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Abstract
Osteopontin (OPN) is a phosphoglycoprotein of cardiac extracellular matrix and it is still

poorly defined whether its expression changes in failing heart of different origin. The full-

length OPN-a and its isoforms (OPN-b, OPN-c) transcriptomic profile were evaluated in

myocardium of patients with dilated or ischemic cardiomyopathy (DCM n = 8; LVEF% =

17.5±3; ICM n = 8; LVEF% = 19.5±5.2) and in auricle of valvular patients (VLP n = 5; LVEF

%�50), by Real-time PCR analysis. OPN-a and thrombin mRNA levels resulted signifi-

cantly higher in DCM compared to ICM patients (DCM:31.3±7.4, ICM:2.7±1.1, p = 0.0002;

DCM:19.1±4.9, ICM:5.4±2.2, p = 0.007, respectively). Although both genes’mRNA levels

increased in patients with LVEF<50% (DCM+ICM) with respect to VLP with LVEF>50%, a

significant increase in OPN (p = 0.0004) and thrombin (p = 0.001) expression was observed

only in DCM. In addition, a correlation between OPN-a and thrombin was found in patients

with LVEF<50% (r = 0.6; p = 0.003). The mRNA pattern was confirmed byOPN-a cardiac
protein concentration (VLP:1.127±0.26; DCM:1.29±0.22; ICM:1.00±0.077 ng/ml). The OPN

splice variants expression were detectable only in ICM (OPN-b: 0.357±0.273;OPN-c:

0.091±0.033) and not in DCM patients. A significant correlation was observed between col-

lagen type I, evaluated by immunohistochemistry analysis, and both OPN-a mRNA expres-

sion (r = 0.87, p = 0.002) and OPN protein concentrations (r = 0.77, p = 0.016). Concluding,

OPN-a and thrombin mRNA resulted dependent on the origin of heart failure while OPN-b

and OPN-c highlighted a different expression for DCM and ICM patients, suggesting their

correlation with different clinical-pathophysiological setting.
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Introduction
Adverse structural remodelling leads to heart failure (HF) that is characterized by ongoing
structural rearrangement in the architecture of the ventricular myocardium resulting in clinical
and pathophysiological overt HF [1]. The two most frequent causes of end-stage HF in the
developed countries are dilated (DCM) and ischemic (ICM) cardiomyopathy [2].

On the structural level, there are specific changes of ventricular geometry, intra and extra-
cellular matrix (ECM) composition as well as cell and capillary loss and increased myocyte size
as well [3]. All abovementioned phenotypic features are referred to as cardiac remodelling.

A key regulator of remodelling process in the heart is the ECM that consists of structural
and non-structural proteins interacting via specific cell surface receptors or soluble growth fac-
tors and cytokines [4].

Osteopontin (OPN) is a typical phosphoglycoprotein of cardiac ECM often overexpressed
in the human blood and remodelled myocardium during the development of HF [5]. Pre-clini-
cal studies demonstrated that healthy murine myocardium expresses low levels of OPN in
response to increased afterload [6] and in human, increased plasma levels of OPN are associ-
ated with activation of the renin-aldosterone system and with myocardial and coronary micro-
vascular damage in dilated cardiomyopathy [7] but it is still poorly defined whether its
expression changes in failing heart of different origin.

However, the myocardial role of OPN isoforms is still not well defined. Even though OPN is
synthesized in various tissue and cell types, it is thought to be an inhibitor of vascular calcifica-
tion expressed by calcifying vascular cells; it is also detectable in activated resident pericytes
during angiogenetic processes, and has been found in fibro calcific plaques [8]. The myocardial
OPN expression is increased during both acute and chronic disease [9]. OPN expression is
increased in macrophages recruited in infarcted heart and cardiomyocytes are the major source
of OPN in humans and rodents hypertrophied hearts [10].

