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A new class of asymmetric exponential

power densities with applications to

economics and finance

Giulio Bottazzi*,y and Angelo Secchi**

We introduce a new five-parameter family of distributions, the asymmetric expo-

nential power (AEP), able to cope with asymmetries and leptokurtosis and, at the

same time, allowing for a continuous variation from non-normality to normality.

We prove that the maximum likelihood (ML) estimates of the AEP parameters are

consistent on the whole parameter space, and when sufficiently large values of the

shape parameters are considered, they are also asymptotically efficient and

normal. We derive the Fisher information matrix for the AEP and we show that

it can be continuously extended also to the region of small shape parameters.

Through numerical simulations, we find that this extension can be used to

obtain a reliable value for the errors associated to ML estimates also for samples

of relatively small size (100 observations). Moreover, we show that around this

sample size, the bias associated with ML estimates, although present, becomes

negligible. Finally, we present a few empirical investigations, using diverse data

from economics and finance, to compare the performance of AEP with respect to

other, commonly used, families of distributions.

JEL classification: C16, C46.

1. Introduction

A large and increasing number of empirical analyses in a variety of fields suggest

that the assumption of normality of real data is quite often not tenable. Indeed,

empirical densities characterized by heavy tails as well as by significant degree of
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asymmetry are often observed in many economic domains. In finance, since the

seminal work of Mandelbrot, scholars and practitioners have become aware that the

volatile dynamics that traditionally characterize financial markets cannot be prop-

erly described by using the Gaussian distribution; quite the contrary, almost every

financial return series has been found to be characterized by the presence of fat tails

(cf. the reviews in Mantegna and Stanley, 2000; McCauley, 2007, and the references

therein). A number of recent studies have brought strong empirical support to the

claim that fat tails are also a robust property of aggregate output growth rates

distributions, both in cross-sections of different countries (Canning et al., 1998;

Castaldi and Dosi, 2009) and in within-country time series (Fagiolo et al., 2008).

At the micro-economic level, strong leptokurtosis has been identified in business

companies growth rates in many developed countries, irrespectively of the proxy

used to measure firm size and of the level of disaggregation considered (Stanley

et al., 1996; Bottazzi and Secchi, 2003, 2006a,b; Bottazzi et al., 2007).

In all these domains, it is important to adopt flexible statistical models able to

cope directly with skewness and leptokurtosis and, at the same time, to allow con-

tinuous variation from non-normality to normality (Huber, 1981; Azzalini, 1986;

Hampel et al., 1986). Both these aspects are captured by the asymmetric exponential

power (AEP) family of distributions discussed in the present paper. As a further

specific motivation for introducing it, we present three empirical exercises that show

how it actually performs in describing those empirical distributions characterized

jointly by significant degrees of skewness and fat tails. We compare the goodness

of fit achieved by the AEP with those obtained with other commonly used distri-

butions, namely the skewed exponential power (SEP), the �-Stable family, and the

Generalized Hyperbolic (GHYP). Other examples of the successful and general ap-

plicability of the AEP are in Santoro (2006), Alfarano and Milakovic (2007), Fagiolo

et al. (2008), and Sapio (2008).

The article is organized as follows. In the next section, the AEP family of distri-

bution is introduced. In Section 3, we present some theoretical results on the max-

imum likelihood (ML) estimation of the AEP family and derive the elements of the

Fisher’s information matrix, discussing its domain of definition. In Section 3.1, we

prove the consistency of the estimator in the whole parameter space and we discuss

the asymptotic efficiency and normality for the case in which both parameters bl and

br are greater than two, while in Section 3.2, we show that, for some estimates, the

domain of definition of the information matrix can be extended to the whole par-

ameter space. Next, in Section 4, with the help of extensive numerical simulations,

we analyze the bias of the ML estimator and their asymptotic behavior in the domain

of the parameters space not covered by the analytical results. Finally, in Section 5 we

compare the performance of the AEP with other, commonly adopted, families

of distributions in three specific empirical exercises including electricity, foreign

exchange, and stock market data.
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2. The asymmetric exponential power distribution

Subbotin (1923) introduced a family of distribution, generally known as the expo-

nential power (EP) distribution, characterized by a scale parameter a40, a shape

parameter b40, and a location parameter m. The EP density reads

fEPðx; b, a, mÞ ¼
1

2ab1=bGð1=b þ 1Þ
e�

1
b

x�m
aj j

b

ð1Þ

where G(x) is the Gamma function. The Gaussian distribution is recovered when

b¼ 2 while when b52, the distributions are heavy tailed: the lower is the shape

parameter b the fatter the density tails. This model has been studied by many scholar:

compare among others Box (1953), Turner (1960) and Vianelli (1963). Inferential

aspects of the EP distribution inside the ML framework have been analyzed in Agró

(1995) and Capobianco (2000). In order to deal with both fat tails and skewness,

Azzalini (1986) considered the SEP distribution

fSEPðx ; b, a, m, �Þ ¼ 2 FðsignðzÞ zj jb=2 �
ffiffiffiffiffiffiffi
2=b

p
Þ fEPðx; b, a, mÞ ð2Þ

where z¼ (x – m)/a, a, b40, �1 < m <1, �1 < x <1, �1 < � <1 and F
is the normal distribution function. It easy to see that fSEP reduces to fEP when � ¼ 0

so that the normal case is obtained when (�, b) ¼ (0, 2). The ML inference problem

for this distribution is discussed in details in DiCiccio and Monti (2004).

In the present article, we suggest an alternative way to tackle the presence of heavy

tails and skewness. We propose a new five-parameters family of distributions, the

AEP, characterized by two positive shape parameters br and bl, describing the tail

behavior in the upper and lower tail, respectively; two positive scale parameters ar

and al, associated with the distribution width above and below the modal value and
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Figure 1 Densities of the AEP(1,2,1,br) with br ¼ 5, br ¼ 1, and br ¼ 0.5.
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one location parameter m, representing the mode. The AEP density presents the

following functional form

fAEPðx; pÞ ¼
1

C
e
� 1

bl

x�m
al

��� ���bl

�ðm�xÞþ 1
br

x�m
ar

�� ��br
�ðx�mÞ

� �
ð3Þ

where p¼ (bl , br , al , ar , m), �(x) is the Heaviside theta function and where the nor-

malization constant reads C¼ al A0(bl)þ ar A0(br) with

AkðxÞ ¼ x
kþ1

x
�1G

k þ 1

x

� �
: ð4Þ

Figure 1 and Figure 2 report AEP densities obtained by assuming different values for

the right shape and width parameters, br and ar.

The AEP reduces to the EP when al¼ ar and bl¼ br. The density in (3) can be

easily integrated to obtain the distribution function

FAEPðx; pÞ ¼
alA0ðblÞ

C
Q

1

bl

,
x �m

al

����
����bl

 !
�ðm� xÞ

þ 1�
ar A0ðbr Þ

C
Q

1

br

,
x �m

ar

����
����br

 ! !
�ðx �mÞ,

ð5Þ

where Q(�, x) is the regularized upper incomplete gamma function Q(�, x)¼

G(�, x)/G(�).

The mean �AEP and the variance �2
AEP of the AEP distribution can be straight-

forwardly derived

�AEP ¼ mþ
1

C
a2

r A1ðbr Þ � a2
l A1ðblÞ

� �
�2

AEP ¼
a3

r

C
A2ðbrÞ þ

a3
l

C
A2ðblÞ: ð6Þ
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Figure 2 Densities of the AEP(1,0.5,ar,0.5) with ar ¼ 5, ar ¼ 2, and ar ¼ 0.5.
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Moreover, it is possible to express the generic h-th central moment Mh as a finite

series reading

Mh ¼
Xh

q¼0

h

q

� �
1

Ch�qþ1
aqþ1

r Ahðbr Þ þ a
qþ1
l AhðblÞ

� 	
a2

r A1ðbrÞ � a2
l A1ðblÞ

� �h�q
:

ð7Þ

The AEP constitutes a natural extension of the family originally proposed by

Subbotin, hence the results derived in the present article apply also to the latter.

3. ML estimation

Consider a set of N observations {x1, . . . , xN} and assume that they are independently

drawn from the AEP distribution with parameters p0. We are interested in the es-

timation of p from that sample. The ML estimate p̂ is obtained maximizing the

empirical likelihood or, equivalently, minimizing the negative log-likelihood, com-

puted taking the logarithm of the likelihood function and changing its sign

p̂ ¼ arg min
p

XN

i¼1

LAEPðxi; p0Þ where LAEPðx; p0Þ ¼ � log fAEPðx; p0Þ: ð8Þ

The Cramer–Rao lower bound for the estimates standard error in the case of un-

biased estimators is provided by the 5� 5 information matrix J(p0), defined as the

expected value of the cross-derivative

Ji, jðp0Þ ¼ Ep0
@iLAEPðx; p0Þ @jLAEPðx; p0Þ

 �

, ð9Þ

where E p0
[.] is the theoretical expectation computed using the true values p0

and where the indexes i and j runs over the five elements of p, (bl , br , al , ar , m).

In practice, one usually assumes p0 ¼ p̂. In the next sections, we will show that,

notwithstanding the presence of finite-sample biases and of analytical problems in

extending the definition of J to small values of bl and br , the elements of this matrix

can be used to characterize the statistical errors associated to ML estimates on a large

part of the parameters space. The expression of the elements of the Fisher informa-

tion matrix for the AEP distribution are provided in the following

Theorem 3.1 (information matrix of AEP density): The elements of the

Fisher information matrix J(p) of the AEP distribution (3) are

Jbl bl
¼

1

C
alB
00
0 ðblÞ �

1

C2
a2

l ðB
0
0ðblÞÞ

2
þ

al

Cbl

B2ðblÞ �
2al

Cb2
l

B1ðblÞ þ
2al

Cb3
l

B0ðblÞ

Jbl br
¼ �

1

C2
alar B00ðblÞB

0
0ðbrÞ

Asymmetric exponential power density 995
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Jbl al
¼

1

C
B00ðblÞ �

1

C2
alB0ðblÞB

0
0ðblÞ �

1

C
B1ðblÞ

Jbl ar
¼ �

1

C2
alB0ðbr ÞB

0
0ðblÞ

Jbl m ¼
1

blC
ðlog bl � �Þ

Jbr br
¼

1

C
ar B000 ðbrÞ �

1

C2
a2

r ðB
0
0ðbr ÞÞ

2
þ

ar

Cbr

B2ðbrÞ �
2ar

Cb2
r

B1ðbrÞ þ
2ar

Cb3
r

B0ðbr Þ

Jbr al
¼ �

1

C2
ar B0ðblÞB

0
0ðbrÞ

Jbr ar
¼

1

C
B00ðbrÞ �

1

C2
ar B0ðbrÞB

0
0ðbrÞ �

1

C
B1ðbr Þ

Jbr m ¼ �
1

br C
ðlog br � �Þ

Jal al
¼ �

1

C2
B2

0ðblÞ þ
bl þ 1

al

� �
1

C
B0ðblÞ

Jal ar
¼ �

1

C2
B0ðblÞB0ðbrÞ

Jal m ¼ �
bl

Cal

Jar ar
¼ �

1

C2
B2

0ðbrÞ þ
br þ 1

ar

� �
1

C
B0ðbr Þ

Jar m ¼
br

Car

Jmm ¼
b
�1=blþ1
l

alC
G

2bl � 1

bl

� �
þ

b�1=brþ1
r

ar C
G

2br � 1

br

� �
ð10Þ

where � is the Euler-Mascheroni constant and, for any integer k, it is

BkðxÞ ¼ x
1
x
�k
Xk

h¼0

k

h

� �
logh x Gðk�hÞ 1þ

1

x

� �
, ð11Þ

where G(k) stands for the k-th derivative of the Gamma function.

