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a b s t r a c t

Arbuscular mycorrhizal (AM) fungi are key organisms of the soil/plant system, influencing soil fertility
and plant nutrition, and contributing to soil aggregation and soil structure stability by the combined
action of extraradical hyphae and of an insoluble, hydrophobic proteinaceous substance named glo-
malin-related soil protein (GRSP). Since the GRSP extraction procedures have recently revealed problems
related to co-extracting substances, the relationship between GRSP and AM fungi still remains to be
verified. In this work the hypothesis that GRSP concentration is positively correlated with the occurrence
of AM fungi was tested by using Medicago sativa plants inoculated with different isolates of Glomus
mosseae and Glomus intraradices in a microcosm experiment. Our results show that (i) mycorrhizal
establishment produced an increase in GRSP concentration – compared to initial values – in contrast
with non-mycorrhizal plants, which did not produce any change; (ii) aggregate stability, evaluated as
mean weight diameter (MWD) of macroaggregates of 1–2 mm diameter, was significantly higher in
mycorrhizal soils compared to non-mycorrhizal soil, (iii) GRSP concentration and soil aggregate stability
were positively correlated with mycorrhizal root volume and weakly correlated with total root volume;
(iv) MWD values of soil aggregates were positively correlated with values of total hyphal length and
hyphal density of the AM fungi utilized.
The different ability of AM fungal isolates to affect GRSP concentration and to form extensive and dense
mycelial networks, which may directly affect soil aggregates stability by hyphal enmeshment of soil
particles, suggests the possibility of selecting the most efficient isolates to be utilized for soil quality
improvement and land restoration programs.

! 2009 Published by Elsevier Ltd.

1. Introduction

Arbuscular mycorrhizal (AM) fungi are mutualistic symbionts
living in association with the roots of the majority of land plants.
They are key organisms of the soil/plant system, influencing soil
fertility and plant nutrition (Smith and Read, 2008). The large
network of fungal hyphae, which spreads from mycorrhizal roots
into the surrounding soil, affects the physico-chemical character-
istics of soils and represents stabilizing agents in the formation and
maintenance of soil structure (Miller and Jastrow, 2000). Many

reports have shown that AM fungi are able to counteract soil
erosion by increasing the stability of soil aggregates (Andrade et al.,
1998; Bethlenfalvay et al., 1999; Miller and Jastrow, 2000) through
the combined action of extraradical hyphae and their exudates and
residues (Gupta and Germida, 1988; Tisdall and Oades, 1982; Miller
and Jastrow, 1990, 1992). Among these fungal components, glo-
malin, an insoluble and hydrophobic proteinaceous substance
(Wright et al., 1996), is of particular interest. Glomalin has been
proposed to improve the stability of soil by avoiding disaggregation
by water (Wright and Upadhyaya, 1998; Zhu and Miller, 2003;
Wright et al., 2007). A strong relationship between glomalin
concentration and the amount of water stable aggregates (WSA)
has been demonstrated (Wright and Upadhyaya, 1998; Rillig et al.,
2001; Harner et al., 2004; Rillig, 2004). Moreover, previous research
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showed that the proportion of WSA higher than 1–2 mm size class
is a highly sensitive indicator of the effects of different cropping
systems and management practices on soil structure stability
(Topp et al., 1997; Marquez et al., 2004).

Glomalin has been detected and quantified in different soil free
cultivation systems (Rillig and Steinberg, 2002; Driver et al., 2005;
Gadkar and Rillig, 2006), by using a specific monoclonal antibody in
ELISA or by Bradford assay. The latter method is also utilized to
evaluate glomalin in soil, where it accumulates because of its low
turnover rate (Steinberg and Rillig, 2003). However, it has been
proposed that the product of soil extraction (121 "C in citrate
buffer) evaluated by the Bradford assay represents a proteinaceous
material, named glomalin-related soil protein (GRSP), rather than
glomalin (Rillig, 2004), since such assay may detect also proteins
originated from sources other than AM fungi (Rosier et al., 2006). In
addition, recent reports (Jonathan and Javier, 2006; Schindler et al.,
2007; Whiffen et al., 2007) have shown that polyphenolic
compounds, such as soil tannins and humic acids, may be co-
extracted with glomalin and interfere with the Bradford quantifi-
cation. Thus, in previous field studies on the effect of mycorrhizal
symbiosis on soil glomalin concentration (Wright and Upadhyaya,
1998; Rillig et al., 2001; Lutgen et al., 2003), erratic organic matter
inputs may have affected data on AM fungal contribution to soil
glomalin concentration. As a consequence, although glomalin is
assumed to be produced by AM fungi, the relationship between
GRSP and AM fungal occurrence remains to be verified.

