any pair (s, ṽ) for which fi(si, vi) = 0 is a
stationary point of the ODE (11). This multiplicity of station-
ary points complicates the convergence analysis, however,
in some cases, uniqueness of the stationary points can be
shown. Next, we analyze one such special case.

4The stationary points of an ODE ẋ = g(x) are defined as the points in
the domain D for which g(x) = 0.

1) Fixed Service Levels: The following result character-
izes the set of stationary points when the service levels are
fixed, i.e., when each application has only one service level.
First, define the following constants:

Θs , inf
ṽ∈Ṽ

∣∣∣∑
i

λifi(si, vi)
∣∣∣ ≥ 0,

Ks , sup
i∈I,ṽ∈Ṽ

|fi(si, vi)| <∞,

γs , sup
i∈I

{βim
si

}
> 0.

Proposition 4.2 (Uniqueness of Stationary Points): For
some given s ∈ S, let fi be defined by (2). If Θs > 0 and

ρs ,
Ksγs (

∑
i λi)

2

Θ2
s

< 1,

then, the ODE (11) exhibits a unique stationary point.
Proof: We first consider the unconstrained case where

Ṽi = [0, 1] for each i ∈ I, i.e., there is only one core (m =
1). (We will revisit this assumption later.) Given also that
Θs > 0, a stationary point ṽ∗ satisfies ṽ∗ = h(s, ṽ∗) for
some constant vector s.

For any ṽ′ 6= ṽ, we have,

hj(s, ṽ
′)− hj(s, ṽ)

=
λjfj(sj , v

′
j)∑

i λifi(si, v
′
i)
− λjfj(sj , vj)∑

i λifi(si, vi)

Note that, |
∑
i λif(si, v

′
i)
∑
i λif(si, vi)| ≥ Θ2

s > 0. Thus,

|hj(s, ṽ′)− hj(s, ṽ)|
≤ λj

Θ2
s

∑
i

λi
∣∣fj(sj , v′j)fi(si, vi)− fj(sj , vj)fi(si, v′i)∣∣ .

Also, we have:∣∣fj(sj , v′j)fi(si, vi)− fj(sj , vj)fi(si, v′i)∣∣
≤ Ks

(
|fj(sj , v′j)− fj(sj , vj)|+ |fi(si, vi)− fi(si, v′i)|

)
≤ Ks

(
βjm

sj
|ṽ′j − ṽj |+

βim

si
|ṽi − ṽ′i|

)
≤ Ksγs‖ṽ′ − ṽ‖1

where ‖ · ‖1 denotes the `1 norm in Rn. We conclude that

|hj(s,v′)− hj(s,v)| ≤ λj
Θ2
s

∑
i

λiKsγs‖ṽ′ − ṽ‖1,

which also implies that

‖h(s,v′)− h(s,v)‖1 ≤
Ksγs (

∑
i λi)

2

Θ2
s

· ‖ṽ′ − ṽ‖1.

Hence, h defines a contraction if ρs < 1. Therefore, by
Banach Fixed Point Theorem (cf., [19, Theorem 5.1-2]) and
the fact that `1 is a complete metric space in Rn, h has a
unique fixed point.

If, instead, Ṽi = [0, 1/m], for all i ∈ I, we proceed as
follows: We set ṽ∗j = 1/m for all j ∈ J ⊆ I for which the
unconstrained solution suggests ṽ∗j > 1/m. Then, we repeat
the same steps as in the unconstrained case for all i ∈ I\J .

The following corollary discusses one special case where
uniqueness of stationary points can be shown.

5309

Corollary 4.1 (Large service levels): Consider the match-
ing function defined by (2). For some given s ∈ S, let us
assume that βi/si � 1 for all i. Then, the ODE (5) has a
unique stationary point ṽ∗. Furthermore, as βi/si → 0 for
all i, then

ṽ∗i → min

{
1

m
,

λi∑
j λj

}
, ∀i ∈ I. (13)

Proof: For the matching function of (2), we have:

Θs = inf
ṽ∈Ṽ

∣∣∣∑
i

λi
βim

si
ṽi −

∑
i

λi

∣∣∣.
If βi/si � 1 for all i, then there exists i∗ ∈ I such that

Θs =
∑
i

λi − λi∗
βi∗

si∗
� 0.

