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The PuK workshop is the regular meeting of the special interest group on planning, 

scheduling, design and configuration within the AI section of the GI. It has an amazing long 

tradition and goes into its 27th edition. 

As in previous years the PuK workshop brings together researchers and practitioners of the 

areas of planning, scheduling, design and configuration. It provides a forum for the exchange 
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attract the workshop to practitioners in the field, who are invited to present practical problems 

and to discuss their experiences, concepts, and ideas. It is also intended to stimulate a mutual 

exchange with the researchers on our common field's future directions. Thus, a second main 

goal of this part of the workshop is the support of research planning. Besides this, further 

submissions from the general topics mentioned above are welcome. 
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Experience Based Task and Environment Specification
for Plan-based Robotic Agents

Hartmut Messerschmidt, Jan Winkler, Asil Kaan Bozcuoğlu, and Michael Beetz

Universität Bremen, 28359 Bremen, Germany

Abstract. Planning for autonomous robots differs from classical planning, be-
cause actions are not behaving deterministically. In a real world environment
there are too many parameters and too many cases to handle before the plan
execution. Nevertheless planning is needed to give robots the flexibility to work
in unknown or not completely known environments. Plan execution can be seen
as a flexible way of handling unknown and/or changing environments. Here, dur-
ing runtime, sensors and reasoners can be asked to give necessary information.
To cover the uncertainty in the real world, there is need for more than pure log-
ical reasoning . In order to close this gap, we want to extend the CRAM Plan
Language (CPL) so that it can ask probabilistic world models which is the best
way to continue under the current conditions and beliefs. These world models
should be ultimately learned and trained autonomously by the robot. For this the
robot needs to log data in an appropriate way as well as use this data to infer a
world model and train it. But it is not feasible to learn one model of the whole
world. It looks much more promising to use a combined approach of defining and
learning a hierarchical model of the world. To start with small parts during a plan
execution and learning methods to increase the success rate for these parts can be
a starting point. In this paper a first proof of concept of how such a model can
automatically be found and learned is presented.

1 Introduction

A fundamental problem during plan execution is a strict parameterization even before
the execution starts [5]. Thus, such plans can fail to accomplish goals if any of the
used assumptions change even marginally. Therefore today’s cognition-enabled robotic
agents are expected to competently and autonomously perform complex tasks with as
little information as possible. The information given by humans is mostly partial and
vague, leaving room for interpretation and misunderstanding. As robotic agents cannot
fall back to common-sense knowledge, they must be equipped with extensive reasoning
mechanisms to interpret the input data and act accordingly. I.e., they need to find the
correct parameters for a task or give up as the task description is too ambiguous and
there are no knowledge sources to reduce its ambiguity.

For example, consider a fetch and place scenario, where the robot needs to find,
grasp and bring an object to a given location. The task seems rather easy at first; take a
specified object and place it at a specified location. But there are many unknown parts
before and during execution of the plan. Depending on the object its most probable
location in the environment has to be determined, after the object is found it has to be



picked up, so some reasoning about possible grasping points has to be done and so on
and so forth. The task description might be something like "Place my cup on the table".
The first step is then to get knowledge about the user issuing this task, to find out to
whom the cup belongs, and finally where it is. After finding the cup it has to be picked
up. For this a good place to stand and a grasping point on the cup have to be found.

CRAM1 offers a solution to some of these issues by introducing vague parameter
descriptions in the form of designators. The description might change over time (when
the world changes or more knowledge is discovered), and so the designator carries the
current belief about its assigned object. In the CRAM framework, the plans consist of
an ultimate goal, high-level subtasks with their own subgoals, and low-level predicates
for describing the environmental properties and self-information such as joint angles. In
this paper, we propose an integrated learning scheme for CRAM that even goes beyond
this approach by gaining “experiences” from previous plan executions. By doing that,
we aim at a more adaptive and less parametrized, i.e., less environment specific, plan
execution in the future. In other words, we want the robot to infer environment-specific
parameters by using the perception data, the learned model, knowledge bases, and the
supplied plans to include only high-level information about the task at hand.

In order to achieve this, we log the low-level predicates (i.e., events and plan deci-
sions) during the execution. These predicates, as the feature set for our learning scheme,
describe the respective state of the environment and the performance of the robot when
executing any given task. For learning we label these samples as positive or negative
samples either manually or by getting the result of the corresponding task from CRAM.

An additional advantage of our scheme is the integration with the powerful robotic
knowledge tool KNOWROB2, which supplies us with high-level information such as
which objects are needed for a particular task or which results should be expected after
executing an action.

In the fetch and place example, the CRAM system can query the knowledge base
or the learned probabilistic model to improve its plan execution success rate. That rea-
soning is a main part in plan execution is shown in Figure 1.

This paper is devided into two parts: In Sections 2 and 3 the CRAM and KNOWROB
systems are explained, respectively. Then an idea on how to extend this current structure
with learning from experience, that is logged data, is given. The second part of this paper
shows in an example that automatic preprocessing and learning from logged data works
and how it can be done. It closes with a conclusion and an outline of further steps to
include this mechanisms into the CRAM system.

2 Robot Plan Language in the CRAM System

The CRAM plan execution engine is being developed as an abstraction layer between
generic, parameterizable high-level plans, and robot-specific driver modules. One of its
goals is to supply comprehensive language features for defining these high-level plans,
transparently incorporating capabilities from external components such as perception
or knowledge processing systems.

1 Cognitive Robot Abstract Machine, www.github.com/cram-code
2 www.knowrob.org
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Fig. 1. Flow of control when executing a generalized fetch and place plan. The fetch and place
plans are separated and show the five different phases during plan execution.

2.1 Plan Execution with Vague Task Descriptions

In the CRAM system, two major factors are taken into account when trying to execute
any given task. First, all plans consist of plan primitives, i.e. goals, from a common plan
library. These goals include for example perceiving objects (perceive-object),
and grasping an object (object-in-hand). As these goals picture very complex
behavior, their exact execution strongly depends on the objects acted on, the environ-
ment, and the given task. This leads to the second major factor, i.e. vague information,
which we introduce as the designator concept [3] [4] [1]. Designators are descriptive
data structures that transport partial, or complete information about objects, tasks, and
locations. In the case of the goals introduced earlier, this concept can be applied for per-
ceiving unknown objects as (perceive-object (an object ((on table)
(color red)))) which will then detect all red objects on a given table. Here,
the perceive goal interprets the given description and triggers a perception system
based on the parameters inferred from the object description. The same concept applies
to grasping and placing objects, taking mass ((an object ((mass 2.0))) →
its heavy, use both arms to grasp) or semantic grasping information ((an object
((handle ...)))→ grasp at handle) into account.