With the aim of investigating such relationship, and considering
that glomalin is probably released in soil by AM fungal extraradical
mycelium (Driver et al., 2005), we carried out microcosm experi-
ments with four AM fungal isolates, which had been previously
characterized for their ability to develop extraradical mycelium
(ERM) showing differences in the extent, structure and intercon-
nectedness of mycelial networks (Avio et al., 2006).

Here we assessed (i) the relationship between mycorrhizal
establishment in Medicago sativa plants, inoculated with different
species and isolates of AM fungi, and GRSP concentration, (ii) the
effects of different AM fungi on soil quality variables, such as soil
aggregate stability and soil organic matter (SOM), (iii) the rela-
tionship between ERM variables of AM fungal isolates and aggre-
gate stability and GRSP concentration.

2. Materials and methods

2.1. Plant and fungal material

AM fungi usedwere: Glomusmosseae (Nicol. & Gerd.) Gerdemann
& Trappe, isolate IMA1 from UK (collector B. Mosse) and isolate
AZ225C from USA (collector J. C. Stutz), and Glomus intraradices
Schenck & Smith, isolate IMA5 from Italy (collector M. Giovannetti)
and isolate IMA6 from France (collector V. Gianinazzi-Pearson). They
were obtained from pot cultures maintained in the collection of the
Soil Microbiology Laboratory of the Department of Crop Plant
Biology, University of Pisa, Italy. The plant species used was the
forage legume M. sativa cv. Messe.

2.2. Experimental set up

Seeds (20) of M. sativa were sown into 600 ml plastic pots
containing a mixture (1:1, by volume) of soil and Terragreen (cal-
cinated clay, OILDRI, Chicago, IL; pH: 5.1; extractable P: 3.3 ppm).
The soil was a sandy loam (clay 15.3%, silt 30.1%, sand 54.6%), with
the following characteristics: electrical conductivity (mS cm#1),
395.5; organic matter (%), 2.24; total N (&), 1.27; total P (ppm),
469.5; extractable P (ppm), 17.6; extractable K (mg kg#1), 149.6. The
mixture was steam-sterilized (121 "C for 25 min, on two

consecutive days), to kill naturally occurring AM fungal endo-
phytes, and pH(H2O) measured (7.8). Pots were inoculated either
with 90 ml of crude inoculum (mycorrhizal roots and soil con-
taining spores and extraradical mycelium) of one of the four fungal
isolates or with 90 ml of a sterilized mixture of them (non-
mycorrhizal control). Possible differences in AM fungal colonization
ability of the four isolates were balanced by using such high
amount of inoculum (Lioi and Giovannetti, 1987). All the pots
received 120 ml of a filtrate, obtained by sieving a mixture of the
four inocula and of agricultural soil from a M. sativa field, through
a 50 mm diameter pore sieve, to ensure a common microflora to all
treatments (Koide and Li, 1989). After emergence, seeds ofM. sativa
were thinned to 10. Plants were grown in greenhouse, supplied
with tap water as needed and with a weekly fertilization of half-
strength Hoagland’s solution (10 ml per pot).

The experiment was a completely randomized design with 5
inoculum treatments (4 fungal isolates and control), and 5 repli-
cates. After four months’ growth, plants were harvested, root
systems were removed from the pots and stored at#20 "C. Soil was
air dried, sieved through a 2 mm diameter pore sieve and then
stored at room temperature until processed.

2.3. Measurements

The root systems were thawed and dry weights were calculated
on subsamples. Three root subsamples from each potwereweighed
(ca. 1 g each), thin and thick roots separated and root volumes
measured by using an Image Analyzer (Leica Quantimet 500,
Milano, Italy). Mycorrhizal colonization was assessed by clearing
and staining with Trypan blue in lactic acid (0.05%) and percentages
of AM colonization were estimated under a dissecting microscope
with the gridline intersect method (Giovannetti and Mosse, 1980).
Colonized root volumes were evaluated as total root volume $
percentage of AM colonization.