Also, Ks = supi∈I,ṽ∈Ṽ |fi(si, vi)| = 1. Thus, we have:

ρs =
γs

(∑
i λi

)2
(∑

i λi − λi∗
βi∗
si∗

)2 .
For βi/si � 1 for all i, we have γs � 1, which further
implies that ρs < 1. Therefore, from Proposition 4.2, there
exists a unique stationary point.

Furthermore, as βi/si → 0, the stationary point can be
computed from condition (C1) and it can be verified in a
straightforward manner that satisfies (13).

The above proposition also provides an answer to how
the stationary point changes with respect to the weight
parameters {λi} for large service levels. In that case, we
conclude that the larger the weight λi assigned by the RM
to application i, the larger the asymptotic bandwidth v∗i .

2) Non-fixed Service Levels: When the service levels are
also adjusted according to (7), the characterization of the
set of stationary points is not straightforward. Motivated
by Corollary 4.1 the following corollary identifies one case
where uniqueness of stationary points holds.

Corollary 4.2 (Overloaded CPU): Consider the matching
function defined by (2). If the solution of the ODE (11),
{ṽ(t)}, satisfies supt≥0 {βimṽi(t)/si} � 1 for all i, then
the ODE (11) exhibits a unique stationary point (s∗, ṽ∗) such
that s∗i = si. Furthermore, as supt≥0 {βimṽi(t)/si} → 0 for
all i, then ṽ∗i satisfies property (13).

Proof: (sketch) If the solution of the ODE (11) satisfies
supt≥0 {βivi(t)/si} � 1 for all i, i.e., the virtual platforms
are restricted within small values, then we may repeat the
analysis of Corollary 4.1, for the restricted set of feasible
virtual platforms to show that ρs < 1 for all s ∈ S.

The hypotheses of Corollary 4.2 are not restrictive. In
fact, when the CPU is overloaded, i.e., large number of
applications is currently running, the amount of resources
that the RM assigns to each application will be small at
all times leading to supt≥0 {βimṽi(t)/si} � 1. In such
cases, the RM is treating applications fairly, as property (13)
indicates.

As we have already pointed out, in the more general case
where the hypotheses of Corollary 4.2 do not hold, there is a
multiplicity of stationary points including (if exist) any pair
(s∗, ṽ∗) for which fi(s∗i , v

∗
i) = 0 for all i.

B. Local Asymptotic Stability & Convergence
The following proposition characterizes locally the stabil-

ity properties of the stationary points under the hypotheses
of Corollary 4.2.

Proposition 4.3 (LAS): Under the hypotheses of Corol-
lary 4.2, the unique stationary point of the dynamics (11) is a
locally asymptotically stable point in the sense of Lyapunov.

Proof: Let ṽ∗ corresponds to the unique stationary
point of (11). Define the non-negative function

W (ṽ) =
1

2
(ṽ − ṽ∗)T(ṽ − ṽ∗) ≥ 0

and consider the unconstrained case at which Ṽi = [0, 1] for
all i ∈ I. (We will revisit this assumption later on.) Then,

Ẇ (ṽ) = (ṽ − ṽ∗)Tgrm(s, ṽ)

= (ṽ − ṽ∗)T
[
−Λf(s,v) + 1TΛf(s,v)ṽ

]
.

Let us consider the following perturbed allocation ṽ = (1−
ε)ṽ∗ + εw for some w ∈ Ṽ and ε > 0. Then, we have:

Ẇ (ṽ) = ε(w − ṽ∗)T [−Λf(s, (1− ε)mṽ∗ + εmw)+
1TΛf(s, (1− ε)mṽ∗ + εmw)((1− ε)ṽ∗ + εw)

]
.

It is also straightforward to verify that:

f(s, (1− ε)mṽ∗ + εmw) = (1− ε)f(s,mṽ∗) + εf(s,mw).

