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Mutual  information  is  a  principled  non-linear  measure  of  dependence  between  stochastic  variables,
which  is  widely  used  to study  the  selectivity  of neural  responses  to  external  stimuli.  Here  we define
and  develop  a  set  of novel  statistical  independence  tests  based  on mutual  information,  which  quan-
tify the  significance  of neural  selectivity  to either  single  features  or to multiple,  potentially  correlated
stimulus  features  like  those  often  present  in naturalistic  stimuli.  If the  values  of  different  features  are
correlated  during  stimulus  presentation,  it is  difficult  to establish  if one  feature  is genuinely  encoded  by
the response,  or if it instead  appears  to be encoded  only  as a side  effect  of  its  correlation  with  another
genuinely  represented  feature.  Our  tests  provide  a way  to disambiguate  between  these  two  possibilities.
We  use  realistic  simulations  of  neural  responses  tuned  to one  or  more  correlated  stimulus  features  to
investigate  how  limited  sampling  bias  correction  procedures  affect  the  statistical  power  of  such  inde-
pendence  tests,  and  we characterize  the  regimes  in  which  the distribution  of information  values  under
amma  band the null  hypothesis  can  be  approximated  by  simple  distributions  (Chi-square  or  Gaussian).  Finally,  we
apply these  tests  to experimental  data  to determine  the significance  of tuning  of  the  band  limited  power
(BLP) of the  gamma  [30–100  Hz]  frequency  range  of the primary  visual  cortical  local  field  potential  to
multiple  correlated  features  during  presentation  of  naturalistic  movies.  We  show  that  gamma  BLP carries
significant,  genuine  information  about  orientation,  space  contrast  and  time  contrast,  despite  the  strong
correlations  between  these  features.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

Mutual information (Cover and Thomas, 1991) (hereafter
eferred to as information) is a measure of dependence between
tochastic variables. Information quantifies the reduction in uncer-
ainty about one variable (for example, a sensory stimulus) after
bservation of another (for example, a neural response). Infor-
ation is a popular metric to quantify, on a scale that allows
Please cite this article in press as: Ince RAA, et al. A novel test to determine t
correlated stimulus features. J Neurosci Methods (2011), doi:10.1016/j.jne

eaningful comparisons across different systems, how much a
iven type of a neural response is tuned to one or more stimulus
arameters (Borst and Theunissen, 1999; Ince et al., 2010; Optican
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165-0270/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2011.11.013
and Richmond, 1987; Strong et al., 1998). Its main advantage is that
it is based on the full probability distributions of the considered
variables and can therefore quantify the effect of any non-linear or
arbitrarily complicated dependency.

The calculation of neural information values and the evaluation
of their significance is made difficult by the fact that in neuro-
physiological experiments the joint probabilities of stimulus and
neural responses have to be estimated empirically from a limited
number of data samples (“trials”). Limited sampling induces both
a systematic error (bias) and a variance in the estimation of the
neural information values. While the limited sampling bias has
been studied extensively in the neural literature (Paninski, 2003;
Panzeri et al., 2007; Victor, 2006), the evaluation of the statisti-
cal significance of an information value computed from limited
he significance of neural selectivity to single and multiple potentially
umeth.2011.11.013

experimental data has been less thoroughly investigated. The sta-
tistical significance of an information value tells us whether we
can, at a particular confidence level or p-value, reject the null
hypothesis that the stimulus and response are independent. The

dx.doi.org/10.1016/j.jneumeth.2011.11.013
dx.doi.org/10.1016/j.jneumeth.2011.11.013
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
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ignificance of information values is traditionally calculated by
mploying a form of bootstrap test (Optican et al., 1991). The stim-
li and response are shuffled across experimental trials to remove
ny dependence, and the information value is calculated for many
epetitions of this shuffling procedure to obtain the distribution of
alues under the null hypothesis of independence. However, sev-
ral problems related to the estimation of significance have not
et been considered. The first problem is whether it is possible
o employ parametric models for the null hypothesis distribution.
he second problem regards the effect of sampling bias correc-
ions on the statistical power of such tests. The third problem is to
etermine which of the many stimulus features characterizing nat-
ralistic stimuli actually influence the considered neural response.
his is difficult because in dynamic and complex stimuli, like the
nes found in a natural environment and mimicked by movie
timuli, different stimulus features are often strongly correlated
Felsen and Dan, 2005; Geisler, 2008; Simoncelli, 2003; Simoncelli
nd Olshausen, 2001). An abrupt movement of an observer, for
nstance, which leads to sudden appearance or disappearance of
bjects, will necessarily produce concurrent, and hence correlated,
hanges in a large number of features (Bartels et al., 2008). If the
eural response carries significant information about each of two
ifferent but correlated features, it does not follow necessarily
hat the neural response is genuinely influenced by both of them.
he response could instead be influenced by only one of the fea-
ures, with the dependence on the other feature appearing because
f the correlations between them. Understanding how to deter-
ine true neuronal selectivity in these cases is essential to allow
eaningful investigation of the neural representation of natural

timuli.
Here we investigate these issues by first comparing bootstrap

ased significance test results for single feature information values
ncluding different bias corrections, and presenting comparisons

ith an analytic expression for the null hypothesis distribution as
ell as parametric fits of simple distributions to small bootstrap

amples. This lays the basis to understand how best to perform a
tatistical test of independence based on mutual information. We
hen investigate the extent to which dependencies between vari-
bles complicate the estimation of genuine tuning to each feature.
e construct statistical tests for inferring true selectivity in the

resence of multiple co-varying features. We  validate these meth-
ds by testing them on realistically simulated neuronal responses
o multiple correlated features, and finally we illustrate them by
nvestigating the extent to which the gamma  band limited power
BLP) of local field potentials (LFPs) recorded from the V1 area of
nesthetized macaques presented with naturalistic movies is gen-
inely tuned to one or more of several visual features characterizing
he movies. We  found that orientation, space contrast and time
ontrast are each genuinely encoded by the gamma BLP, in the
ense that tuning to each of these features cannot be accounted
or by tuning with respect to the other, correlated features. More-
ver, we found that correlation between these different stimulus
eatures across different frames in the movie increased the overall
mount of information that the gamma  BLP carried about the visual
timuli.

. Testing the significance of mutual information values

.1. Mutual information and limited sampling bias

Suppose that a sensory stimulus specified by multiple features
Please cite this article in press as: Ince RAA, et al. A novel test to determine t
correlated stimulus features. J Neurosci Methods (2011), doi:10.1016/j.jne

s presented to a subject while recording neural responses. One way
o quantify whether a neural response, R, is selective to a stimulus
, is to measure the information between the set of stimuli and the
et of associated neural responses (de Ruyter van Steveninck et al.,
 PRESS
ce Methods xxx (2011) xxx– xxx

1997; Fairhall et al., 2001; Panzeri et al., 2003), which is defined as
follows:

I(R; S) =
∑

s

P(s)
∑

r

P(r|s) log2
P(r|s)
P(r)

(1)

where P(s) is the probability of presentation of stimulus s, P(r|s)
is the probability of observing response r when stimulus s is pre-
sented, and P(r) is the probability of observing a response r across
all stimulus presentations. In the following we assume that the
values of both the neural response R and the stimuli S are dis-
crete, or alternatively are discretized into a finite number of bins
to facilitate the experimental sampling of probabilities. Informa-
tion is non-negative and quantifies the average reduction of the
uncertainty about the stimulus that can be gained from observing
a single-trial neural response. Here we measure it in units of bits,
one bit corresponding to a reduction of uncertainty by a factor of
two. If information is larger than zero, then in principle the stim-
ulus feature and neural response are not independent, indicating
that the response reflects the particular stimulus presented.

Direct evaluation of the information defined in Eq. (1) from the
experimental histograms of stimulus-response occurrences (usu-
ally called the “plugin” estimate, see Nemenman et al. (2004))
results in a systematic upward bias in the information estimate.
This occurs because of finite sampling; the variability of the dis-
tributions will be systematically under-estimated because of the
limited amount of data available. It can be shown that in suffi-
ciently well sampled situations (more precisely, in the so called
asymptotic regime in which each response is observed many times
during the experiment) the bias of the plug-in information esti-
mate can be approximated by the following expression (Panzeri
and Treves, 1996):

BIAS[I(R; S)] = 1
2N ln2

{∑
s

(R̂s − 1) − (R̂ − 1)

}
(2)

where N is the total number of trials, R̂s is the number of possi-
ble responses upon presentation of stimulus s and R̂ is the number
of possible responses across all stimulus presentations. The sum
in the right-hand side is over all stimuli presented. Eq. (2) is use-
ful to build an intuition about the bias problem. Assuming that
R̂s is approximately equal to R̂, and constant across stimuli, then
the bias (Eq. (2)) is proportional to (Ŝ − 1)(R̂ − 1)/N,  where Ŝ is the
number of possible stimuli. If we define Ns = (N/Ŝ) to be the aver-
age number of trials per stimulus then we can see the bias of the
information is proportional to ((R̂ − 1)/Ns) − ((R̂ − 1)/N)  and hence
approximately proportional to R̂/Ns. We therefore consider Ns/R̂ as
the key parameter, which affects the magnitude of the bias; if this
ratio is large, the bias will be small and vice versa.