GRSP was extracted from soil samples using the procedures
described by Wright and Upadhyaya (1996) for easily extractable
glomalin (EEG) and total glomalin (TG). Briefly, 1 g of 2 mm sieved
soil was placed into a centrifuge tube with 8 ml of a citrate solution,
autoclaved and centrifugated at 5000 g for 20 min to pellet the soil
particles. The supernatant was decanted and stored at 4 "C until
analyzed. Easily extractable glomalin-related soil protein (EE-GRSP)
was extracted with 8 ml of a 20 mM citrate solution, pH 7.0, by
autoclaving at 121 "C for 30 min. Total glomalin-related soil protein
(T-GRSP) was extracted by repeated cycles with 50 mM citrate, pH
8.0, by autoclaving at 121 "C for 60 min. Extractions of samples
continued until the supernatant content of glomalin was under
method detection limits (ca. 2 mg ml#1). Extracts from each cycle
were pooled and centrifuged at 10,000 g for 10 min to remove
residual soil particles. Protein content was determined by Bradford
assay (Sigma–Aldrich, Inc.) with bovine serum albumin as the
standard. GRSP analyses were carried out on soil from five replicate
pots and on three subsamples of the soil mixture obtained before
starting the experiment.

Soil structure stability was evaluated by mean weight diameter
(MWD) onmacroaggregates of 1–2mmdiameter as this size class is
considered to be sensitive to short-term treatments of soil (Kemper
and Rosenau, 1986). Soil aggregates were obtained by sieving air-
dried pot soil stored at room temperature for 4 months. Dried soil
samples were carefully broken down by hand into smaller aggre-
gates. The samples, passed through 2.0 mm mesh and retained at
1.0 mmmesh, were used for the following analyses. Water-stability
of aggregates was measured using the apparatus and procedure
described in Kemper and Rosenau (1986). MWD of water stable
aggregates was determined according to van Bavel (1950) and
carried out on three subsamples for each replicate. The MWD was
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determined on 25 g of soil dry aggregates of less than #1.5 MPa
water potential. The samples were overnight wetted by capillary
rise, then transferred on the top of a nest of sieves of 1.0, 0.5,
0.25 mm immersed in water. The nest of sieves was then vertically
oscillated in water by a shaking machine with a stroke of 4 cm per
5 min, at a rate of 30 complete oscillations per minute. The mass of
oven-dried particles (105 "C for 24 h) that resisted breakdownwas
assessed for each sieve. The mass of the fraction passing through
the 0.25 mm sieve was thus obtained by difference. The respective
dry masses were used to compute the MWD according to van Bavel
(1950), as follows: MWD ¼

Pn
i¼1 WðiÞXi. Where: MWD is the

meanweight diameter (mm); Xi is the arithmetic mean diameter of
the i and i # 1 sieve openings (mm); W(i) is the proportion of the
total sample mass (corrected for sand and gravel) occurring in the i
size fraction (dimensionless); n is the number of size fractions
(n ¼ 4).

Soil Organic Matter (SOM) was determined on each replicate
using the Walkley–Black wet oxidation method (Nelson and
Sommers, 1982).

2.4. Data analysis

Analysis of variance (ANOVA) was performed on SPSS 16.0
software (SPSS Inc., Chicago, IL), after the necessary trans-
formations and differences between means were assessed by
orthogonal contrasts. Analysis of covariance (ANCOVA) was used to
separate AM fungal from plant effects, using total root volume as
covariate. Pearson correlation coefficients were calculated across
plant and soil variables by SPSS software. Data on ERM extent and
structure of the different AM fungal isolates of G. intraradices and G.
mosseae utilized in this work were obtained by Avio et al. (2006)
using a soilless two-dimensional experimental system, where
mycorrhizal plant roots were sandwiched between two cellulose
nitrate membranes, buried in sterile quartz grit and maintained in
growth chambers. In such system, AM fungal isolates were char-
acterized by differences in extent and interconnectedness of ERM
and the phenotypic fungal variables were correlated with plant
growth response variables obtained in a microcosm experiment.
Here, we utilized the same phenotypic fungal data as explanatory
variables, in linear regression analyses, with soil aggregate stability
and GRSP concentration as response variables.

3. Results

3.1. Soil variables

Soil GRSP contents of mycorrhizal pots, measured as EE-GRSP
and T-GRSP, showed large increases compared with the original soil
mixture (0.29 ( 0.04 and 1.08 ( 0.04 mg g#1 dry soil respectively)
(Fig. 1). After four months’ growth, mean increases of EE-GRSP and
T-GRSP in mycorrhizal pots were 32.4 and 34.9%, respectively,
compared to soil mixture values (EE-GRSP, P < 0.001; T-GRSP,
P < 0.001). On the contrary, GRSP contents, both EE-GRSP and
T-GRSP, of non-mycorrhizal pots did not show significant differ-
ences compared to soil mixture values (EE-GRSP, P ¼ 0.28; T-GRSP,
P¼ 0.11) (Fig. 1). EE-GRSP and T-GRSP were significantly affected by
the mycorrhizal symbiosis (Table 1). Although all the AM fungal
strains tested produced similar increases of EE-GRSP, T-GRSP values
were significantly different between the two isolates of G. mosseae
(Table 1; Fig. 1).