2.2 Reasoning about Plan Parameters

When inferring the missing parameters for any task to perform, two knowledge sources
are currently queried. One is the built-in situational intelligence inside the CRAM sys-
tem, defining standard behavior for all plan primitives in the plan library. These include
what steps need to be taken when grasping, which perception module to trigger, and
when to give up on a task due to frustration limits (retry counts or serious failures such
as losing an object from the gripper). This also includes robot-architecture dependent
behavior, such as correct grasping poses for a robot-specific gripper or the correct carte-
sian margins for navigation to not hit furniture in the environment.

The second source of information is an external knowledge base, which holds se-
mantic and task-specific information about objects. Information stored here are CAD
models for identification and pose estimation, semantic handle information, the domi-
nant color of the object, or functional properties, such as the mass, or parts of the object
to avoid when touching it.

A third very promising channel for behavioral information and decision triggering
is the machine learning approach. As most decisions in CRAM are based on the reso-
lution of Prolog patterns and have a set of parameters that must be interpreted, trained
decisions based on the current set of parameters can be treated just as the introduced
information sources and integrated in the same way.

3 KNOWROB: A Knowledge Processing and Inference Tool for
Robots

As robots are envisioned to take a role in everyday life as we, human actors do, they
must process the knowledge flow of the outer world and reason about it using this flow
so that they can accomplish complex tasks in an adaptive manner. To gain processing
and reasoning abilities, a robot should be able to match the knowledge with its inner
symbolic representations. In [7], Tenorth et al. proposed the KNOWROB tool to address
this need.

KNOWROB is based on SWI Prolog and its API for semantic web which is used for
accessing the Web Ontology Language-based ontologies using Prolog. The knowledge
bases consisting of these ontologies can either be queried by the robot control program
or by the user via the command line input.

The CRAM system exploits KNOWROB as a source of knowledge. In the fetch and
place scenario it could ask whether there is an instance of a cup that belongs to the
human who issued the command. When there is such an instance, the designator for
this cup is updated such that it contains the information from KNOWROB. This might
be a description, a point-cloud or object size. To find this cup, KNOWROB can have
information about probable places to find a cup, like a cupboard or the dishwasher, and
places for this specific cup like the office desk of the human.

4 Using Probabilistic Models to Improve Planning Success

The example task fetch and place cannot be solved solely by logical information sources.
The best location to stand while grasping a cup or the best grasping point can be saved



in the knowledge base, but even small changes in the environment will then lead to a
re-computation of the location to grasp and for each cup grasping points have to be
predefined.

A more general way is to use machine learning to learn probabilistic models to give
good estimates of grasping positions or grasping points. In this way the robot can get
more experienced after several attempts of performing a task. This "experience" is given
by logging data while performing a task, and aligning this data with the belief state of
the CRAM system. This labeled data is used to learn and train a world model.

This world model is hybrid, because it consists of discrete values like the belief state
of the CRAM system, the task the robot is currently performing, and continuous parts
like the robots joint configuration over time. While the discrete parts can be seen as
contexts, the continuous part is used to learn a probabilistic model w.r.t. this contexts.

5 Description of the Use-Case: Pancake Baking

In the second part of the paper we give an example use-case which illustrates how the
proposed methodology works. We concentrate on the learning from logged data and the
preprocessing needed to get good results. For this purpose, we choose pancake making
as a more simple scenario. In the task of pancake making we concentrate on the subtask
flipping a pancake with a spatula, which is fundamental in baking a pancake.

In this example, we collect the training data for the proposed learning scheme us-
ing the physics simulation Gazebo and a computer game environment in which human
testers do various flipping actions with a Hydra joystick. The pancake dough is repre-
sented by small spheres and these spheres are glued together (determined by a signal
from the human) after the dough was poured on the oven. After this the tester has to
take the virtual spatula and use it to flip the pancake around.

6 From Plan Logging to Training Data

Within CRAM and KNOWROB learning and reasoning with symbolic data is already
done. On the other hand, continuous sensor data offers much more learnable data, but
it might be too much to learn anything useful from it.

Our approach is to use the symbolic data available to annotate the continuous data.
From the task at hand, e.g., flipping a pancake, it follows that the pancake has to be
moved and that a tool, e.g., a spatula, is needed for this.

The recorded data is in the form of a trajectory. For each timestep the position and
orientation of the tool is recorded. When dealing with different time steps, a normal
procedure is to align them using dynamic time warping [2]. During this, two different
trajectories are considered similar when they have performed roughly the same move-
ment, even if one was slower or started at a different time. Unfortunately, this method
cannot be used in our case, because the success of pushing the spatula under the pan-
cake depends on the speed of the movement. Performing this task too slow pushes the
pancake off the oven.

But without this alignment, it is difficult to learn anything from these trajectories.
Another way are Hidden Markov Models to couple time steps together [6]. Our solution



is to take small subsets of the trajectory and learn these critical parts of the task. This
approach is more accurate than Hidden Markov Models. A manual selection of time
spans makes the problem easier, but in contrast to automatic selection doesn’t scale
well and is task dependent. To automatically find critical subtasks or time spans we can
use knowledge that is already being inferred during plan execution. With the robotic
knowledge tool KNOWROB the objects considered relevant for this task can be inferred.
For flipping the pancake it is the pancake itself and the spatula. The robot needs to detect
these objects in order to perform the flipping, so its locations over time can be logged.
The relevant objects given by the knowledge base can always be logged, in any plan
execution.

When we consider the distance between the relevant objects and the (relative) move-
ments of pairs of relevant objects, we can detect periods in the task execution. A period
is for example a time frame where the relative movement of two objects stays the same.
These slices are not manually assigned and this method works for any tasks, where we
have relevant objects, either beforehand or by a reasoning mechanism started from the
CRAM system to infer the best plan.

The sequence of subtasks can then be (manually) annotated or critical subtasks can
be learned.

In some tasks even the outcome of the subtasks can be determined automatically:
A flipping must contain a movement of the pancake and in order to get the upper side
down it has to be lifted. We can take the positions and orientations of the spatula and
the pancake and derive from that if the lifting of the pancake was successful.

7 Evaluation

As mentioned in Chapter 5, we tested the proposed learned scheme in the physics sim-
ulation Gazebo and a computer game environment in which human testers do various
flipping actions with a Hydra joystick. In this environment, the pancake was modeled
as a circular colony of 80 small spheres.

Fig. 2. Successful (left) and unsuccessful (right) attempts of pushing the spatula under the pan-
cake.