Proof: See Appendix A.

In principle, the elements of the inverse information matrix J�1 can be directly

obtained from the expressions in (10). None of these elements, however, is identically

zero, nor any easy simplification can be found. For these reasons, we decided

not to report here their cumbersome expressions. In general, for practical purposes,

it is much more convenient to compute the elements of J and obtain the elements
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of J�1 by numerical inversion. The situation changes if one considers the origin-

al symmetric EP obtained when al¼ ar¼ a and bl¼ br¼ b. For this case, the infor-

mation matrix has been derived in Agró (1995). To ease the comparison of

the general and the particular case, we report the result here using our notation.1

One has:

Theorem 3.2 (information matrix of EP density): Consider the EP distri-

bution defined in (1) for the set of parameters (b, a, m). The Fisher

information matrix �J ðb, a, mÞ defined as

�Ji, jðb, a, mÞ ¼ Eb, a, m @iLEPðx; b, a, mÞ @jLEPðx; b, a, mÞ

 �

, ð12Þ

where LEP(x ; b, a, m)¼�log fEP(x ; b, a, m) is found to be

1
b3  ð1þ 1=bÞ þ log b

 �2

þ
 0ð1þ1=bÞ

b3 1þ 1
b

� �
� 1

b3 �
1

ab
log bþ 1þ 1

b

� �
 �
0

� 1
ab

log bþ 1þ 1
b

� �
 �
b
a2 0

0 0 b�2=bþ1Gð2�1=bÞ
a2Gð1þ1=bÞ

2
6664

3
7775

ð13Þ

and its inverse reads

b4

�bþð1þbÞ 0 1þ1
bð Þ

ab2 log bþ 1þ1
bð Þ½ �

�bþð1þbÞ 0 1þ1
bð Þ

0

ab2 log bþ 1þ1
bð Þ½ �

�bþð1þbÞ 0 1þ1
bð Þ

a2 bð�1þlog2 bÞþð1þbÞ 0 1þ1
bð Þþ2b 1þ1

bð Þlog bþb 2 1þ1
bð Þ½ �

b �bþð1þbÞ  0 1þ1
bð Þ½ �

0

0 0
a2b2=b�1 G 1þ1

bð Þ
G 2�1

bð Þ

2
666666664

3
777777775
ð14Þ

Proof: Since LEPðx; b, a, mÞ ¼ LAEPðx; �pÞ where �p ¼ ðb, b, a, a, mÞ, the

elements of (13) can be easily found starting from the elements of the

AEP reported in Theorem 3.1. Consider, for instance, the shape parameter

b. The derivative with respect to b of LEP is the sum of the derivatives with

respect to bl and br of LAEP. In other terms, in computing the elements of the

1Notice that the expansion of the element �J�1
b, a of the inverse information matrix reported

in Agró (1995) contains a mistake: the term ½log b þ  ð1þ 1
b
Þ� in the numerator is incorrectly

squared.

Asymmetric exponential power density 997
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Fisher information matrix for the EP distribution, one has to consider the

substitution @
@b$

@
@bl
þ @

@br
so that, for instance,

�Ja, bðb, a, mÞ ¼ E @aLEP @bLEP½ � ¼ E @bl
LAEP þ @br

LAEP

� �
@alLAEP þ @ar

LAEP

� �
 �
¼ Jal , bl

ð �pÞ þ Jal , br
ð �pÞ þ Jar , bl

ð �pÞ þ Jar , br
ð �pÞ:

The other elements are obtained in an analogous way. g

3.1 Properties of the estimators

We investigate now, form an analytical point of view, the sufficient conditions for

consistency, asymptotic normality, and asymptotic efficiency of the AEP maximum

likelihood estimators. The behavior of these estimators are different whenever the

parameter m ought to be estimated or can be consider known. We analyze the two

cases separately, starting with the case of unknown m.

From the definition of AEP in (3), the parameters p¼ (bl , br , al , ar , m) belong

to the open set D¼ (0,þ1)� (0,þ1)� (0,þ1)� (0,þ1)� (–1,þ1). Let p0

be the true parameters value, then:

Theorem 3.3 (Consistency): For any p02D maximum likelihood estima-

tor p̂ is consistent, that is p̂ converges in probability to its true value p0.

Proof: For any p02D there exists a compact P�D such that:

(1) p02P

(2) 8p 6¼ p0, p2P, it is f ðxijpÞ 6¼ f ðxijp0Þ

(3) 8p2P, log f (xi|p) is continuous

(4) E½supP j log f ðxijpÞj�<1.

According to Theorem 2.5 in Newey and McFadden (1994: 2131, Chapter 36),

these four conditions are sufficient to prove the statement. g

While consistency is easy to prove in general, finding sufficient conditions for asymp-

totic normality and efficiency is much more difficult. However, both can be found to

apply for sufficiently large values of the shape parameters.

Theorem 3.4 (asymptotic normality and efficiency): If bl , br � 2 the unique

a solution p̂ of the maximum likelihood problem (8) is asymptotically

normal and efficient in the sense that
ffiffiffiffi
N
p
ðp̂� p0Þ converges in distribution

to Nf0, ½J ðpÞ��1
g.

Proof: For the proof see Appendix 8.

Analogous results were derived in Agró (1995) for the symmetric EP distribution (1).

The reason why the asymptotic efficiency and normality of the ML estimator

can only be proved when bl , br � 2 is due to the presence of singularities in the

998 G. Bottazzi and A. Secchi
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derivatives of LAEP with respect to the parameter m. When this parameter is con-

sidered known, the situation becomes much simpler. In this case, the vector of

unknown parameters p¼ (bl , br , al , ar) belongs to the open set D¼ (0,þ1)�

(0,þ1)� (0,þ1)� (0,þ1). Let p0 be the true parameters value, then the follow-

ing holds:

Theorem 3.5 (consistency, asymptotic normality, and efficiency): If m is

known, the solution p̂ of the maximum likelihood problem (8) converges

in probability to its true value p0 ; p̂ is also asymptotically normal and

efficient in the sense that
ffiffiffiffi
N
p
ðp̂� p0Þ converges in distribution to

Nf0, ½J ðpÞ��1
g.

Proof: The proof follows directly from the proofs of the previous theorems.

Indeed, when m is known no discontinuities in the derivatives of

@log f(xijp)/@pj emerge and hence the conditions required by Theorems

3.3 and 3.4 are always satisfied. g

Basically, the previous Theorem guarantee that when m is known, the ML

estimates of p are consistent, asymptotically efficient, and normal on the whole

parameter space. Of course, the same thing also applies to the symmetric EP density

(Agró, 1995).

3.2 Extending the Fisher information matrix

The presence of singularities that forbids the extension of the results of Theorem 3.4

to small values of b’s also affects the domain of definition of the elements of the

Fisher matrix J.

The function Bk(x) defined in (11) and all its derivatives are defined for x40 and

for any k. Consequently, all the elements of J in (10), apart from Jmm , are defined on

the whole parameter space. The latter element, on the contrary, is only defined when

both bl and br are greater than 0.5. When bl or bl move toward 0.5, the gamma

function contained in that element encounters a pole (in x¼ 0) so that Jmm diverges.

Of course, this phenomenon does not happen when the parameter m can be con-

sidered known. In that case, the 4� 4 Fisher matrix (upper left block of J ) is defined

for any value of bl and br and, according to Theorem 3.5, this matrix can be used to

characterize the asymptotic error of the estimates over the whole parameter space.

The presence of a pole in Jmm seems to suggest that, when m is unknown, the Fisher

information matrix cannot be used to obtain a theoretical benchmark of the asymp-

totic errors involved in the ML estimation for small value of b. It turns out that this is

not true. Indeed, the only estimates whose error diverges is m̂.

To see how this mechanism works, consider the symmetric case in (13). In this

case, the Fisher matrix �J has a block diagonal structure, so that the value of the

bottom right block, �Jm,m, does not affect the computation of the inverse of the upper

left block, which contains the standard error of the estimates â and b̂ and their

Asymmetric exponential power density 999
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cross-correlation. Due to this block diagonal structure, the fact that m is known or

not, does not have any effect on the asymptotic error of the estimates of the first two

parameters. Hence, one can imagine that the upper left block of the Fisher informa-

tion matrix can be used to obtain a theoretical values for the standard deviations �b

and �a also for b50.5.

In the asymmetric case, the block-diagonal structure of the Fisher information

matrix disappears. In general, the fact that m is known or that its value has to be

estimated does have an effect on the elements of the inverse information matrix

associated with the standard error of the a’s and b’s estimates. Nonetheless, a peculiar

cancellation in the computation of the elements of J�1 allows to recover a result

analogous to the one found in the symmetric case. More precisely, when bl or br goes

toward 0.5, the element Jm,m diverges and, correspondingly, J�1
m,m goes to 0, but, at

the same time, the covariance terms of J�1 involving m tend to 0, so that the

elements in the 4� 4 upper left block remains finite. In fact, the 4� 4 upper-left

block of J�1 become positive definite and is equal to the 4� 4 inverse Fisher

information matrix obtained in the case in which m is known. Hence, analogously

to the symmetric case, the elements of J can be used to recover a theoretical bench-

mark for the error of the estimated b’s and a’s on the whole parameters space.

To illustrate the described behavior, the error on b̂ and â estimated as the square

root of the diagonal elements of J�1 are reported in Figures 3 and 4, respectively.

For comparisons, both the case with m known and unknown are considered, and

the associated element of the EP case �J�1=2 is also reported. As can be clearly seen

from the insets, when b! 0:5 the element of J�1 for the case of m unknown

case are indistinguishable for the same elements computed assuming m known.

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2

√J
-1

b

AEP, m unknown
AEP, m known

EP, m known

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Figure 3 Relative asymptotic error J
�1=2
bl ,bl

=b for AEP(b,b,1,1,0) as a function of b. Both

the case with m known and unknown are displayed, together with the symmetric (EP)

case �J�1=2
b,b =b.

1000 G. Bottazzi and A. Secchi

 at B
IB

L
IO

T
E

C
A

-SC
U

O
L

A
 SU

PE
R

IO
R

E
 SA

N
T

'A
N

N
A

-PISA
 on January 27, 2016

http://icc.oxfordjournals.org/
D

ow
nloaded from

 

http://icc.oxfordjournals.org/


The same behavior can be observed also when only one parameter between bl and br

converges to 0.5.