Aggregate stability, evaluated as MWD, was significantly higher
in mycorrhizal pot soil compared to non-mycorrhizal soil
(P < 0.001). Soil inoculated with the different AM fungal isolates
showed MWD values of 0.68, 0.76, 0.75, 0.90 mm for G. mosseae
AZ225C, G. mosseae IMA1, G. intraradices IMA5 and G. intraradices

IMA6, respectively. By contrast, in control pots MWD of soil
aggregates was 0.42 mm. Moreover, interspecific differences in
MWD values were detected and G. intraradices showed also
differences between isolates (Table 1).

SOM of mycorrhizal pots was significantly higher compared to
controls (P < 0.001). SOM values were 1.46, 1.47, 1.66, 1.33% in
G. mosseae AZ225C, G. mosseae IMA1, G. intraradices IMA5 and
G. intraradices IMA6 pots, respectively, andwas 0.91% in control soil.
Significant differences were observed between G. intraradices
isolates (P ¼ 0.011).

3.2. Plant-fungal variables

Plant root volumes were significantly affected by mycorrhizal
symbiosis (Table 2). Root volume increases, calculated for each
fungal isolate as ((root volume mycorrhizal plant # root volume
non-mycorrhizal plant)/root volume non-mycorrhizal plant)$ 100,
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Fig. 1. Soil concentration of glomalin-related soil protein (GRSP) in Medicago sativa
pots inoculated with four isolates of the arbuscular mycorrhizal fungal species Glomus
mosseae (AZ225C and IMA1) and Glomus intraradices (IMA5 and IMA6), or not inocu-
lated (NM). (a) GRSP extracted as easily extractable GRSP (EE-GRSP), (b) GRSP
extracted as total GRSP (T-GRSP). Horizontal lines represent soil mixture GRSP values.
Bars represent standard errors of the means (n ¼ 5).

Table 1
P-values of linear orthogonal contrasts for easily extractable glomalin-related soil
protein (EE-GRSP), total glomalin-related soil protein (T-GRSP) and soil aggregate
stability as medium weight diameter of aggregates of 1–2 mm (MWD), of Medicago
sativa pots inoculated with four isolates of the arbuscular mycorrhizal fungal species
Glomus mosseae (AZ225C and IMA1) and Glomus intraradices (IMA5 and IMA6), or
not inoculated (NM).

EE-GRSP T-GRSP MWD

NM vs M <0.001 <0.001 <0.001
G. mosseae vs G. intraradices 0.806 0.996 0.026
IMA1 vs AZ225C 0.770 0.039 0.197
IMA5 vs IMA6 0.204 0.285 0.024
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were 41.7, 46.8, 31.0 and 22.2% for G. mosseae AZ225C, G. mosseae
IMA1, G. intraradices IMA5, G. intraradices IMA6, respectively.
Although total root volumes did not vary among isolates, highly
significant differences were observed at the species level between
G. mosseae and G. intraradices (P ¼ 0.004). Plants inoculated with G.
mosseae showed significantly larger root volumes than those
colonized by G. intraradices (Table 2).

Colonized root volumes did not vary among AM fungal isolates
and showed values ranging from 32.98 to 34.22 cm3 for G. intra-
radices IMA5 and G. mosseae AZ225C, respectively (Table 2).

3.3. Relationships between plant, fungal and soil variables

Plant and fungal variables, such as total root volume and colo-
nized root volume, were analyzed for their correlation with soil
variables, such as T-GRSP, EE-GRSP and MWD. T-GRSP and EE-GRSP
values were more positively correlated with colonized root volume
(r ¼ 0.696, P < 0.001 and r ¼ 0.773, P < 0.001), than with total root
volume (r ¼ 0.453, P ¼ 0.023 and r ¼ 0.602, P ¼ 0.001). Also MWD
values were highly correlated with colonized root volume
(r ¼ 0.816, P ¼ 0.001), but not with total root volume (r ¼ 0.315,
P ¼ 0.295). Soil variables, such as T-GRSP, EE-GRSP and SOM were
analyzed for the correlationwith soil aggregate stability. MWDwas
positively correlated with T-GRSP (r ¼ 0.759, P ¼ 0.003) and EE-
GRSP (r ¼ 0.653, P ¼ 0.016), while was weakly correlated with SOM
(r ¼ 0.559, P ¼ 0.047).