Thus,

Ẇ (ṽ) ≈ ε2‖w − ṽ∗‖221TΛf(s,mṽ∗)+
ε2(w − ṽ∗)T

[
−Λf(s,mw) + 1TΛf(s,mw)ṽ∗

]
plus higher order terms of ε.

If the hypotheses of Corollary 4.2 hold, i.e.,
supt≥0 {βimṽi(t)/si} � 1 for all i, then the first term
of the RHS of the above expression dominates the second
term. This is due to the fact that as supt≥0 {βimṽi(t)/si}
approaches zero for all i, the second term approaches zero
while the first term is bounded away from zero and is
strictly negative. Therefore, from [16, Theorem 3.1], the
stationary point ṽ∗ is locally asymptotically stable.

Finally, in case Ṽi = [0, 1/m], the unique stationary point
may assign ṽ∗i = 1/m for some applications i. In this
case, it is straightforward to check that the vector field grm

points outwards, which implies that the conclusions of the
unconstrained case continue to hold.

From Proposition 4.1, we conclude that the stationary
points of the ODE (11), which satisfy the hypotheses of
Proposition 4.3, are local attractors of the overall recursion.

V. EXPERIMENTAL EVALUATION

To investigate the assignment of the bandwidth and the
values of the application service levels, the resource man-
agement scheme was implemented both in Matlab and in
TrueTime [20].

A. Experiment with synthetic applications
In the first Matlab experiment, the applications are not

executed, but they are simply abstracted by their characteris-
tic parameters. We have three applications running over two
cores. Applications are all the same, except for the values of
the weights: λ1 = 0.9, λ2 = 0.5 and λ3 = 0.1. As explained

5310

0 25 50 75 100 125 150 175 200
0.5

0.6

0.7
v i

0 25 50 75 100 125 150 175 200

-0.3

-0.2

-0.1

0

f i app1
app2
app3

0 25 50 75 100 125 150 175 200
0.7

0.8

0.9

1.0

s i

Fig. 2. Simulation results of three applications over two cores.

in Section II-C, λi determines the amount of effort that is
taken by the RM to achieve a perfect matching for application
i (i.e., fi close to zero).

In accordance with the time-sensitive application model
of Section II-B, each application is set to have Di = 2500
and αi = 2000. In Figure 2, we demonstrate how the
bandwidth vi, the matching function fi, and the service
level si of all three applications evolve under the adjustment
dynamics of (5), (7) and (10). Some noise is added to
the matching functions fi, to account for the inaccuracy
of the real measures and to show the robustness of the
method. Also, the service level adaptation is performed once
every twenty steps of the RM execution, to resemble some
real behavior, where applications are adjusting at a slower
rate with respect to the resource allocation. At time 100,
the weights of the applications are changed to λ1 = 0.1,
λ2 = 0.5 and λ3 = 0.9 and the RM is reinitialized.

At time 0, in response to an equally scarce matching
between the bandwidth and the service levels, app1 is
assigned more resource, while app3 has to significantly
lower its service level s3. This observation complies with
the prediction of Corollary 4.2 and Proposition 4.3, however
we should not expect to observe the exact allocation (13),
since the hypotheses of Corollary 4.2 partially hold at the
beginning of the simulation (when fi � 0). As the weights
are changed by the RM, app3 receives more resource, but not
as predicted by (13) since the matching function is already
quite close to zero.

B. Experiments with real applications

TrueTime [20] is a Matlab/Simulink-based tool that allows
simulation of tasks executing within real-time kernels and
communication over networks, embedded within Simulink.
Among other things, it supports simulation of CBS-based [2]
task execution. The policy allows to adjust the CPU time
allocated to the running applications, in the same exact way

0 200 400 600 800 1000
0.1

0.2

0.3

v i

0 200 400 600 800 1000
-0.6

-0.4

-0.2

0

f i

app1
app2
app3
app4

0 200 400 600 800 1000
0.4

0.6

0.8

1

s i

Fig. 3. TrueTime simulation results of a single core machine with four
applications.

as in a real-time computing system. Moreover, TrueTime
offers the ability to simulate memory management and
protection, therefore being a perfect match to simulate our
resource management framework.

