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Abstract—Segment Routing (SR) is a novel traffic engineering
technique compatible with traditional MPLS data plane. SR relies
on label stacking to steer traffic flows throughout the network.
Signaling protocol is not required, thus control plane operation
is greatly simplified. SR can also be exploited upon network
failures to promptly perform traffic recovery and, subsequently,
to optimize the recovered traffic for avoiding network congestion.

This study proposes a procedure to dynamically recover the
traffic flows disrupted by a single failure in segment routing net-
works. The proposed procedure is evaluated in several network
topologies to estimate the complexity of the required operations.

I. INTRODUCTION

Segment Routing (SR) has been recently proposed as an
innovative technique to provide traffic engineering (TE) by
simplifying control plane operation [1], [2]. SR relies on
source routing and can be easily deployed in Multiprotocol
Label Switching (MPLS) networks. Indeed, according to SR,
packet flows are enforced through a given path by applying,
at the ingress node, a specifically designed stack of segment
identifiers (i.e., labels) fully compatible with the MPLS data
plane.

The stack of labels is named segment list. Only the top label
in the list is processed during packet forwarding. In particular,
each packet is forwarded along the shortest path toward the
network element represented by the top label. For instance,
a label can represent an Interior Gateway Protocol prefix
identifying a specific router (i.e., IGP-Node Segment [1]).
Unlike traditional MPLS networks, SR maintains per-flow
state only at the ingress node, where the segment list is applied.
Therefore, no signaling protocol (e.g., Reservation Protocol
with traffic engineering extensions - RSVP-TE) is required to
populate the forwarding table of transit nodes. In this way, a
simplified control plane is employed, just relying on an IGP
properly extended to advertise ythe segment identifiers [3].
Thus, scalability of transit nodes is greatly improved, since
MPLS Label Switch Paths (LSPs) state information is not
required.

Several interesting SR use cases have been recently pro-
posed. As an example, SR can be effectively used to steer
traffic flows on paths characterized by low latency values and
to avoid link congestion using a limited number of tunnels [4].
Moreover, segment routing can be effectively used upon
network failures to promptly perform traffic recovery and,
subsequently, to optimize the recovered traffic for avoiding

network congestion that may occur on the faulted network
topology.

However, SR may suffer from other potential issues [5]. In-
deed, deployed MPLS equipments typically support a limited
number of stacked labels. Therefore, the segment list depth
may be constrained to a limited value to guarantee backward
compatibility. Moreover, adding a segment list to each packet,
introduces additional packet overhead.

Even though standardization is rapidly evolving and the
main network equipment vendors are currently involved in the
implementation phase [6], there has been a limited research
work on SR within the academic community; especially, the
possible SR application during recovery phase has not yet been
investigated.

Authors of [7] propose to combine the benefits of SR with
those of a software defined networking (SDN) architecture [4].
The works in [5], [8] propose a SR implementation for Carrier
Ethernet networks including both a testbed evaluation and a
simulation study. The proposed solution is able to reduce the
required segment list depth but implies integrations of the
segment list at some intermediate nodes (i.e., the swap nodes).
Our previous work in [9] proposes an algorithm to compute
the segment list using an auxiliary network graph. Finally, the
works in [10]–[12] propose two experimental implementations
of SR respectively based on an OpenFlow-based controller and
a Path Computation Element (PCE) based controller.

This study proposes a segment routing procedure to dynam-
ically recover traffic flows disrupted by link or node failures.
Within the proposed procedure the central controller is not
involved upon failure occurrence so that the traffic is locally
recovered at the node detecting the failure guaranteeing short
recovery time. In a second phase the controller may be used to
optimize the traffic flows on the faulted topology to avoid link
congestion. Several network topologies have been considered
to evaluate the proposed procedure and the obtained results
demonstrated that, in most of the cases, traffic recovery is
performed inserting no more than two new labels in the
segment list.