ERM data related to AM fungi, such as total hyphal length and
hyphal density, did not show a significant positive relationship
with both EE-GRSP and T-GRSP (R2 ¼ 0.55, P ¼ 0.260; R2 ¼ 0.11,
P ¼ 0.660). On the contrary, MWD values of soil aggregates showed
a strong relationship with total hyphal length and hyphal density
of the corresponding AM fungal isolates (R2 ¼ 0.90, P ¼ 0.048;
R2 ¼ 0.97, P ¼ 0.015, respectively) (Fig. 2).

4. Discussion

4.1. GRSP production by mycorrhizal and non-mycorrhizal plants

Mycorrhizal treatments produced an increase in the initial
value of GRSP concentration in pot soil, compared with non-
mycorrhizal pots, suggesting a cause-effect relationship between
mycorrhizal symbiosis and GRSP content. Our data are direct
evidences of differences in GRSP production by mycorrhizal and
non-mycorrhizal plants. Many circumstantial evidences, reviewed
by Rillig (2004), showed the active role of AM fungi in GRSP
production. Positive links between GRSP and AM fungal biomass

were reported by Rillig et al. (2002), who showed a strong path
between the glomalin fraction detected by a specific antibody
(IREE-GRSP) and extraradical AM fungal hyphae and by Bedini
et al. (2007) who found a good correlation between EE-GRSP and
AM fungal spore biovolumes in three differently managed soils.
Interestingly, present data are consistent with those obtained by

Q1Hallett et al. (2009) who reported difference in GRSP production in
mycorrhizal and non-mycorrhizal tomato plants using mutants
defective to AM fungal colonization and the AM fungal mono-
clonal antibody (MAb 32B11). In this work GRSP was assessed
using Bradford assay, since Bradford detected protein concentra-
tions are consistent with those detected by indirect enzyme-
linked immunosorbent assay (ELISA) (Harner et al., 2004; Nichols
and Wright, 2005; Rillig et al., 2006). Here, we evidenced the
direct link between Bradford GRSP and AM symbiosis. The large
increase in GRSP concentration reported in the present work could
be explained also by a contribution of the mycorrhizal plant root
system. Actually, we found a higher correlation between GRSP and
colonized root volume than between GRSP and total root volume.
Since differences in biomass may cause differences in GRSP, we
used root volume as a covariate in ANCOVA, to compensate for
differences in size between mycorrhizal and non-mycorrhizal
plants. When total root volume was used as covariate to separate
the effect of mycorrhizal symbiosis from that of plant size on GRSP
content, its effects on both EEG-GRSP and T-GRSP were not
significant (P ¼ 0.605; P ¼ 0.805 respectively). The same results
were obtained when using shoot and root plant biomass as
covariates on EEG (P ¼ 0.312; P ¼ 0.268, respectively) and on
T-GRSP (P ¼ 0.117; P ¼ 0.684, respectively).

Table 2
Root volume and colonized root volume (cm3 per pot) of Medicago sativa plants
inoculated with four isolates of the arbuscular mycorrhizal fungal species Glomus
mosseae (AZ225C and IMA1) and Glomus intraradices (IMA5 and IMA6), or not
inoculated (NM).

Root Volume Colonized Root Volume

NM 32.81 ( 1.65 0.00 ( 0.00
AZ225C 56.23 ( 2.89 34.22 ( 1.28
IMA1 61.62 ( 8.15 34.03 ( 5.73
IMA5 47.56 ( 1.74 32.98 ( 2.83
IMA6 42.16 ( 3.24 33.58 ( 2.61

Treatments compared (P-values of linear orthogonal contrasts)
NM vs M <0.001 <0.001
G. mosseae vs G. intraradices 0.004 0.790
IMA1 vs AZ225C 0.382 0.965
IMA5 vs IMA6 0.382 0.893

Values are means of five replicates pots of each treatment.
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Fig. 2. Relationships between soil aggregates medium weight diameter (MWD Q2) and
total hyphal length (a) and hyphal density (b) for different isolates of Glomus mosseae
(IMA1 and AZ225C) and Glomus intraradices (IMA6 and IMA5). Slopes are significant
[P ¼ 0.048 (a), 0.014 (b)].
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4.2. AMF and soil aggregate stability