In the experiments, the human tester made ten flipping actions out of which five
were successful while the rest failed for various reasons (Figure 2). During each try, the



pose of the spatula and all spheres involved in the pancake model were recorded with
a frequency of 10 Hz, for a duration of about 40 seconds. Prior to learning, we process
this information and compute the mean of the spheres’ positions (which corresponds to
the position of the pancake), the velocity of the spatula, the mean velocity of spheres
(which corresponds to the velocity of the pancake) and the relative speed between the
spatula and the pancake. In the end, we have the spatula’s position and velocity, the
pancake’s position and velocity, and the relative velocity between two objects as the
feature set for each time frame (Table 1).

Table 1. Features created and used in learning part. Each feature consists of three coordinates.

Feature Name
Spatula position
Mean of sphere positions
Relative speed of spatula w.r.t. pancake
Spatula velocity
Mean of sphere velocity

Now there are two ways to learn from these examples: Either each time step is
considered as a single instance, or the action sequence is taken into account as a whole.
For the second case, as time warping is not an option as explained above, each action
sequence is truncated to the minimal number of time steps such that each sample has the
same length. For longer time lines, the success value of some sequences would follow
immediately from the height (z-coordinate) of the pancake.

In both cases, a whole sequence was used either completely as training or test
data. This is to overcome the overfitting by “learning” single time lines. K-Nearest
Neighbor(K-NN) would then be as good as any Machine Learning approach.

8 Results

In this section, we first give the learning results of the case that each action (time line)
is taken as one instance. Then, we give the results of the second case in which each time
step is a separate instance. For the first case, we use K-nearest neighbor algorithm with
3-fold cross validation for assessing the learning performance.

The prediction rate of the first case is given in Table 8. In this case, we use ReliefF
feature selection prior to learning to analyze how different number of features will effect
the performance. ReliefF assigns a relevancy weight for each feature. By assigning
different relevancy thresholds, we train K-NN with different number of features. When
we do not give any threshold, we have relatively low learning performance due to the
curse of dimensionality. On the other hand, if we set the threshold too high, we do not
have enough features to describe the whole situation. This also causes a decrease in



Table 2. Learning performance of the proposed scheme in the experiments for the first case in
which we use whole sequences of a flipping action together with different ReliefF thresholds.

Relevancy Threshold Number of Features Precision Recall
None 210 0.708 0.7
0 110 0.917 0.9
0.3 16 0.904 0.9
0.48 5 0.833 0.8

learning. For only ten instances other machine learning approaches are not considered
useful.

Finally, in the second case we have used Bayes Nets, Decision Trees (J48) and K-
Nearest Neigbor (KStar). For 80 percent training data the results are really good, even
perfect for decision trees. This is misleading, because there is only one successful and
one failed sequence for testing, even though there are more than 500 instances in the test
set. Therefore we also used two sequences for training and eight for testing. The results
are shown in Table 8. With more test data and less training data K-NN is outperformed
by Bayes Nets and Decision Trees.

Table 3. Learning performance of the proposed scheme in the experiments when each time step
of a flipping action is a seperate instance

Learning Algorithm Split ratio (Train/ Test) Precision Recall
K-NN 80%/20% 0.99 0.99
Bayes Net 80%/20% 0.985 0.984
Decision Tree 80%/20% 1 1

K-NN 20%/80% 0.844 0.801
Bayes Net 20%/80% 0.945 0.946
Decision Tree 20%/80% 0.909 0.864

9 Conclusion and Future Work

We successfully used automatically segmented time steps to learn Bayes Nets and De-
cision Trees with high precision and recall. In the future we want to use methods from
this proof of concept to learn from CRAM log data and incooperate the results into
the plan execution. We want to learn two things for subtasks: The possible outcome,
hopefully even before the task is nearing its end, and structural features of these sub-
tasks. The latter to alert the system when crucial parts are missing, or are performed in a
wrong ordering, according to our experience. With more logging and annotation by the
knowledge base, the CRAM belief state and the automatic selection of time spans, we
want to construct an automaton, such that each state of this automaton is a probabilistic
reasoning mechanism and the time spans and the context determine, which state to use
and how to change the current state.
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Abstract. We consider configuration planning in a real assistive system that
consists of multiple robots embedded in a smart environment. Our configura-
tion plans are fine-grained action plans which specify the causal, temporal, re-
source and information dependencies between individual sensing, computation,
and actuation components. Components reside on-board the robots, like cam-
eras or manipulation components, or they may be distributed in the environment,
like presence sensors or elevators. Our configuration planner exhibits closed-loop
performance, thanks to the fact that plans are represented as constraint networks,
which are shared between the planner and the executor and updated during exe-
cution. This mechanism allows our system to react to contingencies at execution
time. We illustrate our system on both simulated and real experiments performed
in the context of a large EU project on robotics for elderly assistance.

Keywords: configuration planning, multi-robot systems, smart environments,
planning with time and resources, elderly assistance

1 Introduction

Like several current projects, the Robot-Era EU project [1] aims at using robots to pro-
vide physical and cognitive assistance to elderly people. Differently from other projects,
however, Robot-Era aims at creating holistic robotic services that go beyond the con-
fines of a single house. To do this, Robot-Era relies on a variety of robots that operate in
different environments (in the home, in the residential area, in the streets of the town)
and collaborate among them and with the sensors and devices distributed in a smart
environment. Context-dependent services are implemented by planning the individual
activities and the cooperation patterns of the robots and devices available in the Robot-
Era system.

As a typical example, a plan for a “deliver meal to Sven” service may start by
using an outdoor transportation robot to bring the meal from the producer to the door of
the residential building; the outdoor robot would then transfer the meal to a local indoor
robot that moves into the building and delivers the meal to the door of Sven’s apartment;
the indoor robot would interact with sensors and actuators in the environment to, e.g.,
operate the elevator, to avoid a corridor where some people are having a conversation,
and to know when Sven is available to receive the meal. In this paper, we discuss the
requirements and the development of a planner able to generate plans like the one above.



II

The field of AI planning has progressed enormously since its beginnings as an
exploration of logical reasoning for robots [11]. Yet, if you look inside a typical au-
tonomous robot today you will see little evidence of this progress, and you may suspect
that planning in AI has focused on issues which are not the main concerns of robot
builders. Indeed, if you ever tried to program a robot to accomplish tasks in unstruc-
tured, everyday environments, you would expect an AI planner to provide the ability to
act as a knowledge-based controller [5] for the robot: given a goal, the planner contin-
uously synthesizes actions which bring about the achievement of the goal as the state
of the world changes during execution. This entails (requirement 1) that the planner
should possess knowledge and reason about the physical aspects of the domain, like
time, space, and resources. In the real world, plans are subject to execution-time per-
turbations, such as actions taking longer than expected, resources not being available,
or assumed causal requirements not being met. Therefore, the planner should (require-
ment 2) generate plans that enable a sufficient degree of flexibility to accommodate
these contingencies during execution whenever possible. Furthermore, robots today are
not monolithic entities, rather a collection of sensors, drivers, actuators, and informa-
tion processing components. This entails that the planner should (requirement 3) decide
how to compose these enabling modules while taking into account their physical and
logical dependencies.