There are several methods to estimate the bias (Montani et al.,
2007; Nemenman et al., 2004; Paninski, 2003; Panzeri et al., 2007).
For example, the bias can be estimated from Eq. (2) (and then sub-
tracted out). This requires estimating parameters such as R̂s, the
number of possible responses to stimulus s. This can be estimated
either from simply counting the number of observed responses
(irrespective of the probability of any particular response) (Miller,
1955). However, in cases of limited data this simple counting is
likely to underestimate the number of possible responses, since
possible responses with low probability may  not appear. To address
this issue a Bayesian counting procedure can be used (see Panzeri
and Treves (1996),  referred to in the following as the PT method).
Alternatively, the quadratic extrapolation (QE) procedure (Strong
he significance of neural selectivity to single and multiple potentially
umeth.2011.11.013

et al., 1998) calculates information from the full data set as well
as from subsets of the data consisting of N/2 and N/4 trials, and
then estimates the true asymptotic value of information by fit-
ting a quadratic curve to these data points. While these methods

dx.doi.org/10.1016/j.jneumeth.2011.11.013
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ave been shown to be greatly effective in reducing the systematic
rror due to limited sampling in information estimation (in par-
icular, they are very effective if Ns/R̂ is larger than 1, see Panzeri
t al. (2007) for a review), the effect of these bias corrections on
stimating the significance of information values has been largely
nexplored so far.

.2. The statistical significance of mutual information

To conclude that a neural response is selective for a specific fea-
ure it is not sufficient to measure that the information between
he two variables is larger than zero. To rule out the possibility that
his information value results only from fluctuations due to limited
ampling rather than from true dependency, one must also assess
he statistical significance of this measure.

The statistical significance of information values is traditionally
valuated through the method of surrogate data, which is referred
o here as the bootstrap method (Optican and Richmond, 1987).
he available stimuli and response data are shuffled to remove any
ependence between the variables. The distribution of informa-
ion values computed across different instantiations of the shuffled
ataset follows the distribution of the information value under
he null hypothesis that the variables are statistically independent,
ince any dependence has been removed by the shuffling proce-
ure. After selecting the required significance level (p-value), the
orresponding percentile of the bootstrapped null hypothesis dis-
ribution is calculated and the value obtained from the un-shuffled
ata is compared to this to determine statistical significance.

While the bootstrap procedure is straightforward to perform,
t is problematic when small p-values are required, since accurate
haracterization of the extremes of the null distribution requires
igh numbers of bootstrap repetitions. Besides being computation-
lly demanding, obtaining a high number of independent shuffled
ombinations of the same data set requires a very large amount of
ata, which can in some cases be difficult to collect. It is therefore

nteresting to consider whether parametric models can be fit to
maller bootstrap sample populations, without compromising the
tatistical power of the test. In fact, it is a long established, although
pparently little known result that for large numbers of samples the
istribution of plugin (not bias corrected) information estimates
nder the null hypothesis of independence, when multiplied by a
actor of 2Nln 2, follows a chi-square distribution (Fan et al., 2000;

ilks, 1938):

N ln2 · I(R; S)∼�2((R̂ − 1)(Ŝ −  1)) (3)

If the stimuli presented are drawn from a set containing Ŝ dif-
erent stimuli, and the response is represented with R̂ discrete
ymbols, then the degrees of freedom for this chi-square null distri-
ution are (R̂ − 1)(Ŝ − 1). Note the relationship with the first order
ias estimate in the previous section. The mean of this chi-square
istribution, when converted back into the information scale by
ividing by 2Nln 2, is precisely the first order estimate of the bias.

This null hypothesis distribution is the same as the asymp-
otic null distribution for Pearson’s chi-square test of independence
Kullback, 1968). In fact, the scaled mutual information value
escribed above is equal to the test statistic for a likelihood ratio
est of independence. The chi-square test statistic can be derived as

 quadratic approximation to this likelihood ratio test, by taking a
aylor series expansion (Kullback, 1968). However, with the avail-
bility of modern computing resources calculating logarithms is no
onger a substantial challenge and so there is less of an advantage to
sing the approximate quadratic form. An additional point of inter-
Please cite this article in press as: Ince RAA, et al. A novel test to determine t
correlated stimulus features. J Neurosci Methods (2011), doi:10.1016/j.jne

st is that the mutual information statistic is itself the dominant
erm in a full Bayesian test with uniform priors (Wolf, 1995).

However, not much is known yet about the extent to which the
ull hypothesis distribution can be approximated by parametric
 PRESS
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distributions in conditions of moderate sampling, and about the
effect of bias corrections upon the effectiveness of the bootstrap
test. These issues are of high practical importance. In the following
we investigate them by means of realistic numerical simulations of
neural responses.

2.3. Investigation of performance of information significance tests
using simulations

To investigate the statistics of information values and the effi-
ciency of tests of information significance, we conducted a series of
numerical experiments with models of simulated neural responses,
which are both realistic and relevant to the neurophysiological
analysis that we report in Section 5. In brief, the simulation is
constructed to match the first and second order statistics of the
gamma-range BLP of LFPs recorded in primary visual cortex (V1) in
response to variations of Michelson contrast during the presenta-
tion of a naturalistic movie.

Asymptotic theorems of spectral estimation predict that spec-
tral powers are approximately chi-square distributed (Percival and
Walden, 1993; Reich et al., 2000). Hence, the cube root of the BLP
is approximately Gaussian (Wilson and Hilferty, 1931), a property
that was confirmed empirically (not shown) for the data we  ana-
lyzed in Section 5 (see Magri et al. (2009) for an explicit test of
this assumption). Therefore, our model generated LFP responses
by assuming that their cubic root followed a Gaussian distribu-
tion with the same mean and variance as the cubic root of BLP
power from an example recording site (see Section 5.1)  in macaque
V1 in response to 8 quantized levels of the Michelson contrast in
the receptive field of the considered recording site during the pre-
sentation of a Hollywood movie. For computing information, the
simulated BLP gamma  responses were discretized into R = 4 equi-
populated bins (exactly as we do for real data in Section 5). We  refer
to the Appendix A for full details about the simulation.

Intuition suggests that how difficult it is to determine whether
an information value is significant depends both on the number
of trials available (the more data there are, the easier it is to sam-
ple the probabilities) and also on the amount of information in the
neural responses (the less information there is in the responses, the
more trials may  be needed to determining significance). To investi-
gate these effects, we  introduced a parameter  ̨ that modulated the
information in the simulated responses by transforming the mean
and standard deviation parameters as follows:

Pmodel
s = Pdata

s + (1 − ˛)(Pdata
s − Pdata

s ) (4)

where Pmodel
s is the stimulus conditional parameter (mean or

standard deviation) of the model for stimulus s, Pdata
s is the cor-

responding parameter measured from the data, Pdata
s is the average

of the parameter across stimuli and  ̨ controls the modulation of
the information in the simulated responses. If  ̨ = 1, the simulated
responses have the same properties (and information) as the mea-
sured data. Decreasing  ̨ decreases the information in the model
responses, until for  ̨ = 0 the model responses are not stimulus mod-
ulated any more, and hence they carry no information. We  show
results for  ̨ = 1 (full information),  ̨ = 0.5 and  ̨ = 0 (no information).

We  first investigated the statistical power of the bootstrap
test in detecting significant information in cases where the model
responses had true information about the simulated stimuli. We
used 100 random bootstraps to estimate the null hypothesis distri-
bution, which corresponds to relatively large sampling compared
to what can be done feasibly in analyses of real datasets, and thus
he significance of neural selectivity to single and multiple potentially
umeth.2011.11.013

represent a good benchmark. Fig. 1A shows how the percentage
of correct detections of significant information, across different
realizations of the simulation, depends on the number of trials
per stimulus. For  ̨ = 1 (information in simulation matching the

dx.doi.org/10.1016/j.jneumeth.2011.11.013
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Fig. 1. Determining the significance of mutual information. Model LFP gamma  BLP responses to eight different values of Michelson contrast were simulated (see text for
details). The number of trials generated per stimulus was varied; for each number of trials 100 realizations of the simulation were generated and the calculations were
performed on each realization. The x-axes show the Ns/R ratio, the critical parameter for information estimates (see text, here R = 4). Panel (A) shows the percentage of
realizations that were classed as significant using a variety of methods. Solid lines show the full information model (  ̨ = 1); dotted lines show the  ̨ = 0.5 model; dashed
lines  show the no information (  ̨ = 0) model. For the QE (red lines) and PT (green lines; partially obscured by overlapping blue curve) bias correction methods the corrected
information value was  compared to the bootstrap distribution of corrected values calculated from 100 shuffling repetitions. For the chi-square method (black lines) the
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nalytical null hypothesis distribution was used and no bootstrap shuffling was  perfo
f  the p-value from the Kolmogorov–Smirnov test of the goodness of fit of the 100 b
f  stimulus conditional response bins with less than 5 observations.

ne in real responses), the bootstrap method reliably detected sig-
ificance down to 32 trials per stimulus (which corresponds to
s/R = 8). This shows that detecting significance requires more trials

han would be normally required for bias free information estima-
ion (bias techniques are shown to be effective if Ns/R̂ is larger than
ne, see Panzeri et al. (2007)). When the information content was
educed (  ̨ = 0.5), more samples were required to reliably detect
ignificance. This matches the intuition that with enough trials an
rbitrarily small dependence could be reliably detected, while a
ery strong dependence could be detected with few samples.

The analysis of the model with no information (  ̨ = 0, Fig. 1A,
ashed lines) shows the false positive rate of the tests. We  found
hat for all methods this was stable and close to the specified sig-
ificance level (p = 0.05).

Across all information levels simulated, the use of bias correc-
ions was never helpful in the bootstrap calculation of significance:
t reduced (QE) or did not affect (PT) the statistical power of the test.
he reduction in statistical power is likely to occur because of the
ncreased variance of the bias corrected estimates; most methods
rade off reduced bias in the estimate for an increased variance of
Please cite this article in press as: Ince RAA, et al. A novel test to determine t
correlated stimulus features. J Neurosci Methods (2011), doi:10.1016/j.jne

he estimator. In the following, we will therefore concentrate on
sing uncorrected plugin estimators to determine significance.