The presence of AM fungi improved the stability of soil aggre-
gates of the size class of 1–2 mm. MWD values were significantly
lower in non-mycorrhizal than in mycorrhizal soils. Interestingly,
aggregate stability was more highly correlated with the fraction of
organic matter of putative AM fungal origin (TG-GRSP: P < 0.001
and EEG-GRSP: P < 0.001), than with total SOM, which has been
reported to affect WSA (Tisdall and Oades, 1982; Chan et al., 2002).
In addition, as observed for GRSP, aggregate stability was more
correlated with colonized root volume thanwith total root volume,
confirming the key role of AM fungi in soil stabilization (Tisdall and
Oades, 1982; Miller and Jastrow, 1990). Our results showed that,
under microcosm conditions, the stability of soil aggregates is
probably affected more by the direct and indirect actions of the
plant–fungal system, rather than by plant root metabolism, in
agreement with long term field studies, reporting a positive
correlation between GRSP and WSA (Wright and Upadhyaya, 1998;
Wright and Anderson, 2000; Rillig et al., 2001; Rillig, 2004), and
between colonized root length and aggregate stability (Tisdall and
Oades, 1982; Miller and Jastrow, 1990, 1992).

4.3. Extraradical mycelium, GRSP and soil aggregation

Interestingly, MWD values of soil aggregates showed a strong
relationship with values of total hyphal length and hyphal density
of AM fungi, obtained earlier by Avio et al. (2006). Such results
suggest that the ability of different AM fungal isolates to form
extensive and dense mycelial networks may directly affect soil
stability, by hyphal enmeshment of soil particles (Miller and
Jastrow, 2000).

By contrast, regression analysis showed no correlation between
GRSP and ERM extent, in agreement with previous reports (Rillig
et al., 2001; Rillig and Steinberg, 2002; Rillig et al., 2002; Lutgen
et al., 2003; Rillig et al., 2003; Lovelock et al., 2004), demostrating
that GRSP cannot be considered as a proxy of ERM fungal biomass
and suggesting possible alternative roles for GRSP, as recently
reported (Purin and Rillig, 2007).

Here, we showed significant differences among fungal isolates
in their ability to affect both GRSP concentration and soil aggregate
stability. Such results are in agreement with Wright et al. (1996)
who observed differences in the production of glomalin by different
Glomus species, when extracted directly from hyphae grown in
a soilless system.

Our results confirm a previous study concerning the effects of
different AM fungal taxa on soil aggregate stabilization (Schreiner
et al., 1997). These authors showed that G. mosseae improved the
stabilization of aggregates of the 2–4 mm size class, significantly
more than Glomus etunicatum and Gigaspora rosea. Though, in
contrast with our result, they did not find differences in the size
class of 1–2mm. Moreover, we showed that different isolates of the
same AM fungal species (G. intraradices) may differ in their capacity
of increasing aggregate stability.

AM fungal-mediated contribution as GRSP in soil can be of
particular importance in natural and managed ecosystems.
Although experimental results obtained under controlled condi-
tions cannot be representative of field conditions, the microcosm
approach may help us better understand cause–effect relationships
between mycorrhizal symbiosis and soil quality. Our findings
highlight the link between GRSP and AM fungi, adding new
evidences on their ability to enhance soil aggregate stability.
Moreover, the observed differences between AM fungal species
evidenced that they may differ not only in morphological and
functional characters, but also in ecological traits, such as their
ability to stabilize soil aggregates, suggesting the possibility of

selecting the most efficient AM fungal isolates to be utilized for soil
quality improvement and land restoration programs.

5. Conclusion

The results of our work show that: (i) mycorrhizal establishment
in M. sativa plants inoculated with different species and isolates of
AM fungi produced an increase in GRSP concentration – compared
to initial values – in contrast with non-mycorrhizal plants, which
did not produce any change; (ii) aggregate stability, evaluated as
mean weight diameter (MWD) of macroaggregates of 1–2 mm
diameter, was significantly higher in mycorrhizal soils compared to
non-mycorrhizal soil, (iii) GRSP concentration and soil aggregate
stability were positively correlated with mycorrhizal root volume
and weakly correlated with total root volume; (iv) MWD values of
soil aggregates were positively correlated with values of total
hyphal length and hyphal density of the AM fungi utilized; (v)
different AM fungal isolates differently affected GRSP concentration
and stability of soil aggregates.
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