In particular, the rise of OPN expression coincides also with the transition from myocardial
hypertrophy to HF, and its level of expression is correlated with the severity of the HF [11–15].
Findings from several experimental studies have highlighted a link between the progression
of cardiomyopathies (i.e.: DCM) towards HF and OPN expression [16–18]. However, the
regulatory mechanisms underlie the OPN expression in the remodeled myocardium are still
unknown. It is recognized that the tissue factor, the major trigger of blood coagulation, is
involved in the onset of several cardiovascular diseases and that one of the ultimate events of
the tissue factor initiated coagulation cascade is thrombin that is able to cleave OPN [19] sug-
gesting the implication of these proteins in the pathophysiology of cardiac remodeling.

However, it is still poorly defined whether OPN and thrombin expression changes in failing
heart of different origin. Moreover, OPN precursor mRNA undergoes alternative splicing lead-
ing to full-length OPN-a (i.e., consist of all exons), OPN-b (lacks exon 5) and OPN-c (lacks
exon 4) as well [20]. The OPN splice variants are differentially expressed and may have func-
tional heterogeneity in tumor specific manner [21] and recently are beginning to be studied in
other diseases as calcific aortic valve disease [22], carotid atherosclerotic plaques [23] and sys-
temic inflammatory conditions [24]. We have hypothesized that OPN isoforms and thrombin
mRNA profile underlies the occurrence of pro-remodeling or pro-repair phenotype in end-
stage failing heart of different origin. In fact, OPN is a component of perivascular and hemato-
poietic niche that suppresses the proliferation and function of hemopoietic stem and progeni-
tor cells [25]. So far, no data are reported about myocardial OPN splice variants in different
types of failing heart. The aim of our study was to measure the myocardial levels of OPN-a,
thrombin, as well as of the two isoforms OPN-b and OPN-c in the left ventricle of patients
affected by end-stage idiopathic or ischemic dilated cardiomyopathy.
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Materials and Methods

Samples collection and RNA extraction
The investigation conforms to the principles outlined in the Declaration of Helsinki (Br Med J
1964; ii:177). The study was approved by the local Ethical Committee of the San Giovanni Bat-
tista Hospital, Turin Italy and all patients provided signed informed consent.

In the study were enrolled a total of twenty-one subjects. Sixteen HF patients were affected
by end-stage idiopathic DCM (n = 8) or ICM (n = 8) and eligible for heart transplantation
according to recent guidelines [26]. Patients with arterial hypertension, recent myocardial
infarction (�6 months before surgery), myocarditis or diabetes were excluded from the study.
All patients received conventional therapy for end-stage HF and were not chronically treated
with high-dose catecholamine infusions. The patients received similar dose of diuretics, beta-
blockers and ACE-inhibitors. The patients were not affected by renal failure.

Idiopathic dilated cardiomyopathy was diagnosed on the basis of echocardiographically
documented end-diastolic diameter>56 mm, left ventricular ejection fraction (LVEF %)
<50% and normal coronary angiography. The selected ICM patients were affected by three-
vessel coronary disease. We selected patients with known cardiomegaly of more than 6 months’
duration. All patients had waited a similar time on the waiting list for heart transplantation.
Table 1 reports the baseline characteristics of HF patients.

To understand if OPN and thrombin expression depend on the origin of HF rather than the
magnitude of global cardiac function, 5 patients who underwent surgical repair of heart valve
disease and without concomitant coronary artery diseases (VLP, male, no pacemaker, no left
bundle branch block, no pharmacological treatment), aged 50±3 years, with LVEF %>50%
and LV end-diastolic diameter< 70mm were used.

Exclusion criteria were acute myocardial infarction or unstable angina within 6 months
before the examination, significant primitive pulmonary disease and renal failure (defined as a
serum creatinine value above 1.5 mg/dl).