II. SEGMENT ROUTING OPERATION

Segment Routing typically requires the utilization of a
centralized controller, such as a PCE [10], [13] or an SDN
controller [4], [7], [14], [15]. When a new traffic flow has to be
established, a request is issued to the controller that computes
the path and encodes the computed path using a segment list.
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Fig. 1. Test network topology detailing Segment Routing examples. The forwarding table is reported for each node. The path p̄5 is illustrated with solid
line, the backup path for p̄5 is illustrated with dashed line in case of failure of link B −D . Also the segment list of packets traversing p̄5 and its backup
path is illustrated hop by hop, where node B pushes the label E along the backup path.

Fig. 1 explains the basic segment routing operations. Specif-
ically, the figure illustrates a network where all the forwarding
tables are detailed assuming that an IGP is used to advertise
the node identifiers, as proposed in [3].

If a new traffic request arrives from node A to node I , the
controller computes the path p̄1 = {A,C,E,G, I}. Since p̄1
is the unique shortest path from A to I , the segment list SL

p̄1

encoding p̄1 only includes one label (i.e., SL
p̄1

= {I}). The
packets are then forwarded along p̄1 without modifying the
segment list up to node G where the label I is popped (i.e.,
penultimate hop popping) and the packet is forwarded to node
I .

Alternatively, if the controller computes the path p̄2 =
{A,B,D, F,G, I} a more complex segment list is required
because p̄2 is not the unique shortest path to node I . A
possible segment list is SL

p̄2
= {F, I}. Therefore, packets are

forwarded up to node D without modification to the segment
list. At node D the label F is popped, then node F receives
the packets with the single label I and forwards them through
the unique shortest path toward node I . At node G, the label
I is popped and the packet is forwarded to node I .

A. Equal Cost Multi Path aware routing

SR natively implements Equal Cost Multi Path (ECMP)
aware routing, i.e., in case of multiple shortest paths toward
the destination the traffic is load balanced on a per-flow basis.
For instance, in Fig.1 traffic from C to F and labeled with
the single label F will be load balanced on the two paths
p̄3 = {C,E,G, F} and p̄4 = {C,B,D, F}.
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Fig. 2. Link failure recovery - forwarding tables including backup actions:
(a) node D, (b) node B.

IN Label
A
B
C
E
F
G
H
I
L

NODE D
Action

Out 1
Pop, Out 1
Out 1
Out 1, Out 2
Pop, Out 2
Out 2
Out 2
Out 2
Out 2

Backup Action
Push G, Out 2
Pop
Push G, Out 2
Out 2, Out 1
Pop
Push C, Out 1
Push E, Out 1
Push C, Out 1
Push C, Out 1

IN Label
A
C
D
E
F
G
H
I
L

Action
Pop, Out 1
Pop, Out 3
Pop, Out 2
Out 3
Out 2
Out 2, Out 3
Out 2
Out 2, Out 3
Out 2

NODE B
Backup Action
Pop
Pop
Pop
Push F, Out 2
Push E, Out 3
Out 3, Out 2
Out 3
Out 3, Out 2
Out 3

(a) (b)

Fig. 3. Node failure recovery - forwarding tables including backup actions:
(a) node D, (b) node B.

To avoid ECMP load balancing, i.e., a strict path is desired,
additional labels are required in the segment list. For instance,
if the target path is p̄3 two labels are required in the segment
list to discriminate between the two shortest paths (e.g.,
SL

p̄3
= {G,F}).