A TrueTime kernel simulates a single CPU that hosts
the execution of the RM and the CBS servers that contain
the applications. A shared memory segment is initialized
and both the RM and the applications have access to the
memory area reporting their execution data. The RM reads
the matching function, fi, of each application i and computes
the new reservations vi. Then, it updates the parameters of
the CBS server and writes in the shared memory values
(to be read by the applications). The execution time of the
RM is a parameter of the simulation. Both the applications
and the RM are coded in a way that is very close to a
real implementation and the resulting simulation data are
generally very close to the data that would have been
obtained on a real execution platform.

The first experiment with TrueTime considers four appli-
cations and the RM, which employ the adjustment process
of (5), (7) and (10). Figure 3 shows the allocated bandwidths
vi, the matching functions fi and the service levels si.
For these applications, we take Di/αi = 2 as explained
in the derivation of (2) for multimedia applications. The
weights are λ1 = 0.8, λ2 = 0.6, λ3 = 0.4 and λ4 =
0.2. Some randomness is also introduced in the execution
times to show the effect of disturbances generated by lock
acquisition, resource contention, memory management, etc.
At the beginning of the simulation and when the matchings
are quite scarce (i.e., the hypotheses of Corollary 4.2 are
satisfied), the RM distributes the CPU as predicted by
Corollary 4.2 and Proposition 4.3. However, as the service
levels also adjust and the matching functions approach zero,
we observe a deviation from the exact resource allocation
predicted by (13), which is anticipated since the hypotheses

5311

0 250 500 750 1000
0.1

0.2

0.3

0.4
v i

0 250 500 750 1000
0
2
4
6

f i

app1
app2
app3
appctl

0 250 500 750 1000
0
1
2
3
4
5

s i

Fig. 4. TrueTime simulation results of a single core hardware with two
applications and a control task. Another application is arriving at time 500.

of Corollary 4.2 no longer apply.
In the second experiment, we show how four heteroge-

neous applications are handled by the RM. Three of them
are active from the very beginning while the fourth one
enters the system at time 500. Among the three applications
that are active from the beginning, there is an LQG con-
troller controlling an inverted pendulum which is simulated
in Simulink. The controller, modeled as a time-sensitive
application (2), has a deadline set to 0.85Ts where Ts
is its sampling period. Its service level si is simply set
equal to 1/Ts, because of the natural observation that faster
sampling can provide better performance. The applications’
weights are set as λ1 = 0.64, λ2 = 0.73, λ3 = 0.41 and
λctl = 0.41. Every five controller jobs, the service level of
the controller, i.e., the sampling frequency, is adjusted. A new
sampling period is chosen and the controller is redesigned
taking into account the measured sampling period and the
measured input/output latency. The latency, i.e., the average
amount of time between the sensor measurement and the
actuation, depends on the amount of bandwidth assigned to
the controller by the resource manager. In a real system
the on-line redesign would be replaced by look-up in a
table consisting of pre-calculated controller parameters for
different sampling periods and latencies.

Figure 4 shows how the CPU bandwidth, the performance
functions and the service levels evolve. Notice that when a
new application is introduced the resource manager is reset.

VI. CONCLUSIONS

We proposed a distributed management framework for
allocating CPU resources to time-sensitive applications. Ac-
cording to the proposed scheme, a resource manager is
responsible for assigning resources (virtual platforms) to
applications, aiming at a “fair” allocation, while each ap-
plication is responsible for adjusting its own service level,
aiming at a better “matching” between its service level and

the provided bandwidth. By distributing the adjustment of the
virtual platforms and the service levels, the proposed scheme
exhibits linear time complexity in the number of demanding
applications. We analyzed the convergence behavior of the
adjustment dynamics. Especially for the case of an over-
loaded CPU, we showed that the adjustment process assigns
resources fairly among applications. We also validated the
results experimentally using the TrueTime Matlab toolbox.

REFERENCES

[1] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves:
Operating system support for multimedia applications,” in Proceedings
of IEEE International Conference on Multimedia Computing and
Systems, Boston, MA, U.S.A., May 1994, pp. 90–99.