In HF patients myocardial samples were harvested from the inter ventricular septum (IVS),
which represents the LV region early remodelled during HF progression [27] in the beating
dyssynchronous failing heart; in VLP samples were collected from auricle. Failing hearts were
sampled at the time of heart transplantation; the VLP samples were collected during the valvu-
lar surgery. Both samples were immediately placed in ice-cold RNAlater and stored at –80°C
or snap frozen.

Total RNA was extracted by acid guanidinium thiocyanate-phenol-chloroform method
from cardiac tissue samples with Rneasy Midi kit (Qiagen S.p.A, Milano, Italy) as previously
describe [28–30]. The extraction methodology used was specific for fibrous tissues, as cardiac
samples, and during extraction phases cellular debris were removed. RNA concentration was

Table 1. Biochemical characteristics of DCM and ICM patients.

DCM PATIENTS (n = 8) ICM PATIENTS (n = 8)

AGE (yrs) 42 ± 6 55 ± 2

GENDER, ♂, n (%) 8 (100) 8 (100)

LV EJECTION FRACTION, % 17.5 ± 3 19.5 ± 5.2

MEAN ARTERIAL PRESSURE, mmHg 76.7 ± 5 74.3 ± 4.7

SYSTOLIC ARTERIAL PRESSURE, mmHg 98± 5.54 96.5 ± 3

DIASTOLIC ARTERIAL PRESSURE, mmHg 66 ± 5.98 63.2± 2.5

LV END-DIASTOLIC VOLUME, ml 305.5 ± 110 270± 97

LV END-SYSTOLIC VOLUME, ml 255 ± 90 220 ± 88

SYSTEMIC VASCULAR RESISTANCE, mm Hg/min/l 18.5 ± 4.8 22 ± 10

doi:10.1371/journal.pone.0160110.t001
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determined spectrophotometrically (Biophotometer reading, Eppendorf, Italy) at 260 nm. The
ratio of readings at 260 nm and 280 nm (A260/A280) provided an estimate of the purity of RNA
and only samples that showed OD 260/280 ratios of 1.9–2.1 were used. To check the total RNA
integrity, all samples were also subjected to denaturating gel electrophoresis in order to visual-
ize and evaluate the optical density of 18 S and 28 S rRNA bands. The RNA samples were
stored at -80°C for use in gene expression studies.

Reverse Transcription and Real-Time PCR
Following DNAse treatment, first strand cDNA was synthesized with iScript cDNA Synthesis
kit (Bio-rad, Hercules, CA, USA) using about 1 μg of total RNA as template. Reverse transcrip-
tase reaction sequence consisted of incubation at 25°C for 5 min, followed by three different
cycles at 42°C for 30 min and 45°-48°C for 10 min, in order to better separate the strands. The
reverse transcriptase enzyme was inactivated by heating to 85°C for 5 min. The cDNA samples
obtained were placed on ice and stored at 4°C until further use. Real-Time PCR reactions were
performed in duplicate in the Bio-Rad C1000 TM thermal cycler (CFX-96 Real-Time PCR
detection systems, Bio-Rad) as previously described [30]. For monitoring cDNA amplification
a third-generation fluorophore, EvaGreen, was used (SsoFAST EvaGreen Supermix, Bio-Rad).
PCR was performed in a volume of 20 μl per reaction, including 0.2 μM of each primer (Sigma-
Aldrich, St. Louis, MO, USA) samples, reagent and sterile H2O. Amplification protocol started
with 98°C for 30 s followed by 40 cycles at 95°C for 5 s and 60°C for 30 s. Primer pairs of both
interested markers and reference genes were designed with Primer Express Version 2.0
(Applied Biosystems) and details are given in Table 2. Two inter-run calibrators where used to
ensure the comparability of different PCR runs. All reactions were performed in duplicate.

Protein extraction
Tri-reagent procedure (Molecular Research Center, Cincinnati, OH, USA) allowed obtaining
RNA and proteins from a single sample using a monophasic mixture of phenol and guanidine
thiocyanate and isopropyl alcohol to precipitate nucleic acids, as previously described [29,30].