We then examined the effectiveness of using the para-
etric analytical chi-square distribution of values under the
 Panel (B) shows the mean (errorbars show standard deviation) over 100 realizations
rap samples to the analytic chi-square distribution. Panel (C) shows the percentage

null hypothesis, rather than the empirical non-parametric boot-
strap distribution. Fig. 1B shows that the analytic chi-square
approximation, with degrees of freedom equal to (R̂ − 1)(Ŝ  − 1),
described the bootstrap distribution of information values well
(Kolmogorov–Smirnov (KS) test, p > 0.3) provided that there were
at least 32 trials per stimulus, i.e. Ns/R > 8. In this sampling regime,
since the chi-square distribution fits the bootstrap distribution
well, the chi-square can be used to both reduce computational time
and to compute significance for small p-values which could be dif-
ficult to test with the bootstrap method. We  verified that, in this
sampling regime, the analytic chi-square test was as good as the
bootstrap test in both determining true positives and avoiding false
negatives.

With fewer trials (Ns/R < 8) the analytical chi-square no longer
modeled the obtained bootstrap distributions accurately. In these
cases, the responses were under-sampled, with a large number
of bins having occupancy of less than 5 (Fig. 1C). These results
are in agreement with conventional statistical practice regarding
the application of chi-square tests (Cochran, 1954; Larntz, 1978),
which suggests using the chi-square approximation only when the
he significance of neural selectivity to single and multiple potentially
umeth.2011.11.013

number of expected observations under the null hypothesis of inde-
pendence for each possible stimulus conditional response is greater
than 1, and is greater than 5 for at least 80% of stimulus conditional
responses. In situations where this was not the case, the statistical

dx.doi.org/10.1016/j.jneumeth.2011.11.013
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Fig. 2. Parametric models of null hypothesis bootstrap distribution. Model LFP gamma  BLP responses to eight different values of Michelson contrast were simulated (see text
for  details). The number of trials generated per stimulus was  varied; for each number of trials 100 realizations of the simulation were generated and the calculations were
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erformed on each realization. The x-axes show the Ns/R ratio, the critical parameter
odel (  ̨ = 1), the  ̨ = 0.5 model and the no information (  ̨ = 0) model. For each rea

dotted  lines), 10 (dashed lines) or 20 (solid lines) shuffled bootstrap values, and th

est based on the chi-square distribution performed poorly, with a
arked increased false positive rate.
In many situations it is not possible to compute a large number

f bootstraps and so it is difficult to compute significance for small
-values. Besides using the analytic chi-square approximation,
nother possible way to compute small p-value significance under
uch circumstances is to fit parametric models to null hypothesis
istributions based on small numbers of bootstrap samples. These
mpirically determined parametric models can then be used to
valuate the significance of the observed information value. In Fig. 2
e tested the effectiveness of such procedures, by fitting either

hi-square or Gaussian distributions to distributions of informa-
ion values obtained from small numbers (5–20) of independent
ootstrap samples. Even in under-sampled situations where, as
iscussed above, the analytic chi-square approximation fails for
s/R < 23 (shown by increased false positive rate in Fig. 2C and
mall KS test p-values in Fig. 1B), good results were still obtained
ith these parametric fits. The chi-square fit performance was  very

lose to the full non-parametric bootstrap (95th percentile of 100
ootstrap samples), even when only 5 bootstrap samples were
sed. This provides a large computational saving. The Gaussian
odel also performed well, but 20 bootstrap trials were required to
aintain a close fit to the non-parametric bootstrap in the under-

ampled regime, and control of the false positive rate throughout
Please cite this article in press as: Ince RAA, et al. A novel test to determine t
correlated stimulus features. J Neurosci Methods (2011), doi:10.1016/j.jne

he sampling ranges considered. Although the degrees of freedom
re high, suggesting the chi-square is close to a Gaussian, when fit-
ing the Gaussian model two parameters must be estimated from
he data rather than just one for the chi-square distribution. This
formation estimates (see text, here R = 4). Results are shown for the full information
n a chi-square (green lines) or Gaussian (red lines) distribution was fit to either 5
ribution was used to estimate the significance of the measured information value.

could explain the increased performance of the simpler model for
low numbers of samples.

In summary, our analysis of the tests of independence gave a
number of practically useful results: (i) while accurate estimates of
information values require bias correction, when testing for signif-
icance of information, best results are obtained with uncorrected
plug-in estimates. (ii) The analytic chi-square null hypothesis dis-
tribution allows a very rapid and highly precise test even with small
p-values provided sampling is sufficient (Ns/R > 8 in our simula-
tion). The regime in which the analytic chi-square is accurate can
be determined in real data by using the KS test between empirical
bootstrap and analytic chi-square distributions for sub-samples of
different sizes. (iii) Even in sub-sampled situations where the ana-
lytic chi-square approximation is not accurate and it is not possible
to compute many bootstrap samples, it is still possible to obtain
good results by empirically fitting a chi-square distribution to a
small number of bootstrap samples.

2.4. The effect of number of bins used in the discretization of a
continuous signal upon the evaluation of significance of
information

An important step in the information analysis of discretized ana-
log signals, such as the LFP BLP response, is the binning of data
he significance of neural selectivity to single and multiple potentially
umeth.2011.11.013

into a number of categorical bins. Two issues regarding the bin-
ning procedure require further discussion. The first issue is the
binning algorithm to be chosen. Here, we set the boundaries of
the bins so that they are approximately equally occupied over all

dx.doi.org/10.1016/j.jneumeth.2011.11.013
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A

B

Fig. 3. Effect of number of bins on information estimation and statistical significance. Model LFP gamma BLP responses to eight different values of Michelson contrast were
simulated (see text for details). Panel (A) shows average information estimates over 100 realizations (errorbars show standard deviation) of the simulation with the same
number of trials as the experimental data (3460 trials per stimulus) as a function of number of bins used to discretize the responses. Information is estimated without
bias  correction (‘Plugin’, red line), with Panzeri–Treves bias correction (‘PT’, blue line) and with quadratic extrapolation (‘QE’, green line). Panel (B) shows the percentage
of  realizations found to be statistically significant (100 realizations, p = 0.05, bootstrap method), as a function of the number of trials per stimulus, for different numbers of
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esponse bins. The corresponding information values for each curve are indicated
umber of trials available in the experimental data set and used for the simulations

he available trials (the unconditional or marginal distributions are
pproximately uniform). This avoids sampling problems caused by
ins having very low probability of occupancy, for example if equal-
idth bins are used to represent a Gaussian signal, those sampling

he tails of the distribution have a very low probability of occur-
ence. This procedure makes the information essentially a reduced
ank statistic, since the relative position (rank) of a particular trial
etermines which bin it is in. An advantage of this procedure is
hat, like other rank statistics, it is non-parametric and robust to
utliers. The second issue to be considered is that, whatever the
inning method used, the number of bins used for discretization

s an important, yet partly arbitrary, parameter that may  greatly
ffect the information calculation.

The choice of the number of bins is a compromise between the
eed to use a fine enough discretization in order to capture all
ossible informative features in the data, and then need to use a dis-
retization coarse enough that the probability of each discretized
esponse can be sampled accurately with the available data. For any
iven dataset, selecting more bins means restricting the average
umber of trials per bin. In the following we use computer simu-

ation to illustrate how to empirically evaluate what is the optimal
rade-off between these two conflicting constraints in order to eval-
ate the significance of information values.

Fig. 3A shows how estimates of the mutual information depend
n the number of response bins chosen for the simulated data set
enerated with the model described in Section 2.3. In Fig. 3A the
imulated dataset had exactly the same number of trials as the
eal LFP data analyzed in Section 5 (3460 trials in each of the 8
timulus categories). We  studied the dependence of information
alues upon the number of bins using bias-corrected information
stimates, because the dependence of bias-uncorrected estimates
Please cite this article in press as: Ince RAA, et al. A novel test to determine t
correlated stimulus features. J Neurosci Methods (2011), doi:10.1016/j.jne

n the number of bins is masked by the linear increase of the bias
ith this parameter (see Eq. (2) and the bias-uncorrected informa-

ion curve in Fig. 3A). For very low numbers of bins, increasing the
umber of bins increases the information, because the more finely
rresponding colored marks in panel (A). The vertical red dotted line indicates the
nel (A).

discretized responses better capture the underlying continuous
distributions. However, bias-corrected information values plateau
over a large range of bin numbers, in which the information values
are stable and largely independent of the bias correction procedure
used. This means that, within the range of number of bins at which
information plateaus the sampling is sufficient to allow an accurate
estimation of the information, but increasing the number of bins
does not have an effect; there are already sufficient bins to capture
the relevant features of the distribution. For an accurate estimate
of the information value, any parameter within the plateau region
can be chosen. When estimating the significance of the informa-
tion, it is intuitive that using more bins reduces the available
samples per bin, and hence the statistical power of the test, but
there must be sufficient bins for information to be detectable.
Fig. 3B shows the percentage of realizations in which significance
was detected (p = 0.05, bootstrap method) for the simulated sys-
tem described above, as a function of the amount of generated
data. In this case, using just 2 bins provides the greatest statis-
tical power, since the information with two  bins is already large
enough and is a large fraction of the plateau value of information
(Fig. 3A).