[2] L. Abeni and G. Buttazzo, “Integrating multimedia applications in
hard real-time systems,” in Proceedings of the 19th IEEE Real-Time
Systems Symposium, Madrid, Spain, Dec. 1998, pp. 4–13.

[3] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and
J. Walpole, “A feedback-driven proportion allocator for real-rate
scheduling,” in Proceedings of the 3rd Symposium on Operating
Systems Design and Implementation, Feb. 1999.

[4] J. Eker, P. Hagander, and K.-E. Årzén, “A feedback scheduler for real-
time controller tasks,” Control Engineering Practice, vol. 8, no. 12,
pp. 1369–1378, Jan. 2000.

[5] T. Cucinotta, L. Palopoli, L. Abeni, D. Faggioli, and G. Lipari, “On
the integration of application level and resource level qos control for
real-time applications,” IEEE Transactions on Industrial Informatics,
vol. 6, no. 4, pp. 479–491, Nov. 2010.

[6] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A resource
allocation model for QoS management,” in Proceedings of the IEEE
Real Time System Symposium, 1997.

[7] C. Lee, J. P. Lehoczky, D. Sieworek, R. Rajkumar, and J. Hansen, “A
scalable solution to the multi-resource QoS problem,” in Proceedings
of the 20th IEEE Real-Time Systems Symposium, Phoenix, AZ, Dec.
1999, pp. 315–326.

[8] M. Sojka, P. Pı́ša, D. Faggioli, T. Cucinotta, F. Checconi, Z. Hanzálek,
and G. Lipari, “Modular software architecture for flexible reservation
mechanisms on heterogeneous resources,” Journal of Systems Archi-
tecture, vol. 57, no. 4, pp. 366–382, 2011.

[9] E. Bini, G. C. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler,
K.-E. Årzén, R. Vanessa, and C. Scordino, “Resource management
on multicore systems: The ACTORS approach,” IEEE Micro, vol. 31,
no. 3, pp. 72–81, 2011.

[10] B. Johansson, C. Adam, M. Johansson, and R. Stadler, “Distributed
resource allocation strategies for achieving quality of service in server
clusters,” in Proceedings of the 45th IEEE Conference on Decision
and Control, Dec. 2006, pp. 1990–1995.

[11] K.-E. Årzén, V. Romero Segovia, S. Schorr, and G. Fohler, “Adaptive
resource management made real,” in Proc. 3rd Workshop on Adaptive
and Reconfigurable Embedded Systems, Chicago, IL, USA, Apr. 2011.

[12] R. Subrata, A. Y. Zomaya, and B. Landfeldt, “A cooperative game
framework for QoS guided job allocation schemes in grids,” IEEE
Transactions on Computers, vol. 57, no. 10, pp. 1413–1422, Oct. 2008.

[13] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong, “A game-theoretic
method of fair resource allocation for cloud computing services,” The
Journal of Supercomputing, vol. 54, no. 2, pp. 252–269, Nov. 2010.

[14] D. Grosu and A. T. Chronopoulos, “Noncooperative load balancing in
distributed systems,” Journal of Parallel and Distributed Computing,
vol. 65, no. 9, pp. 1022–1034, 2005.

[15] M. J. Osborne and A. Rubinstein, A Course in Game Theory. Cam-
bridge, MA: MIT Press, 1994.

[16] H. Khalil, Nonlinear Systems. Prentice-Hall, 1992.
[17] H. J. Kushner and G. G. Yin, Stochastic Approximation and Recursive

Algorithms and Applications, 2nd ed. Springer-Verlag New York, Inc.,
2003.

[18] K. Border, Fixed Point Theorems with Applications to Economics and
Game Theory. Cambridge University Press, 1985.

[19] E. Kreyszig, Introductory Functional Analysis with Applications. John
Wiley & Sons, 1978.

[20] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén,
“How does control timing affect performance? Analysis and simulation
of timing using Jitterbug and TrueTime,” IEEE Control Systems
Magazine, vol. 23, no. 3, p. 1630, Jun. 2003.

5312