Today’s planners exhibit some of the above features. For instance, a considerable
amount of work has been done to integrate metric time into planning [17, 8, 14, 9, 3, 10].
Including time has allowed some planning systems to perform continuous planning, i.e.,
continuously synthesize plans as new goals and contingencies become known. Execu-
tion monitoring techniques have been developed which leverage the explicit temporal
representation of these plans [12, 24, 23], thus effectively providing a few examples of
planning for real robots. Although these constitute important steps towards obtaining
planners that are appropriate for robots, they address only partially (i.e., in the tempo-
ral dimension) requirements 1 and 2. Some work has addressed the issue of including
further dimensions into the planning problem, e.g., resources. In addition to address-
ing more fully requirement 1, some of these approaches [18, 13, 15] would also be well
suited for use in closed loop with actuation and perception, as they maintain a certain
level of least-commitment with respect to the timing of plan execution. Nevertheless,
they are not proposed nor evaluated as closed-loop planning systems. [20] propose an
extension of the IxTeT planner [15] for closed loop execution monitoring with resources
— however, the technique is exemplified on single robot navigation tasks.

Much of the work in AI planning has focused on action planning [16] — however,
when planning for robots, actions are not the only aspect upon which a planner should
reason. We are interested in configuration plans, namely fine-grained plans for collec-
tions of multiple robots and devices [27] which specify the causal, temporal, resource
and information dependencies between individual sensing, computation, and actuation
components. Configuration planners have been proposed before: the AsymTre archi-
tecture [25] considers a set of robots equipped with software modules, called schemas,
able to sense and modify the environment. Schemas are interconnected through in-
formation channels which are decided by a planning process. Further refinements of
this idea are presented by [28, 26]: the former introduces metrics to estimate the in-
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formation quality gathered by the chosen configuration, while the latter provides more
sophisticated techniques to gather the needed information. This approach focuses on
information exchange ignoring resource and temporal requirements. Furthermore, re-
lying on an auction procedure to incrementally build the plan, this architecture doesn’t
manage explicitly the presence of shared actions in the planning process. In fact, as the
authors point out, the backtracking procedure involving these schemas could lead to
problems that are currently not addressed. [29] address a limited form of resource rea-
soning, however the method does not provide closed-loop execution monitoring; inter-
estingly, dependencies are used to enforce a basic form of temporal constraints, namely
precedences. An explicit representation of the world is instead considered by [21]: dif-
ferently from AsymTre, this system leverages a propositional logic description of the
world based on standard planning techniques. Reasoning is performed by coupling an
action planner together with a configuration planner: the former provides a sequence of
actions that have to be further refined by the latter; in turn, the configuration planner
chooses software modules to activate and decides the related communication linkage.
This system allows a detailed representation of the evolution of the world — however,
it is decoupled from execution, and therefore suffers from many of the aforementioned
problems. An improved version [22] takes into account multiple goals through a merg-
ing sequence. Similarly to AsymTre, the approach lacks the ability to perform on-line
plan monitoring and execution.

In this paper, we propose a configuration planner which fulfills the above require-
ments by combining three enabling factors: (1) representing a (configuration) plan as
a constraint network; (2) defining the configuration planning process as a search in the
space of such networks; and (3) sharing the constraint network between the planner and
the executor.

2 Representation

Our approach is grounded on the notion of state variable, which models elements of the
domain whose state in time is represented by a symbol. State variables, whose domains
are discrete sets, represent parts of the real world that are relevant for the configuration
planner’s decision processes. These include the actuation and sensing capabilities of the
robotic system, and the various aspects of the environment that are meaningful. E.g., a
state variable can represent the capabilities of a robot, whose meaningful states might
be “navigating” or “grasping”, or the interesting states of the environment, e.g., a light
which can be “on” or “off”. Let S be the set of state variables in a given application
scenario.

Some devices require resources when they are in given states. A reusable resource
has a limited capacity which is fully available when not required by a device. An exam-
ple is power: a maximum wattage is available, and devices can simultaneously require
power so long as the sum of requirements is less than the maximum power. We denote
withR the set of all resource identifiers, and with Cap(R) ∈ N the capacity of R ∈ R.

Devices in our domain may serve the purpose of providing or requiring information
contents, e.g., a software component requiring range data from a laser range finder, and
providing localization information. We denote IC the set of all information contents.



IV

2.1 Representing Configuration Plans and Goals

We employ activities to represent predicates on the possible evolution of state variables:

Definition 1 An activity a is a tuple (x,v, I, u, In,Out), where

– x ∈ S = {Scontr ∪ Sobs ∪ Sint} is a state variable, where
• Scontr is the set of controllable variables
• Sobs is the set of observable variables
• Sint is the set of internal variables

– v is a possible state of the state variable x;
– I = [Is, Ie] is a flexible temporal interval within which the activity can occur,

where Is = [ls, us], Ie = [le, ue], ls/e, us/e ∈ N represent, respectively, an interval
of admissibility of its start and end times;

– u : R → N specifies the resources used by the activity;
– In ⊆ IC is a set of required information contents;
– Out ⊆ IC is a set of provided information contents.

The notation (·)(a) indicates an element of the five-tuple pertaining to activity a.
The pair (x(a),v(a)) asserts a particular state v of the state variable x; I(a) represents
possible temporal intervals of occurrence of the state v(a) of state variable x(a). Note
that a pair of activities (a, b) is possibly concurrent if I(a) ∩ I(b) 6= ∅. A pair (a, b) of
possibly concurrent activities thus indicates that x(a) and x(b) can be, respectively, in
states v(a) and v(b) at the same time.

The notation (·) is used to indicate the unspecified parameters of an activity — e.g.,
(x, ·, I, u, In,Out) denotes a predicate asserting that state variable x can be in any state
during interval I .

Activities can be bound by temporal constraints, which restrict the occurrence in
time of the predicates. Temporal constraints can be of two types. Binary temporal con-
straints in the form aC b prescribe the relative placement in time of activities a, b —
these constraints are relations in Allen’s Interval Algebra [2], and restrict the possible
bounds for the activities’ flexible temporal intervals I(a) and I(b). Unary temporal con-
straints in the form C a prescribe bounds on the start or end time of an activity a —
these constraints are commonly referred to as release time constraints and deadlines.
Allen’s interval relations are the thirteen possible temporal relations between intervals,
namely “precedes” (p), “meets” (m), “overlaps” (o), “during” (d), “starts” (s), “finishes”
(f), their inverses (e.g., p−1), and “equals” (≡).