These results suggest some practical considerations that may
guide the choice of the number of bins for significance testing.
Whenever possible, bias-corrected information estimates of how
information scales with the number of bins, or empirical obser-
vation about the shape and width of the distributions, should be
used to evaluate the range of number of bins that gives sufficiently
high information values. The smallest number of bins sufficient
to preserve a large fraction of the information should be used for
the information significance testing in order to maximize the sta-
tistical power of the significance tests. Whenever possible, it is
he significance of neural selectivity to single and multiple potentially
umeth.2011.11.013

also important to verify the stability of the results over a range
of bin numbers because in some cases using too few bins may lead
to very large losses of information with respect to their plateau
values.

dx.doi.org/10.1016/j.jneumeth.2011.11.013
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. The multiple feature tuning problem in the context of
nformation theory

If a set of stimuli are defined by multiple features, Fi, we  can
onsider the mutual information between the neural response and
ach individual feature:

(R; Fi) =
∑

fi

P(fi)
∑

r

P(r|fi) log2
P(r|fi)
P(r)

(5)

here fi represents values of the feature Fi and the probabilities
re as in Eq. (1).  However, if these features are not independently
istributed across different presentations of the stimuli, a positive
alue of information I(R;Fi) about feature Fi does not necessarily
mply that the neural response specifically encodes that feature.
he neural response may  not be selective to Fi, but instead be selec-
ive to another feature (say Fj), which is correlated with Fi. When
sing correlated stimuli, an important problem is how to distin-
uish the true selectivity to a feature from that acquired only from
ts relations to other features.

.1. Multiple feature tuning and information complementarity

Here we address the issue of determining genuine feature selec-
ivity in the presence of multiple correlated features by considering,
or simplicity, the case in which the stimulus is defined by two dif-
erent correlated features, F1 and F2. The amount of dependency
etween the two features is measured, in information theoretic
erms, by the information I(F1;F2) between them:

(F1; F2) =
∑
f1,f2

P(f1f2) log2
P(f1f2)

P(f1)P(f2)
(6)

here P(f1f2) is the joint probability of feature values f1 and f2 being
resented in the same stimulus. The two features are dependent if

(F1;F2) > 0. If the neural response is selective to both features (i.e.
(R;F1) > 0 and I(R;F2) > 0, with I(R;F1) > I(R;F2), how can we  make
ure that the given neural response truly encodes both features,
nd does not encode F2 only because it correlates with the truly
ncoded feature F1? One way to address this problem is to look
t the information the response conveys about F2 at fixed values
f F1. Since the value of F1 is fixed, any dependence between the
esponse and F2 represents genuine complementary information
hat cannot be explained by the dependency between the features.
his quantity is called the conditional mutual information (CMI)
nd is defined as:

(R; F2|F1) =
∑

f1

P(f1)
∑
f,r2

P(rf2|f1) log2
P(rf2|f1)

P(r|f1)P(f2|f1)
(7)

here P(rf2|f1) is the joint probability of observing response r and
eature f2 at fixed f1. In a situation where

(R; F2|F1) = 0 (8)

t can be proved (Cover and Thomas, 1991) that the following equa-
ion holds for all values of f2, f1 and r

(f1, f2, r) = P(f2)P(f1|f2)P(r|f1) (9)

This illustrates the fact that the variable F2 affects the neural
esponse only through its correlation with F1. If instead I(R;F2|F1) > 0
hen F2 still has an effect on the variable r at fixed F1 and so P(f1,f2,r)
Please cite this article in press as: Ince RAA, et al. A novel test to determine t
correlated stimulus features. J Neurosci Methods (2011), doi:10.1016/j.jne

annot be expressed by the product in the right-hand side of Eq. (9).
n summary, the feature F2 has a genuine effect upon the neural
esponse, beyond the indirect effect of correlations with F1, if and
nly if I(R;F2|F1) > 0.
 PRESS
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It is important to note that, by using the chain rule (Cover and
Thomas, 1991), the CMI  can be rewritten as:

I(R; F2|F1) = I(R; F2F1) − I(R; F1) (10)

where I(R;F1F2) is the information that the neural response carried
about the joint presence of F1 and F2, defined as follows:

I(R; F1F2) =
∑
f1f2

P(f1f2)
∑

r

P(r|f1f2) log2
P(r|f1f2)

P(r)
(11)

Therefore the condition I(R;F2|F1) > 0 is equivalent to the condi-
tion

I(R; F2F1) − I(R; F1) > 0 (12)

The requirement that the joint information be higher than the
information carried about the variable F1 implies that the neural
response carries “true” information about F2 above and beyond the
information that it carries about F1, or in other words, that the infor-
mation that the neural response carries about F2 is complementary
to that it carries about F1 (Panzeri et al., 2010). Alternatively, due
to the symmetry of information, the above condition means a bet-
ter prediction of the response could be made based on observation
of both features than could be made based on the observation of
F1 alone. It is intuitive that genuine coding of F2 requires that the
response carry information about F2 complementary to that which
it carries about F1. The above equations formalize this intuition.

This framework can in principle be extended to the case in which
the stimulus is defined by an arbitrary number n of features (F1,. . .,
Fn). The stimulus feature Fn is genuinely encoded by the neural
response if the information I(R ; Fn|F1 . . . Fn−1) between response
R and feature Fn, conditional to all other variables is significantly
positive: I(R ; Fn|F1 . . . Fn−1) > 0. However, while the extension to
multiple features is straightforward in principle, the formalism may
be difficult to apply to many features because of the difficulties in
evaluating multivariate response probabilities from finite amounts
of data (Panzeri et al., 2007).

3.2. Effect of correlation of features on establishing information
complementarity

We mentioned above that the problem of correlations between
stimulus features complicates the problem of determining which
stimulus features are genuinely encoded by the neural response.
In order to develop a method suited to tackle this problem on
experimental data, we  investigate theoretically how statistical
dependencies between features influence the amount of joint infor-
mation carried about the features. For simplicity we will limit our
discussion to a stimulus defined by only two  features, F1 and F2.

The relationship between the CMI, I(R;F2|F1), and the correlation
between variables I(F1;F2) can be defined as follows (Adelman et al.,
2003; Lüdtke et al., 2008; Schneidman et al., 2003):

I(R; F2|F1) = I(R; F2) + I(F1; F2|R) − I(F1; F2) (13)

where I(F1;F2) is the amount of correlation between variables with-
out regard to the neural response (see Eq. (6)), and I(F1;F2|R) is
the amount of correlation between the features at fixed neural
response, defined as follows:

I(F1; F2|R) =
∑

r

P(r)
∑
f1,f2

P(f1f2|r) log2
P(f1f2|r)

P(f1|r)P(f2|r)
(14)

Eq. (13) has several important implications. First, it shows that if
the features are independently distributed (i.e. I(F1;F2) = 0) then the
he significance of neural selectivity to single and multiple potentially
umeth.2011.11.013

condition I(R;F2) > 0 is sufficient to ensure that F2 carries informa-
tion complementary to that of F1. This is because the term −I(F1;F2)
is the only one in the right-hand side of Eq. (13), which can be neg-
ative. Moreover, and for the same reason, if the value of I(F1;F2) is

dx.doi.org/10.1016/j.jneumeth.2011.11.013
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uantitatively much smaller than that of the information carried
y the neural response about each of the considered features, it is
afe to conclude that the information about each feature is genuine.
his gives a useful rule of thumb for interpretation of the results.
econd, Eq. (13) shows that the presence of correlation between
eatures does not always tend to suppress the complementarity of
nformation between features. In fact it can be shown that the term
(F1 ; F2|R) − I(F1 ; F2), sometimes called the interaction information,
an be either positive or negative depending on whether correla-
ions between features across all scenes are weaker or stronger
han correlations between features at fixed neural response (Pola
t al., 2003; Schneidman et al., 2003). This interaction information
s equal to the synergy (Brenner et al., 2000b)  usually defined as

yn(F1, F2; R) = I(F1, F2; R) − I(F1; R) − I(F2; R) (15)

Together, using Eqs. (13) and (15) we see that

(R; F2|F1) = I(F2; R) + Syn(F1, F2; R) (16)

This shows that the absence of complementary information
I(R;F2|F1) = 0) implies the presence of redundancy (negative syn-
rgy) between F1 and F2. Similarly, if the features are coded
ynergistically, the complementary conditional mutual informa-
ion can be greater than the unconditional information conveyed
bout a single feature. In such cases, the coding of groups of features
ould be difficult to fully characterize with standard uncorrelated

timulus designs. These theoretical considerations reinforce the
mportance of such methods to enable quantitative investigation
f the coding of correlated features found in natural stimulation
onditions. Indeed, it has been proposed that responses to natural
timuli are optimized to cope with correlations in the environment
Barlow, 1989; Dan et al., 1996; Geisler, 2008; Olshausen and Field,
996); the methods discussed here allow quantitative investiga-
ions of these ideas.

. Testing the significance of complementary tuning to
ultiple features using conditional mutual information

We now consider the problem of how to extend the above tests
or significance of mutual information to evaluating the signifi-
ance of complementarity of tuning to multiple features using CMI.
his problem is difficult because the inclusion of multiple features
xponentially increases the size of the stimulus space, which corre-
pondingly reduces the number of trials available for each stimulus
ombination and compounds the sampling difficulties. The corre-
ations between the features can also cause difficulties because
hey tend to concentrate the joint distributions of the presented
ombinations of features, and the potentially uneven sampling
ntroduced by correlations among features must be correctly taken
nto account when designing the appropriate bootstrap shuffling
nd algorithms that evaluate significance of complementary infor-
ation values.