TABLE I
SEGMENT ROUTING RECOVERY RESULTS SUMMARY

N L
Label to push Label to push Label to push Label to push

N L link ECMP link STRICT node ECMP node STRICT

Avg. Max Avg. Max Avg. Max Avg. Max

PanEU 27 55 0.01 1 0.54 2 0.19 2 0.78 3
NSF 14 21 0.28 1 0.48 2 0.2 1 0.42 1

MultiD 75 145 0.07 1 0.79 4 0.27 2 1.05 4

BRITE 100 200 0.05 1 0.63 4 0.09 2 0.64 4
BRITE 150 300 0.07 1 0.6 4 0.12 2 0.62 4

Ring 27 27 0.92 1 0.92 1 0.92 1 0.92 1
Grid 25 40 0.11 1 0.80 2 0.08 1 0.73 2

B. Label stack computation

The segment list used for encoding a pre-determined path
(i.e., the target path) is computed at the controller after the
computation of the path (i.e., the target path) for each new
traffic flow. In this paper the Segment Routing Reverse (SR-
R) algorithm proposed in [16] is used.

First, the SR-R algorithm inserts the destination node in
the segment list. Then the algorithm generates a number of
target segments by navigating the computed target path in the
backward direction from the destination node up to the source
node. This way, the first evaluated target segment includes the
last two nodes of the target path, the second one includes the
last three nodes and so forth. If the generated target segment is
a unique shortest path, an additional node is included from the
target path. Otherwise, the source node of the previous target
segment is included in the segment list, and the algorithm
iterates starting from the node inserted in the segment list.

III. SEGMENT ROUTING RECOVERY PROCEDURES

This paper proposes a procedure to implement fast recovery
in Segment Routing networks. The proposed procedure does
not involve the controller in the traffic recovery upon failure
occurrence. Specifically, the forwarding table of each network
node is properly configured during the network initialization
phase so that when a node physically detects a failure of a
connected interface it is able to deviate the traffic on a backup
path. This way, not only the controller is not involved upon
failure occurrence, but also the node detecting the failure does
not require to perform additional path computations to redirect
the traffic on the backup path.

The proposed procedure can be implemented using an SDN
controller and OpenFlow-based switches where the forwarding
table can include actions encoded in the form of groups that
natively supports the monitoring of the interface state and a
backup list of actions that is applied if primary forwarding in-
terface is down [14], [17]. Alternatively, it can be implemented
using a PCE acting as centralized controller of an IP/MPLS
network [12].

The next two subsections specify the proposed procedure in
two different configurations, respectively designed to consider
link failures and node failures.

A. Link failure
Traffic flows are re-routed from the node detecting the

failure up to the node indicated in the next label of the segment
list. Depending on the traffic flows the next label can indicate
the next hop in the network topology, a farther node or even
the destination node of the traffic flow. Therefore, the proposed
approach is an intermediate solution between link protection
(e.g., standard MPLS Fast Reroute, FRR) and path protection.

As an example, consider the network in Fig. 1 and a traffic
flow traversing the path p̄5 = {A,B,D, F,H,L} (solid line in
Fig. 1) encoded with the segment list SL

p̄5
= {F,L}. In case

of failure of link D−F node D detects the failure and the next
label in the segment list is F that is a proper next hop in the
network topology. In this case the backup path is computed
from D to F excluding the disrupted link from the network
topology, i.e., D − B − C − E − G − F and the proposed
method acts as a traditional link protection strategy. In case of
failure of link B −D node B detects the failure and the next
label in the segment list is still F . In this case F is not a next
hop in the network topology. The backup path is computed
from B to F , i.e., B−C−E−G−F (dashed line in Fig. 1).
Finally, considering path p̄1 = {A,C,E,G, I} encoded with
the segment list SL

p̄1
= {I}; in case of failure of link A−C

the next label is I and the backup path is computed as in path
protection from A to the destination node I .

Specifically, during the network initialization phase the
controller considers for each node the possible detection of
a failure on each local interface. Thus, for each entry in the
forwarding table a list of backup actions are programmed.
Considering path p̄2 = {A,B,D, F,G, I}, in case of failure
of link D − F the backup path computed at the controller is
D−B−C−E−G−F thus the backup interface to be used
at node D is port 1. However, if packets are forwarded on port
1 without adding labels in the segment list they enter node B
with label F , and may generate packet looping. Indeed, port 2
is the port indicated as output port in the forwarding table for
packets labeled with F . Therefore, before forwarding packets
on port 1, node D is required to perform a push operation
adding a label to steer the packets along the computed backup
path. In this example, it is sufficient that the single label E is
pushed, so that node B will forward the packets using port 3
toward node C, see Fig. 2(b).
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Fig. 4. Percentage of backup paths requiring a specific number of pushed
labels (a) PanEU; (b) MultiD; (c) BRITE topologies with 150 nodes.