What is the meaning of the inverse Fisher information matrix for values of b lower

than 0.5? Can we exploit the continuation of the upper-left block of J�1 to investi-

gate asymptotic efficiency and normality of ML estimators also in the region of the

parameter space where b is low? Using extensive numerical simulations, we will try to

answer these questions in the next section.

4. Numerical analyses

The analyses of this section focus on two aspects of the ML estimation of the sym-

metric exponential power and AEP distribution. First, we analyze the presence of bias

in the estimates. We know from Theorem 3.3 that this bias progressively disappears

when the sample becomes larger, but we are interested in characterizing its magni-

tude for relatively small samples. Second, we address the issue of the estimate errors,

analyzing their behaviors for small samples, and trying to describe their asymptotic

dynamics. These investigations are performed using numerical simulation. For a

given set of parameters p0, we generate a large number of i.i.d. samples of size N,

then for each parameter p2 p0, we compute the sample mean of the estimated

value �pðN; p0Þ ¼ EN p̂jp0


 �
, where the expectation is computed over all the generated

samples, and the associated bias ~pðN ; p0Þ ¼ �pðN; p0Þ � p0.

This value is an estimate of the bias of p̂ and, in general, depends on the true value

p0. Since the ML estimates are consistent on the whole parameter space, we expect

that limN!þ1 ~pðN ; p0Þ ¼ 0. The second measure that we consider is the sample

√J
-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.5  1  1.5  2

b

AEP, m unknown
AEP, m known

EP, m known

 0.5

 1

 1.5

 2

 2.5

 3

 0.2  0.4  0.6  0.8  1  1.2

Figure 4 Asymptotic error J�1=2
al ,al

for AEP(b,b,1,1,0) as a function of b. Both the case with m

known and unknown are displayed, together with the symmetric (EP) case �J�1=2
a,a .
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variance of the estimated values, that is �2
pðN ; p0Þ ¼ EN ðp̂ � �pÞ2jp0


 �
. Notice that the

previous two quantities together define the root mean squared error (RMSE) of the

estimate pRMSEðN ; p0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN ðp̂ � p0Þ

2
jp0


 �q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þ �2

p

q
.

4.1 Symmetric EP distribution

Consider the symmetric EP distribution. In Table 1, we report the values of the bias

and the estimates standard deviation for the three parameters a, b, and m computed

using 10,000 independent samples of size N, with N running from 100 to 6400 and

for different values of b. For the present qualitative discussion, the value of the

parameters a and m is irrelevant; hence, we fix their value to 1 and 0, respectively.

The values of the bias and the estimates standard deviation for the parameters a

and b in the case of m known are reported in Table 2.

Since we consider 10,000 replications, the standard error on the reported bias

estimation is nothing but the estimator standard deviation over
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10, 000
p

. The bias

estimates that results 2 SD away from 0 are reported in bold face in Tables 1 and 2.

Looking at the first column of Table 1 for each estimate, one observes that the ML

estimates of a and b are sometimes biased, while the estimated bias for m is never

significantly different from 0. Notice that in all cases in which it is present, the bias

seems to decrease proportionally to 1/N (for both known and unknown m). For the

parameter a, the bias stops to be significantly different from 0 also for medium-sized

samples (N around 400) while for b it is in general significant until largest sample

sizes are reached. It is worthwhile to notice that, when the parameter m is considered

known, the bias of the estimated values of a and b tends to increase, irrespectively

of the true value of b.

Let us consider now the estimated standard errors �p(N ) in Table 1. The first

thing to notice is that they are always at least one order of magnitude greater that the

estimated biases, so that the contribution of the latter to the estimates RMSE is in

general negligible. This means that, for any practical purposes, the ML estimates of

the symmetric Power Exponential distribution can be considered unbiased. This is

also true if one consider the case with m known, reported in Table 2. Indeed the

values of the estimates standard error are practically identical for the two cases with

only a couple of exceptions when N is small and b large. In this cases (see, e.g.

N¼ 100 and b¼ 1.4), the standard error is much bigger when also m has to be

estimated.

The second thing to notice is that the estimated standard errors seem to decrease

with the inverse squared root of N. Indeed in Figure 5, we report for three different

values of b,
ffiffiffiffi
N
p

�aðN Þ and
ffiffiffiffi
N
p

�bðN Þ, for m unknown (Figure 5a and c) and known

(Figure 5b and d). Notwithstanding the presence of noticeable small sample effects,

these products always converge toward an asymptotic value. Since the convergence

is from above, the efficiency of the estimator for small sample is lower than
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Table 1 Bias and standard deviation of b̂, b̂, â and m̂ estimated on 10,000 samples drawn from

a power exponential distribution

N ~b=b �b/b ~a=a �a/a ~m �m K

(b,a,m)¼ (0.4,1,0)

100 �0.018288 0.177637 �0.019566 0.178384 �0.000365 0.059433 0

200 �0.007221 0.118821 �0.008976 0.122441 �0.000642 0.035281 0

400 �0.004860 0.081781 �0.004822 0.086703 �0.000240 0.021029 0

800 �0.002362 0.057095 �0.002149 0.061403 �0.000071 0.012641 0

1600 �0.000950 0.040103 �0.000650 0.043213 �0.000054 0.007717 0

3200 �0.000500 0.028149 �0.000387 0.030772 �0.000060 0.004570 0

6400 �0.000710 0.019966 �0.000173 0.021858 0.000006 0.002715 0

(b,a,m)¼ (0.8,1,0)

100 0.024698 0.217721 �0.005042 0.141531 0.000457 0.102071 0

200 0.010619 0.137288 �0.002619 0.097276 �0.000158 0.068417 0

400 0.004350 0.091226 �0.001645 0.068244 0.000521 0.047679 0

800 0.002038 0.063613 �0.000996 0.047803 �0.000023 0.032717 0

1600 0.000972 0.044655 �0.000196 0.033742 0.000129 0.022560 0

3200 0.000426 0.031728 �0.000006 0.024025 �0.000123 0.015543 0

6400 0.000013 0.021858 �0.000119 0.016879 0.000014 0.010769 0

(b,a,m)¼ (1.4,1,0)

100 0.123678 5.325462 0.005878 0.125171 �0.001145 0.112919 0

200 0.030093 0.161387 0.002007 0.085312 0.000602 0.077747 0

400 0.013300 0.106216 0.000311 0.059140 0.000302 0.055068 0

800 0.006123 0.072968 0.000307 0.041433 0.000249 0.038259 0

1600 0.003050 0.050587 0.000355 0.028948 �0.000124 0.026960 0

3200 0.000927 0.035539 �0.000204 0.020489 0.000240 0.019192 0

6400 0.000280 0.024811 �0.000176 0.014431 0.000081 0.013594 0

(b,a,m)¼ (2.2,1,0)

100 0.491071 12.614268 0.012540 0.120088 �0.000602 0.099523 0

200 0.049846 0.194413 0.005017 0.078570 �0.000744 0.069450 0

400 0.024967 0.126713 0.003576 0.054255 �0.000774 0.047950 0

800 0.011329 0.084521 0.001311 0.037981 �0.000272 0.033816 0

1600 0.005102 0.058735 0.000547 0.026772 0.000015 0.023958 0

3200 0.002471 0.040739 0.000322 0.018683 0.000100 0.016927 0

6400 0.001520 0.028629 0.000298 0.013257 �0.000000 0.012098 0

K is the number of times the ML procedure did not converge.

Bias estimates 2 standard deviations away from 0 are reported in boldface.
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Table 2 Bias and standard deviation of b̂, b̂, â and m̂ estimated on 10,000 samples drawn

from a power exponential distribution when m is known

N ~b=b �b/b ~a=a �a/a K

(b,a)¼ (0.4,1)

100 0.040468 0.174889 0.018407 0.180738 0

200 0.018971 0.118363 0.007964 0.123157 0

400 0.008160 0.081851 0.003515 0.086975 0

800 0.004253 0.057183 0.002026 0.061492 0

1600 0.002472 0.040050 0.001478 0.043217 0

3200 0.001256 0.028099 0.000692 0.030777 0

6400 0.000170 0.019822 0.000363 0.021830 0

(b,a)¼ (0.8,1)

100 0.054497 0.207635 0.014160 0.138900 0

200 0.025469 0.134228 0.006792 0.096496 0

400 0.011932 0.090158 0.003114 0.068023 0

800 0.005788 0.063193 0.001341 0.047691 0

1600 0.002764 0.044496 0.000928 0.033709 0

3200 0.001323 0.031615 0.000552 0.024005 0

6400 0.000482 0.021620 0.000168 0.016814 0

(b,a)¼ (1.4,1)

100 0.074693 0.260163 0.013868 0.121101 0

200 0.033730 0.157512 0.006150 0.084261 0

400 0.015243 0.104988 0.002404 0.058833 0

800 0.007109 0.072519 0.001331 0.041282 0

1600 0.003590 0.050498 0.000879 0.028906 0

3200 0.001153 0.035471 0.000042 0.020489 0

6400 0.000381 0.024579 0.000057 0.014364 0

(b,a)¼ (2.2,1)

100 0.152469 5.046575 0.014395 0.113174 0

200 0.046257 0.187227 0.006733 0.077362 0

400 0.023759 0.124730 0.004466 0.053871 0

800 0.010726 0.083782 0.001735 0.037794 0

1600 0.004872 0.058559 0.000779 0.026715 0

3200 0.002375 0.040666 0.000445 0.018663 0

6400 0.001438 0.028421 0.000352 0.013206 0

K is the number of times the ML procedure did not converge.

Bias estimates 2 standard deviations away from 0 are reported in boldface.
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the Cramer–Rao bound, implying a small sample inefficiency. Notice, however, that

this inefficiency is in general of modest size.

For the case of unknown m, in order to compare the asymptotic behavior of

the Monte Carlo estimates of the standard error with the theoretical prediction we

consider the large samples limit

lim
N!1

ffiffiffiffi
N
p

�pðN ; p0Þ ¼ �
ASY
p ðp0Þ: ð15Þ

We compute these values by extrapolating the three observations relative to the

largest values of N estimating with Ordinary Least Squares the intercept of the fol-

lowing linear relation

ffiffiffiffi
N
p

�p � �þ �
1

N
: ð16Þ

The results for the different values of b are reported in Table 3 together with the

theoretical prediction obtained from �J�1 in (13). As expected, the agreement is ex-

tremely good, with discrepancies �0.5%, in the region b � 2, where the Theorem 3.4

applies. In this region, the ML estimators of the EP density are, indeed, asymptot-

ically efficient, so that the observed agreement serves as a consistency check of our

extrapolation procedure. The same degree of agreement, however, is also observable

(a)

(c)

(b)

(d)

Figure 5 Rescaled standard error of the estimates of the parameter a (a and b) and b (c and d)

as a function of the sample size N for the symmetric Subbotin distribution with a ¼ 1, m ¼ 0

and for different values of b. (a)
ffiffiffiffi
N
p

�aðN Þ where m is unknown; (b)
ffiffiffiffi
N
p

�aðNÞ where m is

known; (c)
ffiffiffiffi
N
p

�bðNÞ where m is unknown; (d)
ffiffiffiffi
N
p

�bðN Þ where m is known.
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in the region 0.55b52, where the Fisher information matrix is defined, but no

theoretical results guarantee the efficiency of the estimator for large samples.