.1. The statistical significance of conditional mutual information

The conditional mutual information can be written as

(R; F2|F1) =
∑

f1

P(f1)I(R; F2|f1) (17)

here I(R;F2|f1) is the information between R and F2, conditioned
n a specific fixed value f1 of feature F1. By substituting in the above
quation P(f1) = Nf1 /N,  where Nf1 is the number of trials in which
Please cite this article in press as: Ince RAA, et al. A novel test to determine t
correlated stimulus features. J Neurosci Methods (2011), doi:10.1016/j.jne

eature F1 takes the value f1, one obtains

(R; F2|F1) = 1
2N ln(2)

∑
f1

2Nf1 ln(2)I(R; F2|f1) (18)
 PRESS
ce Methods xxx (2011) xxx– xxx

As discussed in Section 2, when using plugin uncorrected infor-
mation estimates, each element of the sum on the right-hand side
of Eq. (18) follows a chi-square distribution with (R̂ − 1)(F̂2 − 1)
degrees of freedom, under the null hypothesis that R and F2 are
independent at fixed values of F1. From the additivity property
of the chi-square distribution we  find (assuming the number of
observed responses R̂ and feature values F̂2 are the same at each
fixed f1, see below) that 2N ln(2)I(R ; F2|F1) is chi-square distributed
with F̂1(R̂ − 1)(F̂2 − 1) degrees of freedom.

It is also possible to evaluate the statistical significance of the
conditional mutual information using the bootstrap approach as
described in Section 2. However, care must be taken when imple-
menting the shuffling procedure to ensure it samples from the
required null hypothesis. Since the null hypothesis is that feature
F2 and response R are independent, at fixed values of F1, samples
should be drawn by shuffling the combination of F2 and R at fixed
F1. The simpler procedure of shuffling F2 values without consider-
ing the corresponding F1 value would indeed be incorrect (and we
verified that it is also less accurate, results not shown) because it
removes all the information in F2, and not only that additional to F1.

When the response features are highly correlated or when the
neural response is selective only to a specific combination of fea-
tures, then the number of relevant response bins for both features
may  be smaller than the product of the number of relevant bins for
each feature. The random permutation of F2 without considering
the value of F1 would then make the joint feature space at fixed
response larger than in the real data. As a consequence the null
hypothesis distribution will have a larger bias than the true one
(Panzeri et al., 2007), and also a larger variance. This would make
the evaluation of the required null hypothesis problematic. Indeed,
in such cases the above expression for the degrees of freedom of
the chi-square approximation should be modified. Instead of tak-
ing F̂1(R̂ − 1)(F̂2 − 1),  the values of (R̂ − 1)(F̂2 − 1) observed for each
value f1 should be summed to obtain the total degrees of freedom.

4.2. Numerical investigation of the performance of statistical
tests for information complementary

To investigate the statistical power of these tests, we  performed
simulations with a system similar to that described in Section 2,
but extended to include two correlated features. Again, the model
is based as closely as possible on the statistics of the experimental
data considered in Section 5, and it matches the first and second
order statistics of V1 gamma  BLP LFP responses to variations in
spatial contrast and temporal contrast during presentation of Hol-
lywood color movies. The correlations in the simulated features
also matched those observed in the movies used in the experiments.
As in Section 2, the simulated gamma  BLP response was  binned in
R = 4 equi-populated levels, and each simulated feature was binned
in to F̂i = 8 equi-populated classes (see Appendix A for full details).

It is intuitive that the sensitivity of any test for complementar-
ity of information must depend on the actual amount of additional
genuine complementary information of the second feature (the
larger it is it, the easier it is to detect). Thus in our simulation the
response dependence on F1 (Michelson contrast) was fixed in all
simulations, but we considered two  different cases with regard to
the second correlated feature F2 (temporal contrast): in the first
simulation it carried an amount of additional information to F1,
and in a second simulation it did not carry any additional informa-
tion, although it was  informative per se due to its correlation to F1
(see Appendix A).

We tested this bootstrap procedure in Fig. 4. We  applied
he significance of neural selectivity to single and multiple potentially
umeth.2011.11.013

this procedure to uncorrected plugin estimates of information
because, for the reasons explained in Section 2, these uncorrected
information estimates are better at determining significance.
Fig. 4A shows how the percentage of simulation realizations where

dx.doi.org/10.1016/j.jneumeth.2011.11.013
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Fig. 4. Determining the significance of conditional mutual information. Model gamma  responses to eight different values of Michelson contrast and eight different values of
temporal contrast were simulated (see text for details). The number of trials generated per stimulus was varied; for each number of trials 500 realizations of the simulation
were  generated and the calculations performed on each realization. The x-axes show the Ns/R ratio where Ns is the average number of trials for each possible stimulus feature
pair  (R = 4). Panel (A) shows the percentage of realizations where the CMI between response and temporal contrast given Michelson contrast was found to be significant using
t s. Dot
s st. Pa
o ootst

t
p
i
p
t
m
f

s
F
t
i
m
(
c
s
h
c
c
u
v
t
a
u

n

he  uncorrected bootstrap (red lines) and analytic chi-square (black lines) method
olid  lines show the model with no independent representation of temporal contra
f  the p-value from the Kolmogorov–Smirnov test of the goodness of fit of the 100 b

he CMI  was correctly found to be significant (i.e. percentage of true
ositives) depended upon the Ns/R ratio. Note that in this case Ns

s the average number of trials for each possible stimulus feature
air, and R is the number of responses. The bootstrap test was  able
o reliably detect the presence of significant complementary infor-

ation for systems with Ns/R > 4 (16 trials for each pair of stimulus
eature values, 128 trials per F1 stimulus feature value).

Again, the chi-square approximation was accurate provided the
ampling was sufficient. For the single feature system shown in
ig. 1, the chi-square approximation started to fail at Ns/R = 23. For
his conditional system Ns/R = 25 is required. This is shown by the
ncreased false positive rate for the analytic chi-square approxi-

ation when no genuine complementary information is present
Fig. 4A), and by the low p-values for the KS-test between the
hi-square approximation and the bootstrap distribution for both
imulated systems (Fig. 4B). The fact that more trials are required
ere for the analytic chi-square to hold is likely due to the strong
orrelations between features changing the statistics of the F1-
onditional distributions; the f2 values at fixed f1 are not necessarily
niformly distributed as they were in the single feature model. We
erified this fact by demonstrating that in simulations in which
he correlation between F1 and F2 was set to zero, the chi-square
Please cite this article in press as: Ince RAA, et al. A novel test to determine t
correlated stimulus features. J Neurosci Methods (2011), doi:10.1016/j.jne

pproximation was effective even with Ns/R = 23, as in the individ-
al feature case (results not shown).

In summary, our analysis of the effectiveness of tests of sig-
ificance of complementarity of information revealed that: (i) a
ted lines show the model with independent representation of temporal contrast;
nel (B) shows the mean (errorbars show standard deviation) over 100 realizations
rap samples to the analytic chi-square distribution.

bootstrap test based upon computing uncorrected plugin informa-
tion estimates after shuffling a features conditional to the value of
other(s) is extremely effective at detecting significance with small
amounts of both false positives and negatives (ii) The bootstrap test
can be replaced by an analytical chi-square test provided sampling
is sufficient (Ns/R > 32 in our simulation). The regime in which the
analytic chi-square is accurate can be determined in real data by
using the KS test between empirical bootstrap and analytic chi-
square distributions for sub-samples of different sizes.

5. Application of the formalism to the encoding of visual
features by gamma  BLP in V1

To illustrate the feasibility of the aforementioned formalism on
neurophysiological data, we used it to analyze LFPs recorded in V1
in response to repeated binocular presentation of a color movie.
This is a useful application of our tests for at least two  reasons.

The first reason is that the precise origin, meaning and stimulus
tuning of local field potentials is not yet fully known and is the
subject of continuing studies (Belitski et al., 2008; Berens et al.,
he significance of neural selectivity to single and multiple potentially
umeth.2011.11.013

2008; Jia et al., 2011; Katzner et al., 2009; Kayser and Konig, 2004;
Mazzoni et al., 2008). Because of this, there is a pressing need for
tools, which are able to correctly identify and quantify the tuning
of these signals to complex stimuli.

dx.doi.org/10.1016/j.jneumeth.2011.11.013
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The second reason is that these data collect responses to com-
lex naturalistic stimuli, which contain many visual features that
o-vary over time (Simoncelli, 2003); for instance moving objects
ay  enter or leave the RF or be occluded by other fast moving

bjects, or local illumination may  change dynamically, both caus-
ng a large number of features to change in a correlated fashion
Bartels et al., 2008). Evidently such correlated changes may  pose
roblems to studies examining the selectivity of neuronal popula-
ions to individual features of complex visual images. During the
resentation of simplified, artificial visual stimuli, the problem can
e readily solved by varying different visual attributes in an uncor-
elated manner (Brenner et al., 2000a; de Ruyter van Steveninck and
ialek, 1988; Petersen et al., 2008; Rust et al., 2005; Touryan et al.,
005; Yamada and Lewis, 1999). In such designs, demonstration
f neuronal feature-selectivity simply follows the selective stim-
lus parameterization. Yet, such an uncorrelated stimulus design
annot be applied when using naturalistic stimuli such as movies
r sounds capturing the complexity and characteristics of a natu-
al environment. Analysing neural responses to naturalistic stimuli
s important for at least two reasons. First, naturalistic stimuli are
ikely to engage complex patterns of activity in cortical microcir-
uits that may  not be elicited in the presence of simple stimuli
ptimized for the study of basic properties of single neurons (Felsen
nd Dan, 2005; Reinagel, 2001). Second, naturalistic visual stim-
li have been shown to evoke more reliable responses (Hasson
t al., 2009), and more specific inter-regional correlations (Bartels
nd Zeki, 2005), suggesting that coding in the visual system may
e optimized for processing naturalistic stimuli (Dan et al., 1996).
ere we probe the ability of our methods to quantify the statistical

ignificance of information carried by LFPs about a given visual fea-
ure above and beyond that carried by other, potentially co-varying
isual features.