Table 2. Primer sequence details of the analyzed gene.

Genes Primer sequence GenBan, accession n. Length (pb) Temp (°C) Efficiency (%) R2

eEF1a F: CTTTGGGTCGCTTTGCTGTT NM_001402 183 60 101.7 0.998

R: CCGTTCTTCCACCACTGATT

RPL13a F: CGCCCTACGACAAGAAAAAG NM_012423 206 60 104 0.999

R: CCGTAGCCTCATGAGCTGTT

RPS4X F: GATCCCCTCATCAAGGTGAA NM_002046 243 60 104.2 0.999

R: GCCCTTGCCAATAACAAAAA

OPN-a F: AATGATGAGAGCAATGAG NM_001040058 114 60 103 0.999

R: GTCTACAACCAGCATATC

OPN-b F: CTGAGGAAAAGCAGCTTTACAAC NM_000582 111 60 105 0.996

R: ACTTACTTGGAAGGGTCTGTG

OPN-c F: GAGGAAAAGCAGAATGCTGTGT NM_001040060 88 60 95.5 0.995

R: GGTCATGGCTTTCGTTGGA

THROMBIN F: GAAGTGGATACAGAAGGTCAT NM_000506 84 60 101.2 0.994

R: TCTTTCACGGGATTGGTT

eEF1a: Eukaryotic translation elongation factor 1 alpha 1; RPL13a: Ribosomal protein L13a; RPS4X: 40S ribosomal protein S4, X isoform;OPN-a:
osteopontin full-lenght;OPN-b: osteopontin transcript variant 2 (or secreted phosphoprotein 1 (SPP1), transcript variant 2);OPN-c: osteopontin transcript

variant 3 (or secreted phosphoprotein 1 (SPP1), transcript variant 3); THROMBIN: coagulation factor II

doi:10.1371/journal.pone.0160110.t002
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Proteins isolated by organic phase were added to ethanol and centrifuged to eliminate the lipid
component. Subsequently, the addition of acetone and centrifugation (12,000 x g, 5 min at
4°C) made up a protein pellet that was washed and centrifuged three times with a wash buffer
(guanidine, glycerol 25%, ethanol 96%). After a last wash with a solution of glycerol 25% and
ethanol the pellet was re-suspended with Tris (hydroxy–methyl–aminomethane) HCl (4 mM)
buffer (pH 7.4) [NaCl-154 mM, phenyl–methyl–sulfonylfluoride–PMSF-0.1 mM, sodium
dodecyl sulfate (SDS) 2%]. The final protein preparations were frozen at -20°C and the protein
concentration was determined according to the method of Lowry using BSA as a standard.

OPN assay
OPN-a was directly measured in cardiac protein extracts by a specific enzyme immunometric
assays (Osteopontin, human ELISA, DRG Diagnostic, GmbH, Germany). Each sample was
assayed in duplicate. A control sample was assayed in each run for quality control.

Histological and immunohistochemistry analysis
Five μm-thick sections of IVS samples, DCM and ICM respectively, were used for histological
analysis, as previously described by us [31]. Serial slices were stained by Masson’s trichrome to
assess myocardial architecture and fibrosis. The evaluation were performed in left ventricular
mesocardial and sub-endocardial layers of both DCM and ICM patients and in a fragment of
auricle of VLP subjects. For each sample, two independent observers evaluated a minimum of
three serial sections. Photomicrographs were taken using a DFC480 digital camera (Leica
Microsystem, Cambridge, UK). Specific immunostainings for human collagen type I (poly-
clonal antibody Santa Cruz Biotechnology, Germany) was performed.

Data analysis
In an effort to provide greater transparency of our results between research laboratories, this
study was carried out to conform to theMinimum Information for publication of Quantitative
Real-Time PCR Experiments (MIQE) [32].