Moreover, quite surprising, the agreement remains high, for the a and b estimators,

also in the region b50.5, where the Fisher information matrix cannot be

defined according to equation (12) but can be analytically continued, as discussed

in Section 3.2.

In conclusions, the previous numerical investigation extends in many respect

to the analytical findings of the existing literature. We have shown that for the

symmetric EP distribution:

(1) the bias of the ML estimators, being very small, can be safely ignored at least for

samples with more than 100 observations;

(2) the ML estimators of a, b, and m are asymptotically efficient, independently of

the value of the true parameters and of the fact that the value of m is known or

unknown; and

(3) the continuation of the Fisher information matrix to the region with b5.5 can

be used to obtain a reliable measure of the error involved in the ML estimation

of parameters a and b.

4.2 AEP distribution

This section extends the numerical analysis to the case of AEP distribution. For the

sake of clarity, we split our analysis in two steps. First, we analyze the asymptotic

Table 3 Extrapolated values for the asymptotic (large N ) estimates standard errors together

with the theoretical Cramer–Rao values

b a m

b �ASY J�1 �ASY J�1 �ASY J�1

0.2 0.3012 0.3016 2.3418 2.3519 0.0186 �

0.4 0.6366 0.6400 1.7547 1.7489 0.1921 �

0.6 1.0105 1.0134 1.4849 1.4994 0.5628 0.4130

0.8 1.4024 1.4198 1.3550 1.3604 0.8499 0.8134

1.0 1.8608 1.8574 1.2654 1.2715 1.0041 1.0000

1.2 2.2602 2.3244 1.2100 1.2095 1.0808 1.0700

1.4 2.7697 2.8194 1.1550 1.1639 1.0912 1.0817

1.6 3.3065 3.3411 1.1195 1.1287 1.0762 1.0651

1.8 3.8407 3.8883 1.0928 1.1008 1.0480 1.0353

2.0 4.4819 4.4599 1.0900 1.0779 1.0036 1.0000

2.2 4.9894 5.0550 1.0536 1.0587 0.9674 0.9632
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behavior of the ML estimates when the true parameters have symmetric values.

Second, we comment on the observed effects when different degrees of asymmetry

characterize the true values of the shape parameters bl and br.

In Table 4, we report the values of the bias and the estimates standard deviation

for the five parameters al , ar , bl , br , and m computed using 10,000 independent

samples of size N, with N running from 100 to 6400. The samples are randomly

generated from equation (3) considering different values for the parameters bl¼ br.

Again the exact value of the a’s and m parameters is irrelevant for the present dis-

cussion and we set al¼ ar¼ 1 and m¼ 0 for all simulations. As can be seen, the

picture that emerges is identical to the symmetric case. The bias is in general present

for small samples, apart for the estimate m̂ which seems in general unbiased. When

present, the bias tends to decrease proportionally to 1/N and, for the parameters al

and ar it becomes statistically indistinguishable from zero with the increase of the

sample size. Notice that for N4100, the bias is always at least one order of magni-

tude smaller than the standard deviation. Consequently, also in the case of AEP

distribution, when the true parameters are symmetric, and for sufficiently large

samples (N4100), the ML estimates can be considered, for any practical purposes,

unbiased. Also the behavior of the estimates standard deviation is substantially iden-

tical to what observed in the case of symmetric distribution. Indeed, the plots in

Figure 6a and c confirm that the rescaled estimates
ffiffiffiffi
N
p

�pðN Þ approach flat lines

when N becomes large, making the asymptotic efficiency apparent. However, the

small sample effect seems to last a little longer: when one consider small values of b

(see Figure 6a), it is still noticeable for sample as large as 1000 observations.

In Table 5, we report the values of the bias and the estimates standard deviation

for the four parameters bl , br , al , and ar , obtained with the Monte Carlo procedure

illustrated above, in the case in which the parameter m is assumed known. No large

differences are observed in the behavior of biases and standard deviations with re-

spect to the case of unknown m. The general increase of the bias level, already

observed for the symmetric distribution, is still there. Concerning the estimates

standard errors, in Figure 6 notice that the display behavior similar to what observed

in the Figure 6a and c, confirming that the deviations from the Cramer–Rao bound is

essentially due to small sample effect. In the case of m known, these effects tend to

disappear completely when N4400.

In order to judge the reliability of J�1 in estimating the observed errors, we

compute the asymptotic values of the standard errors �ASY
p extrapolating the three

estimates obtained with the largest samples (N¼ 1600, 3200, 6400) following the

same procedure used above [cf. equation (16)]. The results are reported in Table 6

(upper part). Again, the agreement between the values extrapolated from numerical

simulations and the theoretical values obtained from the inverse information matrix

J�1 is remarkably high: discrepancies are around 1% both in the region of high and

low b’s, confirming that J�1 can be used to obtain a value of the asymptotic standard

errors of the estimates also in the region in which Theorem 3.4 does not apply.
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Finally, we have explored the behavior of the ML estimator when the true values

of the parameters bl and br are different. Results are reported in Table 7 for a selec-

tion of different values of the two shape parameters. The most noticeable effect of the

introduction of asymmetry in the true values of the parameters is an increase in the

biases of their estimates. First, in this situation, also the estimate of location param-

eter m results biased. Second, the observed biases of the estimates of b remain stat-

istically different from zero also for relatively large samples (N¼ 6400). Again, when

the sample size increases, the biases still decrease proportionally to 1/N. At the same

time, the behavior of the estimates standard error �p resembles the ones observed in

the previous cases: as the plots in Figure 7 show, all the rescaled standard errors

defined accordingly to equation (15) asymptotically approach flat lines so that the

ML estimator can be considered asymptotically efficient. The different asymptotic

behaviors of the bias and the standard error imply that for sufficiently large samples,

the contribution of the former to the estimates RMSEs becomes negligible. Indeed, it

is already the case for sample sizes around 100 observations. As in the symmetric

case, these results do not change when m is known (cf. Table 8).

(a)

(c)

(b)

(d)

Figure 6 Rescaled standard error of the estimator of the parameters al (a and b) and bl (c and

d) as a function of the sample size N, for the asymmetric Subbotin distribution for al ¼ ar ¼ 1,

m ¼ 0 and different (but equal) values of bl and br. (a)
ffiffiffiffi
N
p

�aðNÞ where m is unknown;

(b)
ffiffiffiffi
N
p

�aðN Þ where m is known; (c)
ffiffiffiffi
N
p

�bðN Þ where m is unknown; (d)
ffiffiffiffi
N
p

�bðN Þ where m

is known.
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We conclude the section on the numerical analysis with some brief comment on

the technical aspects of ML estimation. The solution of the problem in equation (8)

is in general made difficult by the fact that both the AEP and EP densities are not

analytic functions. The situation becomes more severe when small values of the shape

parameter b are considered. In this case, the likelihood as a function of the location

parameter m possesses many local maxima, located on the observations that compose

the samples. In order to overcome this difficulties, the ML estimation presented

above have been obtained with a three steps procedure: in each case, the negative

likelihood minimization started with initial conditions obtained with a simple

method of moments. Then a global minimization was performed in order to

obtain a first ML estimate, which is later refined performing several separate mini-

mizations in the different intervals defined by successive observations in the neigh-

borhood of the first estimate. Even if this method is not guaranteed to provide the

global minimum, we checked that in the whole range of parameters analyzed, dis-

crepancies were always negligible.2 For further details on the minimization methods

utilized, the reader is referred to Bottazzi (2004).

As already observed in Agró (1995) for the EP distribution, when the value of the

shape parameter b is large and the size of the sample relatively small, the minimiza-

tion procedure can fail to converge. In the case of AEP distribution, the situation

is in general worsened especially when the shape parameters bl and br present largely

Table 6 Extrapolated values for the asymptotic (large N) estimates standard errors of the

EP together with the theoretical Cramer–Rao values

�ASY J�1 �ASY J�1 �ASY J�1

(bl, br) bl br bl ¼ br al ar al ¼ ar m m

(0.4, 0.4) 0.7181 0.7083 0.6907 2.1407 2.1628 2.1341 0.3740 –

(0.5, 0.5) 0.9392 0.9565 0.9073 1.9636 1.9386 1.9199 0.5788 –

(0.75, 0.75) 1.6974 1.6811 1.6114 1.6557 1.6755 1.6458 1.4214 1.1146

(1.5, 1.5) 5.9582 6.0244 5.9308 3.2969 3.2845 3.2534 5.1804 5.1064

(2.5, 2.5) 19.0743 18.7929 19.2629 7.9499 7.9109 8.0497 11.2056 11.3643

(bl, br) bl br bl br al ar al ar m m

(0.5, 1.5) 0.8709 3.8556 0.8174 3.5742 2.1005 1.5258 2.0572 1.3205 0.8588 –

(0.5, 2.5) 0.8802 7.2828 0.7991 6.9769 2.0958 1.4619 2.0710 1.1991 0.9164 –

(1.5, 2.5) 6.8920 14.3902 6.7661 14.1345 4.1304 5.3853 4.0050 5.2242 7.1248 6.9119

2Observed discrepancies were generally due to the presence of several clustered observations.
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different true values (see e.g. N¼ 100, bl¼ 0.5, and br¼ 2.5 in Table 4). The number

of failures is reported in the columns “K” of the relevant Tables.