When state variables are used to represent a system, the overall temporal evolution
of such system is described by a constraint network:

Definition 2 A constraint network is a pair (A, C), where A is a set of activities and C
is a set of constraints among activities in A.

A constraint network can be used to represent a configuration plan. Configuration
plans are said to be feasible if they are consistent with respect to the resource, state, and
temporal requirements. Specifically,

Definition 3 A configuration plan (A, C) is feasible iff:
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– the constraint network is temporally consistent, i.e., there exists at least one allo-
cation of fixed bounds to intervals such that all temporal constraints are satisfied;

– activities do not over-consume resources, i.e.,
∑

a∈A u
(a)(R) ≤ Cap(R),∀R ∈ R,

where A ⊆ A is a set of possibly concurrent activities;
– activities do not prescribe that state variables assume different states in overlap-

ping temporal intervals, i.e., v(a) 6= v(b),∀(a, b) ∈ A × A : x(a) = x(b), where
A ⊆ A is a set of possibly concurrent activities.

A goal for a configuration planning problem is also represented as a constraint net-
work, therefore expressing temporal, resource, state and information requirements. Typ-
ically, a goal (Ag, Cg) is an under-specified configuration plan. Initial conditions are
feasible sub-networks of a goal.

2.2 Domain Representation

Given a goal (Ag, Cg) and a configuration plan (A, C) which contains the goal, the
feasibility of the configuration plan is not a sufficient condition for achieving the goal.
This is because feasibility does not enforce information and causal requirements. The
way these requirements are to be enforced depends on a domain:

Definition 4 A configuration planning problem is a pair ((Ag, Cg),D), where (Ag, Cg)
is a goal constraint network, andD is a domain. The domain is a collection of operators,
which describe the information and causal dependencies between activities.

Definition 5 An operator is a pair (a, (A,C)) where

– a = (x,v, ·, ·, ·,Out) is the head of the operator;
– A = Ap ∪Ae ∪ {a} is a set of activities, where
• Ap is a set of preconditions, i.e., requirements, in terms of state variable values,

information input, and resource usage, needed to achieve the state v(a) of state
variable x(a) and to produce Out(a);

• Ae is a set of effects, i.e., state variable values entailed by the achievement of
state v(a) of state variable x(a);

– C is a set of temporal constraints among activities in A.

Computing a configuration plan consists in selecting and instantiating operators form
the domain into the goal constraint network. Unlike in classical planning, the relevance
of an operator (denoted γ−1 in [16]) is not determined by unifying effects with sub-
goals, rather by the unification of an operator’s head with a sub-goal. The head of an
operator is a non-ground activity which describes the value of a state variable and the
information provided as a result of applying the operator. Preconditions and effects are
used during execution, the former to determine the control action(s) given to the system
(input regulation problem), the latter as a part of state estimation (see next Section).

An operator can specify the information requirements needed for achieving a par-
ticular functionality. For instance, the MoveFromTo operator, which does not provide
any information content, requires the current position of the robot:
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a = (MoveFromTo,kitchen livingroom, ·, ·, ·, ∅)
Ap = {a1, a2}, Ae = {a3}, where

a1 = (·, ·, ·, ·, ·, {position})
a2 = (RobotLocation,kitchen, ·, ·, ·, ·)
a3 = (RobotLocation, livingroom, ·, ·, ·, ·)

C = {a d a1, a m−1
a2, a m a3}

The head of the operator is a predicate on the functionality MoveFromTo. The operator
is considered relevant when the constraint network contains an activity
(MoveFromTo,kitchen livingroom, ·, ·, ·, ·), i.e., when a (sub-)goal stating that the
robot must move from the kitchen to the living room is present in the network. The
operator also prescribes the temporal relations that must exist between the activities,
namely that the MoveFromTo functionality should occur during the availability of the
position data (a d a1), that it should be met by the precondition of the robot being in
the kitchen (am−1 a2), and that it meets the effect of the robot being in the living room
(am a3).

An operator can also represent a means to achieve information requirements. For
example, the operator

a = (VisualSLAM, running, ·, u(CPU) = 10, ·, {position})
Ap = {a1, a2}, Ae = ∅, where

a1 = (·, ·, ·, ·, ·, {range data})
a2 = (·, ·, ·, ·, ·, {ref frame})

C = {a d a1, a m−1
a2}

specifies one way to achieve the necessary information requirement (position) for the
MoveFromTo operator, namely through visual SLAM. This localization functionality
requires (1) a functionality which provides range data, (2) a reference frame for the
computation of the position estimate, and (3) 10% of the CPU resource. Also, the
operator states that range data should be available during the entire duration of the
localization process, and that the reference frame is needed at the beginning of the
process.

The above operator does not specify how to obtain needed information inputs. For
instance, range data might be provided through the following operator:

a = (StereoCamDriver, on, ·, u(Cam1) = 1, ·, {range data})
Ap = {a1}, Ae = ∅, where a1 = (Light, on, ·, ·, ·, ·)
C = {a d a1}

An operator may also specify that the reference frame is obtainable by invoking a func-
tionality of the stereo camera’s pan-tilt unit:

a = (PanTilt, return ref frame, ·, ·, ·, {ref frame})
Ap = ∅, Ae = ∅, C = ∅

The above operators can be applied to obtain a configuration plan from the following
goal constraint network:
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A = {a0 = (MoveFromTo,kitchen livingroom, I0, ·, ·, ·)},
C = ∅

A particular application of the above operators may refine the given constraint network
to the following:

A = {a0 = (MoveFromTo,kitchen livingroom, I0, ∅, ∅, ∅)
a1 = (VisualSLAM, running, I1, u(CPU) = 10, {ref frame, range data}, {position})
a2 = (RobotLocation,kitchen, I2, ∅, ∅, ∅)
a3 = (RobotLocation, livingroom, I3, ∅, ∅, ∅)
a4 = (StereoCamDriver, on, I4, u(Cam1) = 1, ∅, {range data})
a5 = (PanTilt, return ref frame, I5, ∅, ∅, {ref frame})
a6 = (Light, on, I6, ∅, ∅, ∅)},

C = {a0 d a1, a0 m−1
a2, a0 m a3, a1 d a4, a1 m a5, a4 d a6}

This network represents a temporally consistent configuration plan in which resources
are never used beyond their capacity, and state variables are never required to assume
different values in overlapping temporal intervals. The plan is therefore feasible. Fur-
thermore, the plan contains activities providing the required information contents as
determined by the operators in the domain. However, not all causal dependencies are
necessarily achieved by construction. If, e.g., the initial condition does not state that
the light is on, the configuration planner would regard the activity a6 as yet another
sub-goal to satisfy, and might do so through the following operator:

a = (Light, on, ·, ·, ·, ·)
Ap = ∅, Ae = {a1}, where a1 = (LightController, on, ·, ∅, ·, ·)

C = {a p−1
a1}

This operator models an actuation process (Light represents an environment variable),
and its application would refine the configuration plan by adding an activity a7 =
(LightController,on, I7, ∅, ∅, ∅) to the network, along with the constraint a6 p−1 a7,
prescribing that the LightController be in state on before the light is required to be on.
Note that the light control functionality has no information requirements (In(a1) = ∅).