Following the aforementioned procedure Fig. 2 illustrates
the forwarding tables of nodes D and B, where the backup
actions include for each entry a list of labels to be pushed
and the backup interface to forward the re-routed packets.
Specifically, the figure illustrates that at node D almost all
the backup entries require a push operation, whereas at node
B only 3 entries out of 9 require a push operation. As an
example, at node B, if interface 2 is down the traffic directed
toward node L can be simply redirected to node C without
requiring push operations. Indeed, the default action at node
C for the traffic labeled with L will forward it on the desired
backup path, i.e., B − C − E −G− F .

B. Node failure

A modification to the scheme described in the previous
section is required to recover from node failures. First, the
backup paths are computed at the controller by removing from
the topology the faulted node and all the locally connected
links. Then the segment list corresponding to the computed
backup path is computed with the algorithm described in
Sec. II-B assuming the network without failures. Finally, the
backup actions in the forwarding table of each network node
are initialized such that if the next label indicates an adjacent
node (i.e., the node affected by the failure) a backup path
directed to the next next label is enforced, thus a pop operation
is applied and the packet is processed depending on the value
of the next next label.

Applying this procedure Fig. 3, illustrates the forwarding
tables of nodes D and B, where the backup actions can also
include pop operations.

IV. NUMERICAL RESULTS

This section evaluates the two proposed recovery procedures
considering link and node failures, on several network topolo-
gies in terms of labels to be pushed in the segment list at the
node detecting the failure. For each procedure two versions are
considered: in the first version (i.e., ECMP) the deviated traffic
is allowed to reach the destination exploiting load balancing
along all the available shortest paths, in the second version
(i.e., STRICT) the deviated traffic is enforced along a single
backup path computed at the controller during the network
initialization phase.

The considered topologies can be divided in three groups: (i)
real topologies; (ii) topologies generated with BRITE [18]; (iii)
regular topologies (i.e., grid and ring). Tab. I summarizes the
network topology details and the obtained results. Specifically,
for each topology, Tab. I reports: the number of nodes N ; the
number of bidirectional links L; the average and the maximum
number of labels to be pushed in the stack for each considered
scheme. The detailed representation of PanEU, MultiD and
NSF networks can be found in [13] and [19].

Tab. I shows that the average number of labels to be pushed
is less than 1 in all the considered cases, except for node failure
STRICT scheme in the MultiD topology. Therefore, in most
of the case no additional labels are required to perform the
traffic recovery. A significant exception is the ring topology
where in almost all the backup paths one label is sufficient to
allow the traffic recovery. Moreover, it is worth to note that
the schemes considering node failures require a slight higher
number of labels with respect to the scheme considering only
link failures; if a strict backup path is required the number of
required labels increases and in such cases up to 4 labels may
be required.

Finally, Fig. 4 illustrates the percentage of backup paths
requiring the pushing of a specific number of labels con-
sidering PanEU, MultiD, and 150 nodes BRITE topologies
and the STRICT scheme supporting node failures. For all
the distributions we can conclude that the maximum value is
assumed only for a very few number of backup paths. As an



example, for the three considered topologies, more than 90%
of the backup paths requires the pushing of two or less labels.

V. CONCLUSIONS

This paper introduced two procedures for effective traffic
recovery in segment routing networks considering link and
node failures, respectively. The schemes were applied on a
number of network topologies to evaluate the number of new
labels required at the node detecting the failure to steer the
trafffic on the backup path. Results demonstrated that in most
of the cases no more than two labels are required.
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