5. Empirical applications

In the present section, we test the ability of the AEP to fit empirical distributions

obtained from different economic and financial datasets. We compare the AEP with

the SEP, the �-Stable family, and the Generalized Hyperbolic (GHYP) estimating

their parameters via ML procedures [for parametrization and details on the SEP,

the �-Stable, and on the GHYP see DiCiccio and Monti (2004), Nolan (1998)

and McNeil et al. (2005) respectively]. In order to evaluate the accuracy of the agree-

ment between the empirical observed distributions and the theoretical alternatives,

we consider two complementary measures of goodness-of-fit, the Kolmogorov–

Smirnov D and the Cramer–Von Mises W2 defined as

D ¼ sup
n

FEmpðxnÞ � FThðxnÞ
�� �� W 2 ¼

1

12n
þ
X

n

FEmpðxnÞ � FThðxnÞ
� �2

, ð17Þ

 1

 10

 100  1000  10000
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Figure 7 Standard error of the estimator of the parameters al, ar (a and b) and bl, br (c and d)

as a function of the sample size N for the asymmetric Subbotin distribution for different values

of bl, br ¼ 2.5, al ¼ ar ¼ 1 and m ¼ 0. (a)
ffiffiffiffi
N
p

�aðN Þ where m is unknown; (b)
ffiffiffiffi
N
p

�aðN Þ where

m is known; (c)
ffiffiffiffi
N
p

�bðNÞ where m is unknown; (d)
ffiffiffiffi
N
p

�bðN Þ where m is known.
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â
r

an
d

m̂
es

ti
m

at
ed

o
n

1
0

,0
0

0
sa

m
p

le
s

d
ra

w
n

fr
o

m
an

A
E

P
d

is
tr

ib
u

ti
o

n
w

it
h
�

k
n

o
w

n

N
~ b l
=b

l
�

b
l
/b

l
~ b r
=b

r
�

b
r
/b

r
~ a l
=a

l
�

a
l
/a

l
~ a r
=a

r
�

a
r
/a

r
K

(b
l,

b
r,

a
l,

a
r,

m
)
¼

(0
.5

,1
.5

,1
,1

,0
)

1
0

0
0

.0
5

3
7

7
3

0
.1

9
5

9
1

0
0

.1
2

5
8

2
4

0
.8

3
7

9
3

7
0

.0
0

8
2

2
6

0
.2

1
0

5
8

0
0

.0
1

9
9

8
6

0
.1

3
9

3
1

5
0

2
0

0
0

.0
2

5
0

3
9

0
.1

2
5

2
0

4
0

.0
5

1
4

9
4

0
.1

9
5

5
2

6
0

.0
0

4
7

3
3

0
.1

4
7

0
8

9
0

.0
0

9
4

0
1

0
.0

9
4

6
1

6
0

4
0

0
0

.0
1

1
7

7
0

0
.0

8
4

4
1

6
0

.0
2

4
3

7
9

0
.1

2
6

5
7

2
0

.0
0

2
7

3
2

0
.1

0
3

0
0

1
0

.0
0

4
8

6
3

0
.0

6
6

4
3

9
0

8
0

0
0

.0
0

5
7

2
7

0
.0

5
8

0
2

8
0

.0
1

1
6

5
6

0
.0

8
6

0
3

7
0

.0
0

0
7

2
8

0
.0

7
2

8
2

8
0

.0
0

1
9

6
2

0
.0

4
6

6
3

4
0

1
6

0
0

0
.0

0
2

3
4

2
0

.0
4

1
0

4
6

0
.0

0
5

9
3

8
0

.0
6

0
2

1
3

0
.0

0
0

7
1

9
0

.0
5

1
1

9
1

0
.0

0
0

6
7

7
0

.0
3

2
9

7
6

0

3
2

0
0

0
.0

0
0

6
5

9
0

.0
2

8
8

2
4

0
.0

0
3

1
3

7
0

.0
4

2
6

0
9

0
.0

0
0

7
0

7
0

.0
3

5
9

8
3

0
.0

0
0

2
4

3
0

.0
2

3
4

6
2

0

6
4

0
0

0
.0

0
0

4
8

4
0

.0
2

0
4

1
9

0
.0

0
1

5
3

7
0

.0
2

9
9

6
9

0
.0

0
0

4
3

2
0

.0
2

5
9

4
3

0
.0

0
0

1
2

8
0

.0
1

6
5

5
0

0

(b
l,

b
r,

a
l,

a
r,

m
)
¼

(0
.5

,2
.5

,1
,1

,0
)

1
0

0
0

.0
4

9
0

1
5

0
.1

8
9

6
7

4
0

.2
2

8
0

5
0

1
.2

3
8

8
9

6
0

.0
0

0
9

7
3

0
.2

1
0

2
6

5
0

.0
2

2
9

0
0

0
.1

3
5

7
3

3
0

2
0

0
0

.0
2

3
6

4
3

0
.1

2
2

8
6

8
0

.0
7

2
1

9
5

0
.2

5
1

5
4

5
0

.0
0

0
1

9
2

0
.1

4
6

5
9

6
0

.0
1

0
4

2
0

0
.0

8
8

2
9

4
0

4
0

0
0

.0
1

1
4

3
6

0
.0

8
2

7
3

3
0

.0
3

1
4

7
0

0
.1

5
4

2
4

7
0

.0
0

0
6

2
6

0
.1

0
3

1
9

8
0

.0
0

5
3

2
8

0
.0

6
0

8
0

6
0

8
0

0
0

.0
0

5
6

3
5

0
.0

5
6

8
6

8
0

.0
1

4
6

9
8

0
.1

0
3

6
4

0
�

0
.0

0
0

0
5

4
0

.0
7

3
2

6
1

0
.0

0
2

1
0

3
0

.0
4

2
5

4
8

0

1
6

0
0

0
.0

0
2

6
5

1
0

.0
4

0
2

3
8

0
.0

0
7

6
5

4
0

.0
7

1
8

2
9

0
.0

0
0

3
2

0
0

.0
5

2
0

4
2

0
.0

0
1

2
8

2
0

.0
3

0
2

5
3

0

3
2

0
0

0
.0

0
1

6
9

7
0

.0
2

8
4

8
0

0
.0

0
4

1
8

8
0

.0
5

0
0

2
1

0
.0

0
0

3
6

7
0

.0
3

6
3

8
5

0
.0

0
0

9
4

1
0

.0
2

1
2

5
8

0

6
4

0
0

0
.0

0
0

8
7

4
0

.0
2

0
1

5
8

0
.0

0
2

0
1

8
0

.0
3

4
8

6
6

0
.0

0
0

0
8

8
0

.0
2

6
0

8
4

0
.0

0
0

5
8

7
0

.0
1

5
0

5
3

0

(b
l,

b
r,

a
l,

a
r,

m
)
¼

(1
.5

,2
.5

,1
,1

,0
)

1
0

0
0

.2
5

3
8

0
3

4
.2

1
2

8
9

7
0

.4
3

5
1

8
8

2
.4

7
3

0
1

2
0

.0
1

8
7

2
5

0
.1

3
8

0
9

3
0

.0
3

1
1

2
8

0
.1

5
2

8
0

5
0

2
0

0
0

.0
5

9
7

1
5

0
.2

0
9

7
5

3
0

.0
9

9
5

5
2

0
.3

6
7

2
3

2
0

.0
0

7
4

0
5

0
.0

9
2

7
4

0
0

.0
1

2
2

9
5

0
.0

9
7

1
2

0
0

4
0

0
0

.0
2

6
6

9
6

0
.1

3
0

1
6

6
0

.0
3

8
7

8
7

0
.1

7
4

5
9

7
0

.0
0

3
3

7
2

0
.0

6
4

2
7

8
0

.0
0

5
1

1
7

0
.0

6
5

5
9

2
0

8
0

0
0

.0
1

2
4

5
3

0
.0

8
8

6
7

7
0

.0
1

8
0

5
6

0
.1

1
5

5
4

3
0

.0
0

1
3

3
4

0
.0

4
4

9
4

4
0

.0
0

2
2

4
1

0
.0

4
5

7
7

1
0

1
6

0
0

0
.0

0
6

2
3

1
0

.0
6

1
8

4
6

0
.0

0
9

6
7

5
0

.0
7

9
5

2
5

0
.0

0
0

5
1

1
0

.0
3

1
5

5
5

0
.0

0
1

4
0

9
0

.0
3

2
3

0
7

0

3
2

0
0

0
.0

0
2

8
9

0
0

.0
4

2
8

0
6

0
.0

0
4

8
1

4
0

.0
5

5
4

6
5

0
.0

0
0

2
4

9
0

.0
2

2
2

2
3

0
.0

0
0

7
4

0
0

.0
2

2
8

0
8

0

6
4

0
0

0
.0

0
1

6
7

5
0

.0
3

0
3

1
8

0
.0

0
2

6
7

1
0

.0
3

8
5

3
4

0
.0

0
0

2
6

8
0

.0
1

5
7

4
1

0
.0

0
0

5
9

6
0

.0
1

6
0

0
6

0

K
is

th
e

n
u

m
b

er
o

f
ti

m
es

th
e

M
L

p
ro

ce
d

u
re

d
id

n
o

t
co

n
ve

rg
e

B
ia

s
es

ti
m

at
es

2
st

an
d

ar
d

d
ev

ia
ti

o
n

s
aw

ay
fr

o
m

0
ar

e
re

p
o

rt
ed

in
b

o
ld

fa
ce

.

1014 G. Bottazzi and A. Secchi

 at B
IB

L
IO

T
E

C
A

-SC
U

O
L

A
 SU

PE
R

IO
R

E
 SA

N
T

'A
N

N
A

-PISA
 on January 27, 2016

http://icc.oxfordjournals.org/
D

ow
nloaded from

 

http://icc.oxfordjournals.org/


where F Emp and F Th stands for the empirical and theoretical distribution,

respectively. These two statistics can be considered complementary as they capture

somehow different effects. The D statistics is indeed proportional to the largest

observed absolute deviation of the theoretical form, the empirical distribution,

while the W2 is intended to account for their ‘‘average’’ discrepancy over the

entire sample.

Notice that the following discussion is not focused on assessing whether the

deviation of the theoretical models from actual data can be considered a significant

signal of misspecification. Rather, we are interested in evaluating the relative abilities

of the different families to properly describe the behavior of the empirical distribu-

tions. Hence, all the figures associated with the different statistics should be regarded

in comparative and not absolute terms.

5.1 French electricity market

As a first application, we analyze data from Powernext, the French power exchange.

We consider a data set containing the day-ahead electricity prices, in different hours,

from November 2001 to August 2006,3 and we build the empirical distribution of the

corresponding daily log returns. Then using the goodness-of-fit statistics defined in

equation (17), we investigate the ability of the four competing families to reproduce

the observed distributions. Results are reported in Table 9.

Two main evidences emerge from the reported figures. First, the AEP outperforms

all the other distributions both in terms of the Kolmogorov–Smirnov and of the

Cramer–Von Mises statistics. In particular, from Table 9, it is clear that while the

observed Kolmogorov–Smirnov statistics D is, for the AEP, only slightly lower than

the ones obtained for the other families the same appears not true in the case of the

Cramer–Von Mises test. Indeed, the values of the W 2 statistic are significantly lower

for the AEP being always less than half of the average of the other three. In order to

provide a more revealing, albeit qualitative, assessment of the relative ability of the

different families in reproducing the empirical distribution we present, in Figure 8,

two plots, for the AEP and the GHYP, respectively, of the function �(x) defined as

�ðxÞ ¼ FEmpðxÞ � FThðxÞ: ð18Þ

Deviations of �(x) from the constant line y¼ 0 represent the local discrepancy

between the theoretical and the empirical distribution. This figure, while confirming

in accordance with formal tests the better fit of the AEP, adds also some interesting

insights: the AEP is clearly better in the whole central part of the distribution and in

3These prices are fixed on day, separately for the 24 individual hours, for delivery on the same day or

on the following.
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its upper tail, while the opposite is true for the lower tail where the GHYP seems

slightly preferable.4

The second evidence emerging from Table 9 regards the difference between the

estimated values of the AEP shape parameters bl and br , which suggests the presence

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Δ(
x)

x

AEP
GHYP

Figure 8 Deviations �(x) of the AEP and of the GHYP from the empirical distribution. Data

are daily log returns of the French electricity price at 5 p.m.