Ten reference genes were tested and GeNorm software was used to establish the most stably
expressed gene, as described by Vandesompele et al. [33]. The geometric mean of the three
most stably expressed genes (RPL13a, eEF1a, RPS4X) was used for normalization of mRNA
expression results.

The relative quantification was performed by ΔΔCt method using Bio-Rad’s CFX96 man-
ager software (CFX-96 Real-Time PCR detection systems, Bio-Rad Laboratories Inc., Hercules,
CA, USA). When expression values were not normally distributed, the logarithmic transforma-
tion of data was used for statistical analysis. Differences between more than two independent
groups were analyzed by Fisher’s test after ANOVA. Differences between two independent
groups were assessed by unpaired t-test.

The results are expressed as mean ± SEM and p-value was considered significant
when< 0.05. The association between different variables were assessed by linear regression
test after logarithmic transformation, when necessary. All data were analyzed by using Statview
5.0.1 software released for Windows Statistical (SAS Institute, Inc., Cary, NC, USA).

Results

OPN-a,-b, -c and thrombin expression
As reported in Fig 1a, OPN-a mRNA levels were significantly higher in DCM compared to ICM
patients. Similarly, the thrombin mRNAwas highly expressed in end-stage DCM hearts (Fig 1b).
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In order to understand if OPN and thrombin expression were dependent on the origin of
HF rather than the magnitude of global cardiac function, their expression was analyzed in VLP
with LVEF>50% and compared with the whole group of failing patients (DCM+ICM) with
LVEF<50%. As reported in Fig 2 both biomarkers increased in HF patient with LVEF<50%
with respect to those with normal global cardiac function (VLP). Interestingly when data
belonging to HF patients were splitting in DCM and ICM, a significant increase in OPN and
thrombin expression was observed only in DCM with respect to both VLP and ICM (Fig 2c
and 2d).

A significantly positive correlation between OPN-a and thrombin was observed in HF
patients (r = 0.6; p = 0.003) but not in those with LVEF>50% (VLP).

The OPN splice variants mRNA expression, OPN-b and OPN-c, were detectable only in
ICM patients (OPN-b: 0.357±0.273;OPN-c: 0.091±0.033), but not in DCM patients (Fig 3). As
expected, the auricular myocardium, belonging to patients with valvular disease and normal
atrial size, showed both isoforms mRNA expression (Fig 3).

OPN-a immunometric determination
Table 3 reported the OPN assay analytical performance related to sensitivity, inter and intra-
assay variability, obtained by repeated determinations of a plasma sample. The accuracy of the
immunometric determination was evaluated by dilution and recovery tests as reported in Fig 4.
OPN-a extract cardiac tissue levels were measured and the pattern observed at the mRNA level
was confirmed by OPN-a cardiac protein concentration (VLP: 1.127±0.26; DCM: 1.29±0.22;
ICM: 1.00±0.077 ng/ml).

To underline the relationship between the mRNA expression and protein data in each sin-
gular patient, a plot of the individual results was showed for VLP, DCM and ICM groups in

Fig 1. Transcriptional profile of OPN-a and thrombin in the heart of failing patients. a) OPN-a and b) thrombin mRNA expression measured by Real
Time PCR in DCM and ICM patients. The three most stably expressed genes (RPL13a, eEF1a, RPS4X) was used for normalization of mRNA expression
results.

doi:10.1371/journal.pone.0160110.g001
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Fig 5. For each sample the mRNA expression resulted higher with respect to protein concentra-
tion mainly in DCM patients.

Histological and immunohistochemistry analysis
As showed in Fig 6 a larger myocardial amount of type I collagen, fibronectin and fibroblasts
was detected in ICM rather than DCM hearts where they were finely distributed in left ventric-
ular mesocardial and sub-endocardial layers. A significant correlation was observed between
collagen type I expression, previously measured by us in the same tissue samples [31], and both
OPN-a mRNA expression (r = 0.87, p = 0.002) and OPN protein concentrations (r = 0.77,
p = 0.016). As showed in Fig 7, fibrosis was undetectable in VLP myocardium.