.1. Experimental procedures

Before proceeding with the analysis, we briefly summarize the
xperimental procedures used to record neural responses to nat-
ralistic color movies in V1. A detailed description can be found

n previous studies (Belitski et al., 2008, 2010; Montemurro et al.,
008). All procedures were approved by the local authorities
Regierungspräsidium) and were in full compliance with the guide-
ines of the European Community (EUVD 86/609/EEC) for the care
nd use of laboratory animals. We  recorded neural activity with
n array of extracellular electrodes from the opercular (foval and
ara-foveal field-representations) portion of V1, of anesthetized
acaques presented with commercially available color movie clips

onsisting of scenes from The Last Samurai (2003, Warner Bros.
ictures) and Star Wars: Episode I – The Phantom Menace (1999,
ucasfilm). We  analyzed a total of 55 recording sites from 3 different
onkeys. Movie clips lasted 150–210 s and were presented binoc-

larly at a resolution of 640 × 480 pixels (field of view: 30◦ × 23◦,
4 bit true color, 60 Hz refresh) using a fiber-optic system (Avotec,
ilent Vision, Florida). Each movie was presented 35–50 times per
ession in order to adequately sample the probability distribution
f the neural responses to each part of the movie.

The extracellular field potential was filtered to extract Multi
nit Activity (MUA) and local field potentials using standard signal
onditioning techniques as described in detail elsewhere (Belitski
t al., 2008). The MUA  was used only to determine the receptive
elds, as described below. The gamma  band (30–100 Hz) of the LFPs
as extracted by means of zero-phase shift, bidirectional filters

Kaiser filter with a transition band of 1 Hz, stop-band attenuation
Please cite this article in press as: Ince RAA, et al. A novel test to determine t
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f 60 dB, and pass-band ripple of 0.01 dB). The instantaneous power
f this band-limited signal, shortened in the following as gamma
and limited power, was computed as the squared modulus of the
iscrete-time analytic signal obtained via the Hilbert transform.
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We focus here on the gamma  BLP as a neural response since it has
been previously shown to be informative about naturalistic movie
stimulation (Belitski et al., 2008) and is known to be modulated by
visual features such as spatial contrast (Henrie and Shapley, 2005)
and orientation (Kayser and Konig, 2004).

5.2. Extraction of visual features

We  first estimated the aggregate receptive field (RF) of each
recording site by using the reverse correlation technique (Ringach
and Shapley, 2004), which measures the sensitivity of the MUA
response to the time contrast of each pixel of the screen. When
using reverse correlation with spatially correlated stimuli (such as
the natural movies used here) the obtained RF is likely biased by
the stimulus correlation and is therefore likely to be larger than the
true RF (Theunissen et al., 2001; Touryan et al., 2005). For this rea-
son, the RF chosen for the feature extraction analysis was fixed as a
1◦ × 1◦ region around the peak of the neural sensitivity, even when
the result of reverse correlation resulted in a larger map. This size
of RF was chosen because it is typical of multiple unit V1 recep-
tive fields (Sceniak et al., 1999). An example of such RF estimation
is reported in Fig. 5A. Reverse correlation was used here to obtain
an estimate of the location of the RF area and not to estimate its
size. To verify that the precise size set for the RF was not criti-
cal for the information results, we  repeated the analysis selecting
RFs sizes of 0.5◦ × 0.5◦ and 1.5◦ × 1.5◦. We  found that the features
extracted from RFs of these larger or smaller sizes were essentially
identical to those obtained with the 1◦ × 1◦ RF (correlation between
the time courses of features extracted with different RF sizes was
>0.95 for all electrodes and recording sessions, and information val-
ues were not significantly different, p > 0.5). As an additional check
that the location of the RF was correctly determined, we compared
the RF positions obtained by reverse correlation with those manu-
ally mapped by the experimenter with small polar stimuli during
the experimental session, and we  found excellent agreement (not
shown) for all sites.

We  subsequently computed three different types of image
features within each RF: spatial contrast (Michelson contrast,
calculated as the difference between the maximal and minimal
luminance divided by the average between maximal and mini-
mal  luminance), orientation (computed as the direction of gradient
of contrast (Kayser et al., 2003)), and a measure of time contrast,
defined as the total amount of pixel-wise luminance change from
frame to frame, that is, the absolute value of the luminance differ-
ence between two successive frames, calculated for every pixel and
then averaged over the RF (Bartels et al., 2008).

5.3. Calculation of information conveyed about different features

For each recording site, we  computed the information carried
by the gamma  BLP about the current value of the movie features
in the corresponding RF. For this calculation, the stimulus set was
created as follows (see also Reich et al. (2000)). We  first divided
the movie presentation into non-overlapping adjacent windows
each 10 frames long. This window length was chosen because it
matched the timescale of the feature autocorrelations. We  aver-
aged the value of each feature over the 10 frames in each stimulus
window. Unless otherwise stated, we discretized the resulting fea-
ture values across all windows into 8 equally populated classes,
and each class was  considered as a different “stimulus” value for
the information calculation. Gamma  BLP values were averaged over
the same intervals and subsequently discretized into R = 4 equally
he significance of neural selectivity to single and multiple potentially
umeth.2011.11.013

populated bins. We  chose these parameters because they allow
accurate sampling given the amount of data available. We chose
R = 4 based on the considerations in Section 2.4,  which suggest cau-
tious choices of the number of bins, especially considering that the

dx.doi.org/10.1016/j.jneumeth.2011.11.013
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Fig. 5. Example of movie features and neural activity. (A) For each recording site, the receptive field was  determined as the 1◦ square area in the screen where the covariance
between the multi-unit activity recorded in the site and the time contrast was highest. The local field potential (LFP) recorded in the site was then studied as a function of the
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isual  features of the movie computed within the associated receptive field. (B) Com
ite  (from session D04nm1) with the movie features computed in the associated re
he  orientation, time contrast.

ampling demands of conditional mutual information are greater
han for the single feature information considered there. We  chose

 larger number of bins for the stimulus features, since our aim was
o characterize the role of correlations between them in evaluating
uning of neurons to multiple features.

We  computed different sets of information measurements. For
ach information value, we first computed the significance of the
ncorrected plug-in information estimate with the analytic chi-
quare approximation described in Section 2.2 for the absolute
nformation and in Section 4.1 for the conditional information. For
his analysis we had 20,000–30,000 trials available (25,500 ± 3100,

ean ± std). This corresponds to Ns/R ∼ 800 for the estimation of
nformation about an individual feature, and Ns/R ∼ 100 for the esti-

ation of CMI. These numbers are well inside the regimes where
he chi-square approximations perform well (Sections 2 and 4).

e then computed an estimate of the information, using Eq. (5)
or the information between gamma  BLP and features, Eq. (6) for
he information between features, and Eq. (7) for the conditional
nformation, correcting for the bias with the PT correction method
Panzeri and Treves, 1996) described by Eq. (2).  All information

easures on experimental data were computed using the Infor-
ation Breakdown Toolbox2 (Magri et al., 2009).

.4. Results: complementarity coding of orientation, spatial
ontrast and time contrast by the LFP gamma power

The time course of three extracted movie features (spatial con-
rast, time contrast and orientation) in the RF (Fig. 5A) on an
xample recording site is shown in Fig. 5B, together with the asso-
Please cite this article in press as: Ince RAA, et al. A novel test to determine t
correlated stimulus features. J Neurosci Methods (2011), doi:10.1016/j.jne

iated gamma  band of the LFP recorded from that site. From this
xample, it is apparent that the gamma  BLP is tuned, to different
xtents, to these three features. This is consistent with previous

2 http://www.ibtb.org.
n of the gamma  activity recorded during a single trial in a representative recording
e field. From top to bottom: LFP gamma band (30–100 Hz), spatial contrast, sine of

reports about gamma-band selectivity obtained with simple stim-
uli (Frien et al., 2000; Henrie and Shapley, 2005).

To quantify these dependencies, we computed the mutual infor-
mation between the gamma  BLP and the different features and we
tested the significance of tuning of each of the 55 LFP recording
sites. To this end, we used the analytical chi-square information test
on the bias uncorrected plugin estimates (because this is the most
sensitive test under the sampling conditions analyzed). We  found
that all recording sites carried significant information at p < 0.001
confidence level for all three features (Fig. 6A). While responses
were significantly modulated by all stimulus features considered,
we found that the population average (computed with PT bias
correction) of the information about spatial or temporal contrast
was much higher than the information about orientation (Fig. 6B),
showing that orientation caused weaker (although still highly sig-
nificant) response modulation than the other features.

We evaluated the robustness of the significance test by using
only a subset of the movie presentations (and henceforth of the
trials), similarly to what was  done in Fig. 1A. We  found (Fig. 6C)
that for the most informative features (spatial and temporal con-
trast) significant response modulation was detected in almost all
recording sites (>95%) even when only 6 movie presentations were
considered (of the 35–50 available), and using only two  movie pre-
sentations was  sufficient to detect significant information about
these two contrast features in more than 50% of recording sites.
For the orientation feature, more data was required to find depen-
dence in a sizable fraction of recording sites because of the smaller
information. However, even with only two movie presentations,
more than 30% of recording sites were found to be significantly
modulated by all three features.