Table 9 Maximum likelihood estimates (standard errors in parentheses) of the shape par-

ameters, bl and br, of the AEP density together with the EDF goodness-of-fit statistics for

four different families of distribution

Goodness of fit — W2 Goodness of fit — D

Hour bl br AEP GHYP Stable SEP AEP GHYP Stable SEP

10.00 a.m. 0.565 (0.022) 0.893 (0.043) 0.287 1.365 1.436 1.339 0.030 0.053 0.051 0.042

12.00 a.m. 0.625 (0.026) 0.985 (0.051) 0.155 0.253 0.644 0.390 0.022 0.024 0.036 0.032

2.00 p.m. 0.600 (0.024) 0.999 (0.051) 0.147 0.752 1.016 0.573 0.026 0.040 0.044 0.035

5.00 p.m. 0.591 (0.023) 1.003 (0.051) 0.193 0.592 0.774 0.847 0.027 0.036 0.037 0.042

8.00 p.m. 0.650 (0.027) 0.912 (0.046) 0.091 0.178 0.576 0.239 0.017 0.024 0.033 0.022

Data are daily log returns of electricity prices from the French power exchange, Powernext.

Goodness of fit statistics for the best performing family are reported in boldface.

4For the sake of clarity, we do not report the function �(x) for the �-Stable and the SEP, since from

Table 9 it is apparent that their ability to fit the empirical distribution is substantially worse.

1016 G. Bottazzi and A. Secchi

 at B
IB

L
IO

T
E

C
A

-SC
U

O
L

A
 SU

PE
R

IO
R

E
 SA

N
T

'A
N

N
A

-PISA
 on January 27, 2016

http://icc.oxfordjournals.org/
D

ow
nloaded from

 

http://icc.oxfordjournals.org/


of substantial asymmetries in the empirical distribution of electricity price returns.

This finding is not a peculiar feature of the French market but applies to a number of

different power exchanges, see Sapio (2008) for a broader analysis. As such, it pro-

vides a potent, empirically based, case for the development of class of distributions

able to cope at the same time with fat tails and skewness.

To sum up, our evidence suggests that the AEP fits systematically better the

skewed distribution function of the log returns of French electricity prices presenting,

at the same time, the lowest overall discrepancy and the lowest maximum deviation

from the corresponding empirical benchmark.

5.2 Exchange rates market

As a second application, we consider exchange rates data collected from FRED�, a

database of over 15,000 U.S. economic time series available at the Federal Reserve

Bank of St Louis. We select a data set containing five different exchange rates and we

focus on the most recent 1000 observations.5 We build empirical distributions of the

(log) differenced exchange rates series and, as we did in the previous section, we test

the relative ability of the four families under investigation to fit their observed

counterpart.

Results of the goodness-of-fit test are reported in Table 10. Once again the AEP

and the GHYP clearly show, when compared with the other two families, a better

Table 10 Maximum likelihood estimates (standard errors in parentheses) of the shape par-

ameters of the AEP density together with the EDF goodness-of-fit statistics for four different

families of distribution

Goodness of fit — W2 Goodness of fit — D

Currencies bl br AEP GHYP Stable SEP AEP GHYP Stable SEP

usd4eu 1.193 (0.127) 1.503 (0.165) 0.052 0.073 0.351 3.420 0.018 0.022 0.036 0.107

usd4uk 1.385 (0.172) 1.688 (0.217) 0.037 0.044 0.214 0.120 0.016 0.019 0.035 0.026

sz4usd 1.455 (0.163) 1.374 (0.167) 0.054 0.060 0.339 0.078 0.018 0.019 0.039 0.021

si4usd 1.110 (0.119) 1.530 (0.153) 0.038 0.033 0.066 2.798 0.020 0.016 0.020 0.088

jp4usd 1.195 (0.125) 1.541 (0.176) 0.019 0.029 0.141 0.703 0.014 0.018 0.032 0.059

Data are daily log first difference on different exchange rates. Source: FRED� Federal Reserve

Economic Data.

Goodness of fit statistics for the best performing family are reported in boldface.

5The exchange rates analyzed are as follows: U.S. Dollar to one Euro, U.S. Dollar to one U.K. Pound,

Japanese Yen to one U.S. Dollar, Singapore Dollars to one U.S. Dollars and Swiss Francs to one U.S.

Dollars. The time window goes from August 25, 2003 to August 14, 2007.
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ability to reproduce the empirical distributions with the former displaying the best

results in four out of five sample considered. To add further evidence, Figure 9

reports the function �(x) for the exchange growth rates of US Dollar versus Euro:

the difference between the two families appears, if compared with Figure 8, rather

mild even if it is apparent the better capability of the AEP to fit the extreme upper tail

of the empirical distribution.

5.3 Stock markets

As a last application, we consider daily log returns of a sample of 30 stocks, 15 from

the London Stock Exchange (LSE), and 15 from the Milan Stock Exchange (MIB)

chosen among the top ones in terms of capitalization and liquidity.6

The results of the goodness-of-fit tests performed using the D and W2 statistics is

reported in Table 11. As can be seen, the obtained results are more ambiguous than

in the previous two analyses on electricity power prices and exchange rates. While

also in this case the AEP and the GHYP systematically outperform both the �-Stable

and the SEP, it seems less clear how to rank them in terms of their capability to fit

the empirical returns distributions. On the one hand, for the majority of the stocks,

the Generalized Hyperbolic seems better in approximating the overall shape of

the empirical density, as witnessed by the lower values of the W2 statistic. On the

other hand, the highest observed deviation D is almost always lower for the AEP

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

-0.02 -0.015 -0.01 -0.005  0  0.005  0.01  0.015  0.02

Δ(
x)

x

AEP
GHYP

Figure 9 Deviations �(x) of the AEP and of the GHYP from the empirical distribution. Data

are daily log first difference of the exchange rate between US Dollar and Euro.

6We use daily closing prices as retrieved from Bloomberg financial data service. The time window

considered covers the period between June 1998 and June 2002.
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(cf. again Table 11). Anyway, one should be very cautious in ranking these two

families, also because the respective values of D and W2 are very close to each other.

We can, however, obtain other interesting insights by analyzing in depth the

unique case in which the AEP appears to performs substantially better than all the

Table 11 Maximum likelihood estimates (standard errors in parentheses) of the shape par-

ameters of the AEP density together with the EDF goodness-of-fit statistics for four different

families of distribution

Goodness of fit — W2 Goodness of fit — D

bl br AEP GHYP Stable SEP AEP GHYP Stable SEP

LSE

ARM 1.076 (0.092) 0.855 (0.063) 0.0666 0.0790 0.2042 0.4951 0.0287 0.0289 0.0392 0.0508

DXN 0.718 (0.053) 1.259 (0.096) 0.0336 0.0910 0.1605 0.2702 0.0203 0.0217 0.0374 0.0346

BG 1.110 (0.099) 0.983 (0.081) 0.0282 0.0253 0.1809 4.5531 0.0214 0.0225 0.0309 0.1173

BLT 1.315 (0.127) 0.896 (0.069) 0.0811 0.0517 0.0976 3.8995 0.0224 0.0258 0.0271 0.1190

ISY 0.714 (0.051) 1.125 (0.084) 0.0336 0.1666 0.2446 0.0665 0.0237 0.0333 0.0433 0.0247

CS 1.388 (0.137) 0.918 (0.073) 0.0652 0.0646 0.2244 1.6211 0.0385 0.0379 0.0453 0.0724

LGE 1.081 (0.092) 0.867 (0.065) 0.0714 0.0616 0.1896 0.0739 0.0385 0.0343 0.0342 0.0372

CNA 1.047 (0.089) 0.873 (0.065) 0.0589 0.0345 0.1680 1.8616 0.0318 0.0305 0.0367 0.0776

HSB 1.143 (0.105) 1.007 (0.085) 0.0544 0.0162 0.0864 0.3686 0.0203 0.0168 0.0202 0.0385

BT 1.197 (0.125) 1.328 (0.134) 0.0354 0.0454 0.1461 0.1509 0.0143 0.0179 0.0312 0.0282

TSC 1.142 (0.101) 0.895 (0.069) 0.0393 0.0358 0.2824 3.1644 0.0224 0.0258 0.0348 0.1043

SHE 1.325 (0.132) 1.188 (0.124) 0.0381 0.0283 0.0797 5.3933 0.0181 0.0184 0.0211 0.1163

BAR 1.026 (0.099) 1.447 (0.138) 0.0201 0.0265 0.1397 9.0418 0.0160 0.0174 0.0271 0.1721

BP 1.359 (0.130) 0.999 (0.089) 0.0232 0.0329 0.2276 4.2845 0.0145 0.0177 0.0341 0.1128

VOD 1.988 (0.253) 1.274 (0.158) 0.0625 0.0511 0.0789 0.6844 0.0215 0.0191 0.0271 0.0588

MIB30

BIN 1.104 (0.096) 0.941 (0.076) 0.0406 0.0452 0.2742 0.2730 0.0295 0.0309 0.0369 0.0476

BUL 1.023 (0.092) 1.017 (0.081) 0.0802 0.0734 0.4221 0.1231 0.0283 0.0275 0.0490 0.0327

FNC 1.176 (0.119) 1.131 (0.101) 0.0387 0.0388 0.1364 0.0725 0.0217 0.0181 0.0297 0.0222

OL 0.941 (0.086) 1.354 (0.118) 0.0394 0.0605 0.1517 0.3213 0.0172 0.0208 0.0386 0.0396

ROL 0.891 (0.067) 0.841 (0.062) 0.0824 0.0493 0.1285 0.1381 0.0286 0.0294 0.0301 0.0310

SPM 1.072 (0.103) 1.211 (0.110) 0.0426 0.0222 0.1178 3.1962 0.0270 0.0228 0.0267 0.1066

UC 1.002 (0.083) 0.973 (0.079) 0.1182 0.0616 0.1077 0.1142 0.0371 0.0368 0.0393 0.0418

AUT 0.959 (0.074) 0.720 (0.047) 0.1204 0.0941 0.2442 12.5376 0.0397 0.0407 0.0467 0.1841

BPV 0.864 (0.063) 0.747 (0.051) 0.0822 0.1068 0.3362 0.1309 0.0344 0.0342 0.0491 0.0431

CAP 0.954 (0.077) 0.853 (0.062) 0.0642 0.0719 0.2164 1.1071 0.0265 0.0304 0.0467 0.0734

FI 0.891 (0.069) 0.915 (0.069) 0.0278 0.0183 0.1551 1.4545 0.0161 0.0161 0.0291 0.0731

MB 1.131 (0.100) 0.906 (0.071) 0.0271 0.0306 0.2008 0.0497 0.0208 0.0209 0.0276 0.0228

PRF 1.191 (0.107) 0.870 (0.065) 0.1571 0.0971 0.1570 0.7884 0.0427 0.0444 0.0480 0.0493

RI 1.109 (0.103) 1.024 (0.085) 0.0731 0.0594 0.1539 3.9919 0.0221 0.0222 0.0343 0.0943

STM 1.511 (0.197) 1.451 (0.170) 0.0471 0.0391 0.1112 0.0565 0.0162 0.0158 0.0243 0.0187

Data are daily log price returns. Source: London and Milan Stock Exchange.