Fig 2. Transcriptional profile of OPN-a and thrombin in all group of patients studied. a) OPN-a and b) thrombin mRNA expression measured by
Real Time PCR in VLP patients with LVEF>50% and HF patients with LVEF<50%; c) OPN-a and d) thrombin mRNA expression measured by Real Time
PCR in VLP patients with LVEF>50% and HF patients splitting in DCM and ICM. The three most stably expressed genes (RPL13a, eEF1a, RPS4X) was
used for normalization of mRNA expression results.

doi:10.1371/journal.pone.0160110.g002
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Discussion
Our study has demonstrated that changes of left ventricular OPN-a (full-length form) and
thrombin mRNA expression were dependent on the origin of heart failure rather than on the
type of medications, magnitude of contractile failure and microenvironmental features. At sim-
ilar LVEF and ischemic microenvironment, the gene expression of OPN-a and thrombin was
higher in DCM rather than ICM left ventricle.

It is conceivable that the greater loss of cardiomyocytes due to more widespread ischemic
insult has reduced the capacity of the left ventricular myocardium to express OPN-a and
thrombin mRNA in ICM hearts. Taking into account the known role played by OPN-a in
ECM turnover activation, it is noticeable that the levels of myocardial OPN-a expression in fail-
ing ICM hearts were similar to those with normal systolic function and without myocardial
fibrosis (VLP samples). Therefore, we suppose that OPN-a may be a novel biomarker of active
ECM turnover, a remodeling signal in cardiomyocytes and also a predictor marker of cardiac
failure of stem/progenitor cell function in failing hearts [25].

In our study, all data further suggest the hypothesis that cardiomyocytes-derived OPN-a is
more expressed in the presence of still active ECM turnover, such as in end-stage DCM hearts
where the segmental replacement fibrosis is lacking [31]. We have observed that levels of

Fig 3. Transcriptional profile of OPN- b and -c in all group of patients studied. a) OPN-b and b) OPN-c mRNA expression measured by Real Time
PCR in in VLP patients with LVEF>50% and HF patients splitting in DCM and ICM. The three most stably expressed genes (RPL13a, eEF1a, RPS4X) was
used for normalization of mRNA expression results.

doi:10.1371/journal.pone.0160110.g003

Table 3. Analytical performance of OPN assay.

INTRA-ASSAY VARIABILITY INTER-ASSAY VARIABILITY SENSITIVITY

OPN, ng/ml 2.58 ± 0.05 CV = 4.8% 2.64 ± 0.13 CV < 20% 0.6 ± 0.05

CV = Coefficient of Variation

doi:10.1371/journal.pone.0160110.t003
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Fig 4. Methodological evaluation of OPN assay. a) recovery test, evaluated adding known amounts ofOPN standard (0–32 ng/ml, 1:10 dilution) to a
plasma pool; b) dilution test, carried out using serial dilution of plasma pool.

doi:10.1371/journal.pone.0160110.g004

Fig 5. Comparison of OPN-a at protein and at mRNA level. Individual data plot of mRNA expression and protein concentration for VLP, DCM and ICM
groups (Black rhombus:mRNA espression, grey square:protein concentration, ng/ml).