As described in Section 3, to understand whether the gamma
BLP was truly tuned to all three stimulus features and was not car-
he significance of neural selectivity to single and multiple potentially
umeth.2011.11.013

rying information about some of them only because of correlation
to another truly encoded feature, we  had to characterize whether
or not the different features in the RF vary independently during
the movie time course. We found that the visual features did not

dx.doi.org/10.1016/j.jneumeth.2011.11.013
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Fig. 6. Information carried by gamma  band limited power (BLP) about spatial contrast, orientation and time contrast. (A) Information about the value of the different features
carried by gamma  BLP for each recording site, computed with 4 classes for gamma  BLP, 8 classes for features and no bias correction. Significance was computed with the
chi-square approximation, p < 0.001. Since the number of classes for gamma BLP and features are fixed, the analytic chi-square significance threshold (in bits) depends only
on  N, the number of trials available (Section 2.2). Data points are organized into vertical lines since different numbers of trials were produced by different experimental
protocols (depending on the duration and number of presentations of the movie); experiments with the same N form each vertical line. Threshold p = 0.001 is indicated
by  dashed line. Numbers in legends indicate the fraction of recordings for which the gamma  BLP conveyed significant information. (B) Information about the value of the
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ary independently from one another in the movie section used
ere: the percentage of recording site RFs with significant infor-
ation between features at p < 0.001 confidence level was  71%, 62%

nd 73% for spatial contrast with orientation, temporal with spatial
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ig. 7. Mutual information between visual features. (A) Information between features c
lasses. Significance of information is computed with the chi-square approximation, p < 0.
raction of recordings for which the mutual information between the features was signifi
ith  same parameters of (A), and PT bias correction. Black line indicates mean of significa
esults  show that the considered visual features of the movie section used here are signi
 indicates mean value of significance threshold (p = 0.95 of average bootstrap over
nt information (chi-square information test; p < 0.001) as a function of the number
he significance of neural selectivity to single and multiple potentially
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contrast and orientation with temporal contrast respectively
(Fig. 7A). Furthermore, the bias corrected population average val-
ues of information (Fig. 7B) were higher than those between
features and neural response. This, as explained in previous
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ficantly correlated.
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Fig. 8. Conditional information carried by gamma  BLP about visual features. (A) Information carried at each recording site by gamma BLP about the value of each feature
conditioned on each of the other features, computed with no bias correction. Significance (p < 0.001) is assessed with the chi-square approximation, with threshold value
of  p = 0.001 indicated by black dashed line. Numbers in legend report the percentage of recordings for which the gamma BLP conveyed significant CMI. (B) Information
carried by gamma BLP about the value of each feature conditioned on each of the other features (mean ± SEM, n = 55). Information is computed with PT bias correction. Black
line  indicates mean of significance threshold (p = 0.95 of average bootstrap, 400 permutations). (C) Distribution of bootstrap values of uncorrected CMI  for different pairs of
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eatures (colored lines, 400 random permutations) compared with the correspondi
ver  all recordings from session H06nm6.

ections, implied that the single-feature information analysis was
ot enough to establish if all three considered features were truly
ncoded by the gamma  BLP.

To shed light on this issue, we computed, for each pair of
eatures, the conditional information I(�BLP ; F2|F1) carried by
he gamma BLP about feature F2 given the value of feature F1.

e estimated the significance of this value using the chi-square
pproximation for the CMI  described in Section 4. We found
hat for every pair of features F1 and F2 the CMI  was signifi-
ant at the p < 0.001 level for all recording sites (Fig. 8A). We
hen computed population averages of PT bias corrected CMI val-
es for each pair of features (Fig. 8B). Again, orientation (Fig. 8B,
iddle row) had weaker conditional modulation than the other

eatures, although it remained statistically significant when con-
itioned on either remaining feature. Interestingly, the values
f conditional information were higher in all cases than the
orresponding unconditioned single-feature information values,
ndicating that correlations between features in the natural movie
ctually increased (rather than decreased) the joint information
hat the gamma BLP carried about these multiple features.
Please cite this article in press as: Ince RAA, et al. A novel test to determine t
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The origin of this effect was further investigated by computing
(F1 ; F2|�BLP = 1, 2, 3, 4), i.e. by analysing how the mutual informa-
ion between the feature pairs was related to the different levels of
FP gamma  band power. Fig. 9 shows that the mutual information
-square distribution, for different numbers of feature classes. Results are averaged

between feature pairs at fixed response was significant for all lev-
els of gamma  BLP (chi-square approximation test on uncorrected
information; p < 0.001), and was also significantly varying among
different levels of gamma  BLP (ANOVA test; p < 0.001). The fact that
the degree of dependence between features differs across sections
of stimuli that evoke different responses explains why correlations
between features increase information. In this case, the degree of
dependence between features can be used to predict the neural
response and so it increases the overall information between fea-
tures and responses (see Panzeri et al. (1999) or Pola et al. (2003)
for a proof). Moreover, the average over all four levels of gamma
BLP of I(F1 ; F2|�BLP = 1, 2, 3, 4) was higher overall than I(F1;F2) for
all feature pairs, the average gain being +26%, +26% and +22% for
I(SC;O), I(O;TC) and I(SC;TC) respectively. In this case, according
to Eq. (13) statistical dependencies among features must increase
information.

We then evaluated if a given feature carried information that
was complementary to that carried by both other features, by cal-
culating I(�BLP ; F2|F1, F3) using 4 classes for the features. We  found
that this was also significant (chi-square approximation, p < 0.001)
he significance of neural selectivity to single and multiple potentially
umeth.2011.11.013

for all permutations of features. The results of the above compu-
tations show that the gamma  BLP conveyed genuine information
about each single feature, even though they were strongly corre-
lated.

dx.doi.org/10.1016/j.jneumeth.2011.11.013
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indows with PT bias correction and 8 feature classes. Asterisks indicate that the m
n  uncorrected information, p < 0.001). ANOVA test (p < 0.001) shows that the infor

We  performed all the significance tests using the analytic
hi-square approximation on the uncorrected plugin information
alues because they allow fast computation of highly significant p-
alues, and because the considerations of Section 3 predicted this
est to be highly effective under the sampling conditions described
ere. To illustrate the accuracy of the chi-square approximation, we
ompared the distribution of the bootstrap values (over 400 per-
utations) of the uncorrected plugin information estimates with

he analytical chi-square distribution with the degrees of freedom
redicted by the equations in Section 4.1.  As shown in Fig. 8C for

 representative session, with this dataset there was  an excellent
greement between the bootstrap and the chi-square distribution.
n particular, when changing the number of bins in to which the
eatures were discretized, the bootstrap distribution followed the
hange in the number of degrees of freedom of the chi-square dis-
ribution predicted in Section 3: when the features were binned
ith 4, 8 and 12 classes the average p-values of the KS test were

.49 ± 0.025, 0.36 ± 0.025, 0.34 ± 0.015 respectively (mean ± SEM
ver all recording sites). These results both highlight the value of
he analytical approximations reported in our study and demon-
trate that the chi-square could be correctly used in this dataset to
ccurately compute significance values down to small p-values.

. Discussion

We have considered the application of mutual information as
 statistical test to establish dependency between stimulus fea-
ures and neuronal response variables. While accurate bias free
nformation values are crucial to enable meaningful quantitative
omparisons, in many applications it is sufficient to establish the
resence of a statistically significant dependence. We  have shown
hat for determining significance with the bootstrap method,
ncorrected plugin information estimates should be used, and that

f sufficient data are available, the bootstrap procedure can be
ypassed completely and significance determined through an ana-

ytical form for the distribution of values under the null hypothesis.
his allows accurate calculation of p-values and significance with
reatly reduced computational requirements.

This finding, particularly the accuracy of the analytic chi-square
pproximation, has implications for analysis of other neurological
ignals, for example functional magnetic resonance imaging (fMRI)
ata. An approach often taken with such data is a mass-univariate
nalysis to determine dependencies between various stimulation
Please cite this article in press as: Ince RAA, et al. A novel test to determine t
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onditions and the time course of the blood oxygen level depen-
ent (BOLD) signal at each voxel. The ability to directly calculate

 significance p-value for any dependence cheaply using the chi-
quare approximation suggests that the methods discussed here
st and time contrast. Information is computed for values averaged over 10 frame
information is significant for each level of response (chi-square approximation test
n between feature pairs changes significantly for different levels of the response.

could be easily applied to such data, even when they consist of tens
or even hundreds of thousands of voxels. The advantages of such
an approach is that they are completely non-parametric and do not
require any convolution of the stimulus time course with a hemo-
dynamic response function (HRF). This means they can be applied to
situations where the HRF is not well characterized or is not guar-
anteed to be universal across conditions and areas. This may for
instance be the case when investigating the relationship between
the fMRI BOLD response and the power of EEG or LFP responses
in different frequency bands, or when collecting fMRI responses to
complicated dynamic time varying stimuli with multiple correlated
features such as the movie stimuli considered here. Additionally,
the general and non-linear nature of mutual information allows it
to capture any type of dependency, in contrast to conventional lin-
ear analysis. Similar considerations can be applied to the problem of
estimating significance of activation in other types of neuroimaging
signals, such as the sources reconstructed from EEG or MEG  data
(Gross et al., 2001).