Goodness of fit statistics for the best performing family are reported in boldface.
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other three families, GHYP included: the stock price returns of the INVENSYS PLC,

a British company represented in the LSE by the abbreviation ISY. It turns out that

in this case the log returns observed present two peculiar features: they display a

significant degree of skewness and they include one rather anomalous observation

in the upper tail, as can be seen from the empirical density displayed in Figure 10

together with the AEP (thick solid line) and GHYP (dashed line) fits. The function

�(x) reported in Figure 11 shows that the quality of the fit provided by the GHYP is

 0.01

 0.1

 1

 10

 100

-0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

Pr
(x

)

x

Empirical
AEP

GHYP

Figure 10 Empirical log return density together with the AEP and the GHYP fits. Data are

daily log returns of the INVENSYS PLC stock listed at the London Stock Exchange.

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

-0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

Δ(
x)

x

AEP
GHYP

Symmetrized Sample

Figure 11 Deviations �(x) of the AEP and of the GHYP from the empirical distribution. Data

are daily log returns of the INVENSYS PLC stock listed at the London Stock Exchange. �(x)

for the symmetrized series.
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remarkably worse than the one obtained using the AEP. The impression is that the

concomitant presence of a significant degree of skewness and very few anomalous

observations negatively affects the ability of the GHYP to capture the observed dis-

tribution, notably worsening its fit. To further investigate this impression, we run the

following experiment. From the original sample of the ISY stock returns, we removed

the top 1% observations, thus inducing the original distribution to become more

symmetric.7 Then we replicate the goodness-of-fit analysis. We obtain values of

both the Cramer–Von Mises and the Kolmogorov–Smirnov statistics that are very

close to each other: 0.0327 and 0.0224, respectively, for the AEP and 0.0351

and 0.0186 for the GHYP. The reduction of the gap, in terms of goodness of fit,

suggests that the GHYP is less robust when data are skewed and contains extreme

outliers.

6. Conclusions

This paper introduces a new family of distributions, the AEP, able to cope with

asymmetries and leptokurtosis and at the same time allowing for a continuous vari-

ation from non-normality to normality. We discuss the ML estimation of the AEP

parameters, investigating the properties of their sampling distribution using both

analytical and numerical methods.

We present a series of analytical results on the consistency, asymptotic efficiency,

and asymptotic normality of the ML estimator of the AEP parameters. They are

basically an extension of results previously known for the symmetric EP and prove

that the estimator is consistent over the whole parameter space and that they are

asymptotically efficient and normal when bl and br are both greater or equal 2

(cf. Table 12 for a summary of these results). At the same time, we derive the

Fisher information matrix of the AEP, showing that it is well defined in the param-

eter space where bl and br are grater than 0.5. In this derivation, we obtain the result

for the symmetric EP as a special case, fixing a mistake present in a previous work

(Agró, 1995). Furthermore, we prove that a relevant part of the Fisher information

matrix J can be continuously extended to the whole parameter space. Indeed, we

show that even when bl and br are smaller than 0.5, the upper-left 4� 4 block of the

inverse information matrix continues to be finite and positive definite. This suggests

that the information matrix can be used to obtain theoretical asymptotic values for

the estimates standard errors also when the values of the shape parameters are less

than 0.5. We prove this conjecture numerically: using extensive Monte Carlo simu-

lations we show that, first, ML estimators are always asymptotically efficient (i.e.

scale with
ffiffiffiffi
N
p

) even if, especially in the presence of strong asymmetries, small

7Coherently, the left and right estimated shape parameters of the AEP become more similar: on the

symmetrized sample, bl is found to be 1.029(0.099) while br is found equal to 1.085(0.089).

Asymmetric exponential power density 1021

 at B
IB

L
IO

T
E

C
A

-SC
U

O
L

A
 SU

PE
R

IO
R

E
 SA

N
T

'A
N

N
A

-PISA
 on January 27, 2016

http://icc.oxfordjournals.org/
D

ow
nloaded from

 

http://icc.oxfordjournals.org/


sample effects are present and, second, that the inverse information matrix provides

accurate measures of the ML estimates also in the region of the parameter space

where J is defined via analytic continuation, that is where bl , br50.5. The numerical

investigation of the asymptotic behavior of the ML estimator also shows that a bias

is in general present, but due to its negligible contribution to the mean squared error

of the estimates, it can safely be ignored for any practical purpose even when the

sample size is relatively small (cf. again Table 12 for a summary of the results).

On the empirical side, our investigations provide rather strong motivations for

the use of the AEP distribution for descriptive purposes. Indeed, using a selection

of diverse economic and financial data, we show that the AEP performs better,

in terms of its ability to approximate empirical distributions, than other commonly

used families. Moreover, even in those situations in which its performance seems

comparable to the one obtained with the best alternative available, namely the

Generalized Hyperbolic, the AEP seems able to provide a more robust fitting frame-

work in the presence of significant skewness and anomalous observations.

Two elements of the study of the inferential aspects of the AEP distribution

are not discussed in the present contribution and still need to be investigated: the

behavior of the ML estimator for small sample sizes and the characterization of

the error associated with the estimate of the location parameter m when

bl , br50.5. We did not pursue these issues here because we consider them, from a

practical point of view, of a secondary relevance. Indeed, in the large majority of

applications in which the use of the AEP could result useful, one typically has at

Table 12 Properties of the ML estimator of the AEP parameters

Theoretical results Numerical analysis

m known m unknown m known m unknown

bl � 2, br � 2 Consistent Consistent Biaseda Biaseda

Asymp. normal Asymp. normal

Asymp. efficient Asymp. efficient

0:5 < bl< 2, 0:5 < br< 2 Consistent Consistent Biaseda Biaseda

Asymp. normal

Asymp. efficient J well defined Asymp. efficient

bl � 0:5, br � 0:5 Consistent Consistent Biaseda Biaseda

Asymp. normal

Asymp. efficient Asymp. efficient

aBias contribution to RMSE is negligible for any practical application when the sample size

N is greater than 100.
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his disposal samples of several hundreds of observations and the shape parameters b

rarely take values below 0.5.
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Appendix A

Before deriving the information matrix J matrix for the AEP distribution, let us solve

the following useful integral

I l
�, k ¼

Z m

�1

dxf ðxÞ
m� x

al

� ��
log

x �m

al

� �k

k 2 N, � 2 R
þ: ðA1Þ
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Substituting (3) in (A1) and changing the variable to t ¼ 1
bl

x�m
al

� 	bl

one obtains

I l
�, k ¼

al b
�þ1

bl
�1�k

l

C

Z þ1
0

dt e�t t
�þ1

bl
�1

log t þ log bl

� �k
ðA2Þ

that expanding the summation becomes

I l
�, k ¼

al b
�þ1

bl
�1�k

l

C

Xk

h¼0

k

h

� �
logh bl

Z þ1
0

dt e�t t
�þ1
bl
�1

logk�h t ðA3Þ

and finally

I l
�, k ¼

al b
�þ1

bl
�1�k

l

C

Xk

h¼0

k

h

� �
logh bl Gðk�hÞ �þ 1

bl

� �
ðA4Þ

where G(i) is the i-th derivative of the Gamma function and where we used [cf.

Gradshteyn and Ryzhyk (2000) eq. 4.358]
Rþ1

0
dx logn x xv�1 e�x ¼ GðnÞðxÞ.

For instance, when � ¼ bl we get

I l
bl , k ¼

al

C
b

1
bl
�k

l

Xk

h¼0

k

h

� �
logh bl Gðk�hÞ bl þ 1

bl

� �
¼

al

C
BkðblÞ ðA5Þ

where Bk(x) is defined in (11). When � ¼ bl�1 one has

I l
bl�1, k ¼

al

C
b�k

l

Xk

h¼0

k

h

� �
logh bl Gðk�hÞ 1ð Þ ðA6Þ

while when �¼ 2bl it is

I l
2bl , k ¼

al

C
b

1
bl
þ1�k

l

Xk

h¼0

k

h

� �
logh bl Gðk�hÞ 2bl þ 1

bl

� �
: ðA7Þ

and when k¼ 0 and � ¼ h 2 N it is I l
h, 0 ¼

al

C
AhðblÞ where Ah(x) is defined in (4).

Correspondingly

I r
�, k ¼

Z þ1
m

dxf ðxÞ
x �m

ar

� ��
log

x �m

ar

� �k

ðA8Þ

¼
ar b

�þ1
br
�1�k

r

C

Xk

h¼0

k

h

� �
logh br Gðk�hÞ �þ 1

br

� �
k 2 N, � 2 R

þ
ðA9Þ

We provide below preliminary calculations needed to derive the Fisher

information matrix J of f ðx; p̂Þ. They must be used in conjunction with
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equations (A5), (A6), (A7), and (A9) to obtain expressions in (10).

Jbl bl
¼

Z þ1
�1

dx f ðx; pÞ
1

C
alB
0
0ðblÞ þ �

1

b2
l

x �m

al

����
����bl

þ
1

bl

x �m

al

����
����bl

log
x �m

al

����
����

 !
�ðm� xÞ

 !2

¼
al

C
B000 ðblÞ �

a2
l

C2
ðB00ðblÞÞ

2
þ

1

bl

I l
bl , 2 �

2

b2
l

I l
bl , 1 þ

2

b3
l

I l
bl , 0:

Jbl br
¼

Z þ1
�1

dx f ðx; pÞ
1

C
alB
0
0ðblÞ þ �

1

b2
l

x �m

al

����
����bl

þ
1

bl

x �m

al

����
����bl

log
x �m

al

����
����

 !
�ðm� xÞ

 !

1

C
ar B00ðbr Þ þ �

1

b2
r

x �m

ar

����
����br

þ
1

br

x �m

ar

����
����br

log
x �m

ar

����
����

 !
�ðx �mÞ

 !

¼ �
alar

C2
B00ðblÞB

0
0ðbr Þ:

Jbl al
¼

Z þ1
�1

dx f ðx; pÞ
1

C
alB
0
0ðblÞ þ �

1

b2
l

x �m

al

����
����bl

þ
1

bl

x �m

al

����
����bl

log
x �m

al

����
����

 !
�ðm� xÞ

 !

1

C
B0ðblÞ �

x �m

al

����
����bl

�ðm� xÞ

 !
¼

1

C
B00ðblÞ �

al

C2
B0ðblÞB

0
0ðblÞ �

1

al

I l
bl , 1:

Jbl ar
¼

Z þ1
�1

dx f ðx; pÞ
1

C
alB
0
0ðblÞ þ �

1

b2
l

x �m

al

����
����bl

þ
1

bl

x �m

al

����
����bl

log
x �m

al

����
����

 !
�ðm� xÞ

 !

1

C
B0ðbr Þ �

x �m

ar

����
����br

�ðx �mÞ

 !
¼ �

al

C2
B0ðbr ÞB

0
0ðblÞ:

Jbl m ¼

Z þ1
�1

dx f ðx; pÞ
1

C
alB
0
0ðblÞ þ �

1

b2
l

x �m

al

����
����bl

þ
1

bl

x �m

al

����
����bl

log
x �m

al

����
����

 !
�ðm� xÞ

 !