doi:10.1371/journal.pone.0160110.g005
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OPN-a were inversely related to myocardial fibrosis in the presence of similar decay of systolic
function. We have detected larger myocardial deposits of type I collagen, fibronectin and fibro-
blasts in ICM rather than DCM hearts [31], in accord with previous studies [34–38]. Our data
are also consistent with proteomic analysis performed by us on the same LV samples [31],
which show the up-regulation of pro-apoptotic and pro-fibrotic factors in ICM failing hearts
with overt fibrosis (ICM). In addition, we argue that the proteolytic cleavage of OPN-a in
DCM samples may be independent on thrombin, which levels are similarly increased to those
of OPN-a. Thus, other cleavage factors may be involved. Interestingly, Kostin et al [39] have
demonstrated that human DCM failing hearts show 2-fold downregulation of cathepsin-D
expression. Cathepsin D, an aspartyl lysosomal protease, is able to cleave OPN-a at the level of
RGD domain [40], an arginine-glycine-aspartic acid domain that is also recognized by throm-
bin and plasmin [40], cell surface integrins expressed by fibroblasts [41] or non-RGD integrins,
such as α4β1 and α9β1 [3, 42,43]. In our samples, the LV cathepsin-D expression was up-regu-
lated in ICM rather than DCM failing hearts [31]. The above mentioned proteomic findings
well support the detection of higher levels of OPN-a in the presence of higher thrombin levels
in our DCM failing hearts. Therefore, thrombin may be considered only an hallmark of myo-
cardial pro-inflammatory response, in accord with previous study [44].

Fig 6. Histology. Histological representation (Masson’s trichrome) of left ventricular mesocardial and sub-endocardial layers in DCM (left) and ICM
(right).

doi:10.1371/journal.pone.0160110.g006
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Finally, we have also shown a different trancriptomic profile of myocardial OPN splice vari-
ants, OPN-b and -c, in DCM and ICM hearts with similar global cardiac function. Even if myo-
cardial OPN-b and–c were undetectable in DCM patients, the gene expression of OPN variants
in ICM failing myocardium was lower than VLP tissue, used as normal tissue. Our data are in
accord with other study showing that cardiovascular OPN-b and–c mRNAmay be inversely
expressed compared to OPN-a [45].

Even if we don’t have data on protein detection of OPN-b and -c isoforms, we have first
proof of modulation of myocardial OPN mRNA alternative splicing in failing myocardium,
which is one of the main post-transcriptional modifications. In fact, the alternative splicing is
the major mechanism of generating protein diversity from a limited amount of DNA and it is
difficult to assess by Western blotting. It is an important mechanism to increase structural and
functional diversity of proteins and the splicing variants deriving from this gene mechanism
could provide diagnostic and or therapeutic targets for several pathologies.

Conclusions
We have examined, for the first time, the expression profile of thrombin and splice variants
OPN-a, -b and–c mRNA in the failing human LV myocardium of different origin. We have
observed that OPN isoforms and thrombin mRNA levels are related to the aetiology rather
than the magnitude of LVEF reduction and of fibrosis in end-stage failing heart. In addition,
the OPN-a levels are independent on thrombin mRNA myocardial levels. Finally, levels of
OPN-b and–c mRNA are reduced in the presence of high OPN-a levels. Further studies con-
ducted in a large population cohort will be necessary to assess the reliability of OPN splice vari-
ants levels as hallmarks of ECM turnover or repair activated by cardiomyocytes in different
clinical setting.

Limitations
Even if previous study has demonstrate that there is a high transcriptional similarity between
left ventricular and right atrial myocardial samples [46], one of the main limitations of our

Fig 7. Hystology. Histological representation (Masson’s trichrome) of auricle in VLP.

doi:10.1371/journal.pone.0160110.g007
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study is the lacking of IVS samples of normal subjects to be used as control tissue. Undoubt-
edly, direct measurement of the OPN-a and thrombin mRNA in normal tissue collected from
human IVS septum would be ideal, but the sampling of LV tissue from normal human hearts
raises major ethical concerns. In addition, the normal donor hearts unsuitable for transplanta-
tion are not proper control tissue as frequently exposed to high dose of catecholamines before
the explantation.

The lack of additional tissue from IVS samples limited the analysis of OPN-b and -c protein
levels, while the detection of changes in myocardial expression of these genes remains original.

Finally, the enrolment of a larger group of patients will be helpful to further strengthen our
conclusions even if the differences between our data are already statistically relevant. Further
investigations will better define the relationship between myocardial and plasmatic levels of
OPN splice variants in HF patients of different origin.
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