While we have shown that the use of bias corrections has no
beneficial effect on establishing the presence of a statistically sig-
nificant stimulus response modulation, once that significance has
been determined, bias corrected values are of course crucial to
obtain an accurate quantification of the strength of the modulation.
The bias corrected values allow direct quantitative comparisons
of the amounts of the information carried by different systems or
experiments with different numbers of trials, and of the amounts
of information carried by neural codes characterized by a differ-
ent response dimensionality (such as for example, spike times and
spike counts). Our findings suggest that it may  be worth imple-
menting a hybrid approach, where uncorrected information values
are used (according to the procedures described here) to determine
the statistical significance of any dependence effect, while bias cor-
rected values are computed to produce an accurate estimate of
the effect size. In practice, since most bias correction techniques
involve calculation of the uncorrected values this approach car-
ries little computational overhead. However, care must be taken to
avoid statistical errors due to ‘non-independent’ analysis (Vul et al.,
2009), which arise when reporting mean values where the mean is
calculated only from samples exceeding some threshold. For this
reason, in the analysis of real data presented here we reported
bias corrected mean information values over the whole population
rather than the information values averaged over the subpopula-
tion with significant information. The accurate determination of
he significance of neural selectivity to single and multiple potentially
umeth.2011.11.013

the statistical significance can of course be used as a selection tool
for other types of independent analysis, for example calculation of
receptive fields of significantly tuned neurons.

dx.doi.org/10.1016/j.jneumeth.2011.11.013
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Michelson contrast and modulates the response most strongly;
when contrasts in this group are presented a lower response is
more likely to be observed. Category 6, the second highest cate-
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We  considered the problem of characterizing the neural encod-
ng of features of naturalistic stimuli given their unavoidable (and
atural) covariance. We  tackled this problem in the context of

nformation theory, and we proposed a set of quantities and sta-
istical tests to address this issue. We  illustrated the feasibility of
he method with simulations and analysis of real neural responses
o natural stimuli, and found that our method was successful in
stablishing (despite the presence of strong correlations between
eatures) that gamma  power is genuinely tuned to all features
nspected, i.e. space and time contrast as well as orientation. A
umber of previous studies have shown that the gamma  BLP in V1

s sensitive to both contrast and orientation separately (Friedman-
ill et al., 2000; Frien et al., 2000; Henrie and Shapley, 2005; Kayser
nd Konig, 2004), but to our knowledge this is the first study investi-
ating the effect of correlated features on the gamma BLP response.
s discussed above, since visual features can be strongly corre-

ated in naturalistic stimuli as shown in Fig. 7 and discussed in
imoncelli (2003) it was  necessary to verify that the gamma  power
as conveying complementary information about each feature in

 naturalistic environment. In particular in our movie clips the
trength of the orientation inside each receptive field was much
ower than in experiments utilizing gratings or bars, and the ori-
ntation was highly correlated to the other features. However, the
amma  BLP was found to be genuinely modulated by variations in
he image orientation, even when the correlated spatial and tem-
oral contrast features were fixed. In fact, we have shown that
he CMI  is in all cases higher than the individual feature informa-
ion, suggesting that the features are coded in a highly synergistic
ashion. More detailed investigation of how this synergistic coding
akes place, and the effect of different levels of stimulus feature
orrelations is an important topic for future research.

We applied our method to the determination of the genuine tun-
ng of neural responses to multiple stimulus features. However, it
s important to note that, due to the symmetry of mutual informa-
ion, the same approach developed here can be readily applied to
he problem (currently intensively investigated, see Panzeri et al.
2010) and Schyns et al. (2011))  of determining if a given neural
ode (e.g. the neural response in a given frequency band) car-
ies information about stimuli which is truly complementary to
hat carried by another type of simultaneously observed neural
esponse (e.g. the power in another band).

The major limitation of the present approach arises from the fact
hat information theory is substantially more data intensive than
ther analysis methods, because it requires the estimation of the
ull stimulus-response probability distribution (Brown et al., 2004).
t is thus difficult to apply this approach to very large number of fea-
ures. In such cases, the information theoretic approach is feasible
nly if stimulus-response relationships can be well approximated
y a simple parametric model (e.g. by assuming Gaussian stimulus
onditional response distributions, which have been shown to be

 useful model for LFP power responses, see Magri et al. (2009)),
o that many features could be considered with the amount of
ata typically recorded from a neurophysiological experiment. If
o model of stimulus-response probabilities is available, then other
pproaches should be considered, such as those based on linear
r nonlinear spatio-temporal receptive field (STRF) estimation and
oosting algorithms seeking to reduce the impact of correlation
y sparsification of stimulus response characteristics (Theunissen
t al., 2001, 2000; Willmore et al., 2010)

An advantage of the method considered here stems from the fact
hat mutual information, unlike other forms of single trial analy-
is such as stimulus decoding techniques, captures the effect of all
Please cite this article in press as: Ince RAA, et al. A novel test to determine t
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ossible relationships between stimuli and neural responses and
uantifies the overall knowledge about the stimulus gained with
he considered single-trial neuronal responses. For example, eval-
ating single-trial stimulus selectivity by simply decoding the most
 PRESS
ce Methods xxx (2011) xxx– xxx 15

likely stimulus that elicited the neural response in each trial may
neglect some type of information carried by the neural response,
such as the information that the neuron provides about the identity
of other stimuli that are very unlikely given the observed neu-
ral response. Alternatively, evaluating stimulus selectivity with a
linear decoder may  fail to capture the knowledge gained by nonlin-
ear stimulus-response interactions. Since the mutual information
quantifies the effect of all possible relationships between feature
and response, demonstrating that a neuron carries significant extra
mutual information about a second feature means that the neuronal
response has selectivity for the second feature that cannot possi-
bly be explained from selectivity to the first feature. A similarly
strong conclusion could not be reached, for example, by showing
that a linear regression based on two stimulus features explains the
neural response better than either feature alone. In such case it is
still possible that the predictability of the neural response gained
by adding the second feature reflects some response predictability
explainable by a nonlinear relationship between the response and
the first feature, which could not be captured by the linear model.
For these reasons, the information theoretical approach discussed
here does allow strong conclusions when it is applicable.
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Appendix A.

This Appendix A describes the simulated processes used in
Figs. 1–4.  All information measures on simulated data were com-
puted in the Python programming language using the pyEntropy
library3 (Ince et al., 2009).

A.1. Simulation 1: single feature gamma BLP LFP responses

The gamma BLP LFP response of a single recording site (session
D04nm1, channel 3) in response to a natural movie was  chosen
from the data described in Section 5. The Michelson contrast of the
movie was quantized into 8 equally occupied levels, and the neural
response to each stimulus was  quantified by the mean and stan-
dard deviation of the cube root of the gamma  BLP (see main text).
These means and standard deviations were manipulated according
to Eq. (4) in order to modulate the information conveyed by the
system resulting in three different model systems, with parame-
ters  ̨ = 1 (full information),  ̨ = 0.5 and  ̨ = 0 (no information). The
conditional distributions for each system are visualized in Fig. A1.
This shows the structure of the system as determined by the exper-
imental data; the response is modulated most strongly for stimulus
categories 0 and 6. Category 0 consists of the lowest values of
he significance of neural selectivity to single and multiple potentially
umeth.2011.11.013

gory of contrast values also modulates the response strongly but

3 http://code.google.com/p/pyentropy/.
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Fig. A1. Conditional distributions of simulated data. The conditional probabilities
P(r|s) are shown for each possible response bin r and stimulus bin s for the simu-
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ated Gaussian systems, generated as described in the text (Eq. (4) and Appendix A).
robabilities were estimated from a generated data set with 8192 trials per stimulus
alue (65,536 trials in total).

n the opposite direction; when these contrasts are presented and
igher response is more likely to be observed. For each model sys-
em 100 realizations were generated with a fixed number of trials
er stimulus. For each of these realizations the information was cal-
ulated, and stimulus and response were shuffled 100 times and the
alculation repeated to obtain the bootstrap distribution of infor-
ation under the null hypothesis of independence. The true value

f each realization was compared to the 95th percentile of the boot-
trap distribution, and to the corresponding p = 0.05 value of the
nalytical chi-square distribution to determine significance.

.2. Simulation 2: multiple feature gamma BLP LFP responses

The gamma BLP response of a single recording site (session
04nm1, channel 3) in response to a natural movie was  chosen

rom the data described in Section 5. The Michelson spatial contrast
SC) and temporal contrast (TC) of the movie (see main text) were
uantized into 8 equally occupied levels, and the neural response to
ach stimulus was quantified by the mean and standard deviation
f the cube root of the gamma  BLP (see main text). In addition the
onditional distribution, P(TC|SC), of the quantized feature values
as determined for each of the 8 SC values using the maximum

ikelihood (histogram) method. To generate the stimulus values for
he simulation, uniform integers were generated to represent the
uantized SC feature (due to the equi-populated binning the fea-
ure symbols were uniformly distributed over the course of the

ovie). Then TC features were generated at each time point from
he appropriate conditional feature distribution. In the simulation
ith no genuine complementary information (Fig. 4A and B, solid

ines), the response was drawn from a Gaussian distribution with
he parameters found from the data for the appropriate TC con-
rast value (the TC single feature conditional Gaussian model). In
he simulation with genuine complementary information about SC
Fig. 4A and B, dotted lines), a value was drawn from the appropriate
C single feature conditional Gaussian model and a separate value
as drawn from the appropriate TC single feature conditional Gaus-

ian model. The response was then taken as the sum of these two
Please cite this article in press as: Ince RAA, et al. A novel test to determine t
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alues. In both simulations the continuous responses were quan-
ized into 4 equally populated bins. For each model system 500
ealizations were generated with a fixed number of trials for each
C value. For each of these realizations the CMI  was  calculated, and
 PRESS
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then the TC values were shuffled at fixed SC 100 times and the cal-
culation repeated to obtain the bootstrap distribution of CMI  under
the null hypothesis of independence of response and TC at fixed
SC. The true value of each realization was  compared to the 95th
percentile of the bootstrap distribution, and to the corresponding
p = 0.05 value of the analytical chi-square distribution to determine
significance. The degrees of freedom for the chi-square were cal-
culated as the sum of the degrees of freedom of each specific SC
value conditional information calculation based on the number of
observed response and TC values for the specific SC value.
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