1

al

x �m

al

����
����bl�1

�ðm� xÞ �
1

ar

x �m

ar

����
����br�1

�ðx �mÞ

 !
¼

1

al

I l
bl�1, 1:

Jbr br
¼

Z þ1
�1

dx f ðx; pÞ
1

C
ar B00ðbr Þ þ �

1

b2
r

x �m

ar

����
����br

þ
1

br

x �m

ar

����
����br

log
x �m

ar

����
����

 !
�ðx �mÞ

 !2

¼
ar

C
B000 ðbr Þ �

a2
r

C2
ðB00ðbr ÞÞ

2
þþ

1

br

I r
br , 2 �

2

b2
r

I r
br , 1 þ

2

b3
r

I r
br , 0:

Jbr al
¼

Z þ1
�1

dx f ðx; pÞ
1

C
ar B00ðbr Þ þ �

1

b2
r

x �m

ar

����
����br

þ
1

br

x �m

ar

����
����br

log
x �m

ar

����
����

 !
�ðx �mÞ

 !

1

C
B0ðbr Þ �

x �m

ar

����
����br

�ðx �mÞ

 !
¼ �

ar

C2
B0ðblÞB

0
0ðbr Þ:
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Jbr ar
¼

Z þ1
�1

dx f ðx; pÞ
1

C
ar B00ðbr Þ þ �

1

b2
r

x �m

ar

����
����br

þ
1

br

x �m

ar

����
����br

log
x �m

ar

����
����

 !
�ðx �mÞ

 !

1

C
B0ðbr Þ �

x �m

ar

����
����br

�ðx �mÞ

 !
¼

1

C
B00ðbr Þ �

ar

C2
B0ðbr ÞB

0
0ðbr Þ �

1

ar

I r
br , 1:

Jbr m ¼

Z þ1
�1

dx f ðx; pÞ
1

C
ar B00ðbr Þ þ �

1

b2
r

x �m

ar

����
����br

þ
1

br

x �m

ar

����
����br

log
x �m

ar

����
����

 !
�ðx �mÞ

 !

1

al

x �m

al

����
����bl�1

�ðm� xÞ �
1

ar

x �m

ar

����
����br�1

�ðx �mÞ

 !
¼ �

1

ar

I r
br�1, 1:

Jal al
¼

Z þ1
�1

dx f ðx; pÞ
1

C
B0ðblÞ �

x �m

al

����
����bl

�ðm� xÞ

 !2

¼ �
1

C2
B2

0ðblÞ þ
bl þ 1

a2
l

I l
bl , 0:

Jal ar
¼

Z þ1
�1

dx f ðx; pÞ
1

C
B0ðblÞ �

x �m

al

����
����bl

�ðm� xÞ

 !
1

C
B0ðbr Þ �

x �m

ar

����
����br

�ðx �mÞ

 !

¼ �
1

C2
B0ðblÞB0ðbr Þ:

Jal m ¼

Z þ1
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dx f ðx; pÞ
1
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x �m
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����
����bl�1
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1

ar

x �m
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����
����br�1

�ðx �mÞ

 !

1

C
B0ðblÞ �

x �m

al

����
����bl

�ðm� xÞ

 !
¼ �

bl

a2
l

I l
bl�1, 0:

Jar ar
¼
Rþ1
�1

dx f ðx; pÞ 1
C

B0ðbr Þ �
x �m

ar

����
����br

�ðx �mÞ

 !2

¼ �
1

C2
B2

0ðbr Þ þ
br þ 1

a2
r

I r
br , 0:

Jar m ¼

Z þ1
�1

dx f ðx; pÞ
1

al

x �m

al

����
����bl�1

�ðm� xÞ �
1

ar

x �m

ar

����
����br�1

�ðx �mÞ

 !

1

C
B0ðbr Þ �

x �m

ar

����
����br

�ðx �mÞ

 !
¼ �

br

a2
r

I r
br�1, 0:

Jmm ¼

Z þ1
�1

dx f ðx; pÞ
1

al

x �m

al

����
����bl�1

�ðm� xÞ �
1

ar

x �m

ar

����
����br�1

�ðx �mÞ

 !2

¼
1

a2
l

I l
2bl�2, 0 þ

1

a2
r

I r
2br�2, 0:
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Appendix B

Consider a set of N observations {x1, . . . , xN} and assume that they are independently

drawn from an AEP distribution of unknown parameters p0. According to

Lehmann (1983), the ML estimates of these parameters p̂ obtained through (8)

are asymptotically normal and efficient if the following four regularity conditions

apply:

(A) there exists an open subset } of P containing the true parameter point p0

such that for almost all x, the density fAEP(xjp) admits all third derivatives

(@3/@ph@pj@pk)fAEP(x) for all p 2 } ;

(B) the first and second logarithmic derivatives of fAEP satisfy the equations

E
@ log fAEPðx; pÞ

@pj

� 
¼ 0 8j ðA10Þ

and

JjkðpÞ ¼ HjkðpÞ 8j, k, ðA11Þ

where HjkðpÞ ¼ E
�@2log fAEPðx;pÞ

@pj@pk

h i
.

(C) the elements Jhj (p) are finite and the matrix J(p) is positive definite for all p

in };

(D) there exists functions Mhjk such that @3

@ph@pj@pk
log fAEP ðxjpÞ

��� ��� � MhjkðxÞ 8p 2 }

where mhjk¼ Ep0
[Mhjk(x)]51 8h, j, k.

Below we will prove that these four conditions are satisfied in the subset

} ¼ ½2,þ1Þ � ½2, þ1Þ � ð0,þ1Þ � ð0,þ1Þ � D. In what follows we will

denote fAEP simply by f, the meaning being understood.

(1) Condition (A) is always satisfied since any derivative of fAEP present, at most, a

single discontinuity in correspondence of x¼m.

(2) Since it is

E
@ log f ðx; pÞ

@al

� 
¼

Z þ1
�1

dx f ðx; pÞ �
1

C
B0ðblÞ þ

x �m

al

����
����bl

�ðm� xÞ

" #

¼ �
1

C
B0ðblÞ þ

1

C
B0ðblÞ ¼ 0:

E
@ log f ðx; pÞ

@ar

� 
¼

Z þ1
�1

dx f ðx; pÞ �
1

C
B0ðbr Þ þ

x �m

ar

����
����br

�ðx �mÞ

" #

¼ �
1

C
B0ðbrÞ þ

1

C
B0ðbrÞ ¼ 0:
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E
@ log f ðx; pÞ

@bl

� 
¼

Z þ1
�1

dx f ðx; pÞ �
1

C
alB
0
0ðblÞ þ

1

b2
l

x �m

al

����
����bl

�
1

bl

x �m

al

����
����bl

log
x �m

al

����
����

 !"

�ðm� xÞ� ¼
alb

1=bl�2
l

C
½ðlogðblÞ � 1ÞGð1þ 1=blÞ þ  ð1þ 1=blÞGð1þ 1=blÞ

þ Gð1þ 1=blÞ þ �logðblÞGð1þ 1=blÞ �  ð1þ 1=blÞGð1þ 1=blÞ� ¼ 0:

E
@ log f ðx; pÞ

@br

� 
¼

Z þ1
�1

dx f ðx; pÞ �
1

C
ar B00ðbr Þ þ

1

b2
r

x �m

ar

����
����br

�
1

br

x �m

ar

����
����br

log
x �m

ar

����
����

 !"

�ðx �mÞ� ¼
ar b1=br�2

r

C
½ðlogðbr Þ � 1ÞGð1þ 1=br Þ þ  ð1þ 1=br ÞGð1þ 1=br Þ

þ Gð1þ 1=br Þ � logðbr ÞGð1þ 1=br Þ �  ð1þ 1=br ÞGð1þ 1=br Þ� ¼ 0:

E
@ log f ðx; pÞ

@m

� 
¼

Z þ1
�1

dx f ðx; pÞ
�1

al

x �m

al

����
����bl�1

�ðm� xÞ þ
1

ar

x �m

ar

����
����br�1

�ðx �mÞ

" #

¼
�1

C
B0ðbl � 1Þ þ

�1

C
B0ðbr � 1Þ ¼ 0:

the first part [Equation (28)] of Condition (B) is satisfied. Moreover it is

In order to prove (A11), notice that when f (x ; p) @ log f (x ; p)/@pj are continuous

functions, this equation is a simple consequence of an integration by parts. Hence,

it remains to prove (A11) only in those cases where a derivative with respect to the

parameter m is involved. One has

Hbl m ¼

Z þ1
�1

dx f ðxÞ
1

al

x �m

al

����
����bl�1

log
x �m

al

����
�����ðm� xÞ

" #
¼

1

al

I l
bl�1, 1 ¼ Jbl m

Hbr m ¼

Z þ1
�1

dx f ðxÞ
1

ar

x �m

ar

����
����br�1

log
x �m

ar

����
�����ðx �mÞ

" #
¼ �

1

ar

I r
br�1, 1 ¼ Jbr m

Hal m ¼ �

Z þ1
�1

dx f ðxÞ
bl

a2
l

x �m

al

����
����bl�1

�ðm� xÞ

" #
¼ �

bl

a2
l

I l
bl�1, 0 ¼ Jal m

Har m ¼ �

Z þ1
�1

dx f ðxÞ
br

a2
r

x �m

ar

����
����br�1

�ðx �mÞ

" #
¼ �

br

a2
r

I r
br�1, 0 ¼ Jar m
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Hmm ¼

Z þ1
�1

dx f ðxÞ
bl � 1

a2
l

x �m

al

����
����bl�2

�ðm� xÞ þ
br � 1

a2
r

x �m

ar

����
����br�2

�ðx �mÞ

" #

¼
bl � 1

a2
l

I l
bl�2, 0 þ

br � 1

a2
r

I r
br�2, 0 ¼ Jmm

and (A11) is proved.

(3) According to Theorem 3.1, the matrix J exists and is positive definite for

bl , br40.5. When one of these two parameters moves toward the value 0.5 the

element Jmm encounters a pole and the matrix is no longer defined.

(4) Consider the case when ph¼ pj¼ pk¼m. It is easy to show that

@3

@m3
log f ðxjpÞ ¼

ðbl � 1Þðbl � 2Þ

a3
l

x �m

al

����
����bl�3

�ðm� xÞ

�
ðbr � 1Þðbr � 2Þ

a3
r

x �m

ar

����
����br�3

�ðx �mÞ:

ðA12Þ

If one defines

MmmmðxÞ ¼
ðbl � 1Þðbl � 2Þ

a3
l

x �m

al

����
����bl�3

þ
ðbr � 1Þðbr � 2Þ

a3
r

x �m

ar

����
����br�3

ðA13Þ

it follows that @3

@m3 log f ðxjpÞ
��� ��� � MmmmðxÞ 8p 2 }. Moreover, for bl , br42 it is

E [Mmmm] 5 1. Using the same argument it is straightforward to prove that

when bl , br42 Condition (D) is satisfied also for all other cases. g
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