3 Planning in Closed Loop

Fig. 1 provides an overview of our approach. As a whole, our architecture can be seen
as a controller for a dynamical system: the controlled system consists of the robot(s) and
the environment in which they operate; the controller is composed of an observer and a
regulator, and has the task to dispatch actuation commands to the controlled system so
that its observed state S coincides with the desired state G.

At the core of the controller is a shared constraint network. The observer adds ac-
tivities and temporal constraints to this network, which represent the current state of
the environment as provided by sensors: if a sensor sensorX reports a new reading v at
time tnow, the observer inserts a new activity (sensorX,v, I, ∅, ∅, ∅) and adds a temporal
constraint restricting the beginning of I to be tnow; if the reading of sensorX changes,
the previous activity is constrained to end at tnow and another activity is started.
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Fig. 1. Overview of the control architecture.

The regulator includes the configuration planner and a dispatcher that sends exe-
cutable actions to the system. An action (deviceY,v, [Is, Ie] , ·, ·, ·) is considered exe-
cutable when two conditions are met: (1) tnow ≤ min{Is}; and (2) its observable pre-
conditions are verified in the current state. The latter condition is tested by attempting to
unify each activity representing such a precondition with a sensed activity produced by
the observer. If unification fails, the precondition is delayed by inserting a temporal con-
straint, and re-evaluated at the next iteration. If both conditions are met, the command
v is transmitted to deviceY.

The configuration planner, which implements the control logic of the regulator, is
a search procedure which continuously modifies the constraint network so as to guar-
antee the presence of a feasible plan given the goal G = (Ag, Cg). The resulting con-
straint network represents one or more temporal evolutions of the state variables that
guarantee the achievement of G under nominal conditions. In this sense, our planner
follows a least commitment principle. Feasible and goal-achieving configuration plans
are obtained by means of five interacting solvers. (1) a temporal solver propagates tem-
poral constraints to refine the bounds [ls, us], [le, ue] of activities, and returns failure
if and only if temporally consistent bounds cannot be found; (2) a resource scheduler,
which chooses and posts to the network temporal constraints so as to remove temporal
overlap from sets of over-consuming, possibly concurrent activities [4]; (3) a state vari-
able scheduler, which exploits the same constraint-posting mechanism of the resource
scheduler to ensure that activities do not prescribe conflicting states in overlapping in-
tervals; (4) an information dependency reasoner, which instantiates relevant operators
(in the form of activities and temporal constraints) so as to enforce the information de-
pendencies modeled in the domain; (5) and a causal planner, which instantiates relevant
operators so as to enforce the causal dependencies modeled in the domain.

Temporal feasibility enforcement is not subject to multiple choices, as the temporal
constraints form a Simple Temporal Problem [6], which is tractable. Tractability also
holds for information dependencies, which in our approach constitute an acyclic propo-
sitional Horn theory. Conversely, all other reasoners must search in the space of alter-
native choices for conflict resolution (e.g., alternative sequencing decisions, alternative
operator selections). All of these choices are seen as decision variables in a high-level
Constraint Satisfaction Problem (CSP). Given a decision variable d, its possible values
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constitute a finite domain δd = {(Ad
r , C

d
r )1, . . . , (A

d
r , C

d
r )n}, whose values are alter-

native constraint networks, called resolving constraint networks. The individual solvers
are used to determine resolving constraint networks (Ad

r , C
d
r )i, which are iteratively

added to the goal constraint network (Ag, Cg).

Function Backtrack(Ag, Cg): success or failure

d← Choose((Ag, Cg), hvar)1
if d 6= ∅ then2

δd = {(Ad
r , C

d
r )1, . . . , (A

d
r , C

d
r )n}3

while δd 6= ∅ do4
(Ad

r , C
d
r )i ← Choose(d, hval)5

if (Ag ∪Ad
r , Cg ∪ Cd

r ) is temporally consistent then6
return Backtrack(Ag ∪Ad

r , Cg ∪ Cd
r)7

δd ← δd \ {(Ad
r , C

d
r )i}8

return failure9

return success10

In order to search for resolving constraint networks, we employ a systematic search
(see Algorithm Backtrack), which occurs through standard CSP-style backtracking.
The decision variables are chosen according to a variable ordering heuristic hvar (line 1);
the alternative resolving constraint networks are chosen according to a value ordering
heuristic hval (line 5). The former decides which (sub-)goals to attempt to satisfy first,
e.g., to support a functionality by applying another operator, or to resolve a scheduling
conflict. The latter decides which value to attempt first, e.g., whether to prefer one
operator over another (recall that there may be more than one decomposition for a given
activity.) Note that adding resolving constraint networks may entail the presence of new
decision variables to be considered.

The possible values for resource contention or unique state decision variables are
temporal constraints. In particular, our framework relies on the earliest time timelines
to assess both resource over-consumption and multiple overlapping states. Values for
information decision variables are ground operators, as shown in the previous Section.
Lastly, values for causal decision variables are either ground operators, or unifications
with activities that already exist in the constraint network. Search uses unification to
build on previously added activities — e.g., leveraging that the light has already been
turned on to support a previously branched-upon causal dependency. Unification also
allows to accommodate on-going sensing and execution monitoring processes during
planning. For instance, (Light,on, I(a), ∅, ∅, ∅) may be supported by unification with
(Light,on, [[0, 0][13, 13]], ∅, ∅, ∅) which models the temporal interval within which a
light source was sensed.

Since the configuration planner is in a closed loop with the system (through the
observer and dispatcher), modifications of the constraint network necessary to achieve
the goal can occur whenever a disrupting renders the network an infeasible plan. Note
that due to the presence of the above solvers in this loop, the modifications made to the
network in the face of disturbances can take on the form of temporal propagation, re-
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source or state variable scheduling, or operator application, depending on the situation.
If temporal reasoning and scheduling fail, replanning is needed: the planner empties the
constraint network of all activities whose lower bound is greater than the current time,
and Algorithm Backtrack is re-invoked. Note that all activities representing opera-
tors currently under execution, as well as those already executed remain in the network,
as do all activities representing the sensed state of the physical world. As shown below,
this mechanism also enables to deal with dynamically posted goals.

4 Experimental Evaluation

We present two experiments describing distinctive features of our planner. The first
experiment demonstrates the ability to pursue multiple goals in a multi-robot system;
the second shows preliminary results achieved using real platforms.

4.1 Simulations

The first experiment has been carried out in the Gazebo simulator [19], and involves
two Turtlebot platforms4 in the following scenario:

Sven lives in an apartment with two robots. They can accomplish two tasks:
“throw garbage” and “deliver evening pills”. The “throw garbage” task con-
sists of bringing the garbage outside apartment. This task has to be accom-
plished after the user has had dinner, but no later than 22:00 since this is the
time when the garbage collector visits the building. The “deliver evening pills”
consists of bringing to Sven his pills after he is in bed, and stay there waiting
until he falls asleep since he occasionally needs some assistance after taking
the pills, e.g., to get some more water or to be escorted to the bathroom. Both
robots are equipped with a Kinect and a laser range-finder, and they may use
both for navigation. The Kinect is usually preferred since it uses less energy;
however, when the robots are colocated with Sven, the laser is preferred for pri-
vacy. Furthermore, since the kitchen is a cluttered environment, the two robots
cannot access it at the same time.

This simple scenario already introduces specific aspects that are very important in
robotic domains: deadlines (throw garbage task), use of shared resources (the pres-
ence of Sven and the use of the Kinect are mutually exclusive, as well as access to the
kitchen) and alternative ways to achieve tasks (either laser- or Kinect-based navigation).

Fig. 4.1-b shows the plan generated by the planner (note that only Robot1 is em-
ployed). The robot will first help Sven and then throw away the garbage. Unfortunately,
this evening Sven is particularly interested in a TV program, and will go to bed later.
Therefore, the plan will be subject to an initial delay which will ultimately make the
plan fail due to the missed deadline. When the delay becomes apparent, the planner
decides to use both robots, as shown in Fig. 4.1-a, so as to meet the deadline. Note that
the two robots’ tasks are partially concurrent (due to shared resources).

4 www.ros.org/wiki/turtlebot simulator
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4.2 Real scenario

The following experiment illustrates a scenario which constitutes one of the eleven
case-studies used in a long-term field evaluation within the EU project Robot-ERA [1].
Robot-ERA aims at studying the application of robotic technologies for elderly care. In
the following, we consider a delivery groceries case similar to the example discussed in
the Introduction:

Sven has ordered some goods at the nearby supermarket; he lives at the first
floor of a building where a condominium robot, coro, and an outdoor robot,
oro, provide services for the inhabitants. oro is instructed to go the supermarket
to collect goods prepared by the clerk. When coming back, it will pass the
goods to coro at the entrance of the building. coro will then deliver the goods
to Sven; it will interact with the elevator in order to move across floors inside
the building.

In this simple scenario we have not modeled unexpected contingencies, but the plan-
ner was in charge of coordinating real platforms and an actuator, i.e., the planner directly
controls the elevator door and its position. The experiment was executed at the Domo-
Casa laboratory of the Biorobotics center of Scuola Superiore SantAnna in Peccioli,
Italy, (Fig. 3-a,b), using the first (Fig. 3-c) and ground (Fig. 3-d) floors of the building.

The indoor robot is a Scitos G5 (Fig. 3-c) from MetraLabs, while the outdoor robot
is a DustCart (Fig. 3-d) from Robotech Srl: both robots are equipped with ROS 5. The
planner communicates with the robots and elevator controller through the PEIS Middle-
ware, that provides a transparent communication system among heterogeneous devices
[27].

Fig. 3. a) The Biorobotics Institute where the experiments have been executed. b) Satellite image
of the Biorobotics Institute. c) ROS map of the first floor. d) ROS map of the ground floor. In both
maps the locations taken into account in the plan are reported.

The plan generated is depicted in Fig. 4 while video of the experiment is available
at http://youtu.be/jY74RtufYIo.

5 Conclusions and future work

In this paper we have provided preliminary experiments using a real robotic system
orchestrated by a configuration planner. The latter provides the capability of reason-

5 http://www.ros.org/
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Fig. 4. Oro moves from the entrance (ENT) to the shop (SH) to fetch goods (Oro takeGoods)
and then comes back. In the meanwhile Oro moves from its location (E1) to the elevator at the
first floor (L1); the elevator brings Oro to the ground floor (L0). Then, it exits the elevator (E0)
and finally moves to ENT where the exchange occurs (Coro goodsExch and Oro goodsExch).
After the completion of the exchange, Coro goes upstairs to Sven’s apartment (A) to deliver the
package (Goal). The motion from one location to another is handled by the MoveTo functionality
that can either exploit the Kinect or Laser modules. Note how travelling to and from the elevator
implies the opening of the elevator door, and that moving the elevator requires the door to be
closed.

Fig. 5. Left: coro - a SCITOS-G5 from Metralabs; Center: doro - a DustBot from Robotech Srl;
Right: The robots exhanging goods.

ing about several features that are particularly important in robotics, namely temporal
aspects, shared resources, causal relations and reaction to unexpected contingencies.
While the real experiment is focused on the integration between the planner and real
devices, the distinctive features of the planner are demonstrated by simulations. Fur-
ther experiments aimed at evaluating our system’s performance in real scenarios in the
presence of contingencies have been performed and are reported in [7]. Future work
points towards several directions: theoretical studies will be conducted to study the per-
formance of the planner with respect to the use of variable and value ordering heuristics
aimed at guiding the search during the plan generation. In order to enhance the effec-
tiveness of the system both in the planning and execution phases, context recognition
modules devoted to reason about human activity will be integrated. Furthermore exten-
sive experiments regarding the aforementioned case studies will be conducted exploit-
ing a richer set of sensors and actuators.
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Abstract. This paper studies how to solve classical planning problems
with preferences by means of a partial-order causal-link (POCL) planning
algorithm. Preferences are given by soft goals – optional goals which
increase a plan’s benefit if satisfied at the end of a plan. Thus, we aim
at finding a plan with the best net-benefit, which is the difference of the
achieved preferences’ benefit minus the cost of all actions in the plan
that achieves them.
While many approaches compile soft goals away, we study how they can
be addressed natively by a POCL planning system. We propose novel
search and flaw selection strategies for that problem class and evaluate
them empirically.

1 Introduction

Partial-order causal-link (POCL) planning in the tradition of SNLP [16] and
UCPOP [17] provides plans as partially ordered sets of actions where causal
dependencies between the actions are explicitly shown. This allows for flexibility
with respect to the order in which actions can finally be executed. Moreover, it
enables a human user to grasp the causal structure of the plan and to understand
why certain actions are part of it [22]. Therefore, POCL planning is particularly
suitable when plans have to be generated that are not to be carried out by
machines or systems, but by humans. This appears, for example, in applications
that realize support of the elderly [1,7,19] or provide assistance in some daily
routines [5,6]. Plan quality is of particular importance in this kind of applications,
since plans have to be “accepted” by the user which is more likely if they respect
the individual’s personal preferences.

In this paper, we address POCL planning with preferences by optimizing
the net-benefit of solutions. In net-benefit planning [11], a classical planning
problem is augmented by a set of soft goals: state features one would like to
see satisfied in the final state produced by a solution plan, but if they are not,
the plan is still regarded a valid solution. Each soft goal has a certain benefit
which has a positive impact on the solution quality; every action contained in the
solution decrements the respective quality, however. Thus, the goal is to find a
solution to a planning problem that satisfies the preferences to the largest extent
while taking into account the negative impact, like costs or time consumption,
of the actions necessary to achieve them. This way, individual user preferences
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can be defined through soft goals with a corresponding (individual) benefit. We
describe these preferences by arbitrary formulae over state features, so-called
simple preferences.

In the literature, several kinds of preferences like simple preferences, state
trajectory constraints, and action occurrences have been addressed. Many plan-
ning systems exist capable of handling such preferences and implementing vari-
ous paradigms and search algorithms including hierarchical task network (HTN)
planning [15,24], search in the space of states [2,3,8], and search using binary de-
cision diagrams [10]. While several of these approaches keep the explicit represen-
tation of the preferences, other approaches suggest to compile them away [9,14].
This allows to use any planning system without making any changes due to the
presence of preferences. If one does not compile the preferences away, one can
either select a subset of the optional planning goals before the planning process
and regard all of them as non-optional [23], or one keeps the preferences and
decides during the planning process on which preference to work on, as it is
done in this work. Not compiling away preferences but addressing them natively
allows to incorporate a human user into the planning process, s.t. he can actively
influence the planning process [21].

In our setting, a problem specification is given in terms of a POCL problem.
The preferences are specified by so-called at-end preferences, as described in
pddl3 [11], the language for the fifth International Planning Competition (IPC-
5). An at-end preference (or simple preference) is an arbitrary formula over
state features which should hold at the end of a plan if possible. We developed a
POCL planning algorithm that is capable of solving this kind of problems. Each
preference is transformed into disjunctive normal form (DNF). Our algorithm
employs two different strategies to handle disjunctive preferences. Furthermore,
several flaw selection strategies for planning with preferences were implemented.
We evaluated these strategies on a large number of problems and show how they
influence planning performance.

2 Problem Setting

POCL planning performs search in the space of plans. A plan P in POCL plan-
ning is a tuple (PS, V, C,≺). PS is a set of labeled plan steps, i.e., each plan
step l:o consists of a (partially) instantiated operator o and a label l ∈ L to dif-
ferentiate between multiple occurrences of the same operator, L being an infinite
set of label symbols. For the sake of simplicity, we refer to a plan step l:o by l.
Operators are defined as usual, consisting of a precondition and an effect, each
of which is a conjunction of literals. A ground operator is called an action and
every action a has an associated cost, denoted by cost(a). V is a set of variable
constraints v ◦ x with v being a variable and ◦ ∈ {=, 6=} denoting a co- or a
non-co-designation with x, x being an object or another variable. Please note
that the variable constraints V can be interpreted as a constraint satisfaction
problem (CSP) in which domains of the variables are the available objects. C is
a set of causal links. A causal link (l, φ, l′) denotes that the precondition literal
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φ of plan step l′ is an effect of plan step l and that φ is supported or protected
that way. Causal links are used to ensure that all preconditions of all plan steps
in a plan are satisfied in the state in which they are to be executed. The set ≺ of
ordering constraints (l, l′), l, l′ ∈ L is used to resolve conflicts occurring during
search.

A POCL planning problem π is a tuple (O, Pinit), where O is the set of
available operators and Pinit is the initial plan. The initial plan contains two
artificial actions l0:init and l∞:goal which encode the initial state and the goal
description, respectively: l0 has no precondition and the initial state as effect,
whereas l∞ has no effect and the goal description as precondition. Initially,
(l0, l∞) ∈ ≺ and during planning all inserted plan steps are inserted between
these two actions.

A plan Psol = (PS, V, C,≺) is called a solution of π if and only if the following
criteria hold:

1. Psol is a refinement of Pinit = (PS′, V ′, C ′,≺′), i.e., PS ⊇ PS′, V ⊇ V ′, C ⊇
C ′, and ≺ ⊇ ≺′,

2. every precondition is protected by a causal link, i.e., for every precondition
literal φ of any plan step l:o ∈ PS there is a plan step l′:o′ ∈ PS, s.t.
(l, φ, l′) ∈ C,

3. no causal links are threatened, i.e., for each causal link (l, φ, l′) ∈ C the
ordering constraints ≺ and variable constraints V ensure that no plan step
l′′:o′′ ∈ PS with an effect ¬ψ can be ordered between l and l′, s.t. ¬φ is
unifiable with ¬ψ,

4. the ordering constraints and causal links are free of contradiction, i.e., ≺ does
not contradict the ordering induced by C and ≺ does not induce cycles, and

5. Psol is ground, i.e., each variable in V has a domain of size 1.

Please note that these syntactical solution criteria ensure that every lineariza-
tion of the plan steps in Psol that is compatible with its ordering constraints is
an action sequence that is executable in the initial state and leads to a state
satisfying the goal description.

In addition to a planning problem π, we are given a set of preferences P, each
of which is an arbitrary formula over state features. The function b : P → R maps
each preference p to its benefit b(p). The preferences follow the semantics of the
at-end preferences described in pddl3. Thus, a solution Psol satisfies a preference
p if and only if every linearization of the actions in Psol that is compatible with
its ordering constraints generates a state s such that s satisfies p.

Let Psol = (PS, V, C,≺) be a solution to the planning problem π. We are
interested in finding good solutions w.r.t. action costs and satisfied preferences.
To that end, the solution quality is defined by its net-benefit netBen(Psol) :=∑
p∈P(Psol )

b(p) −
∑
a∈PS cost(a), where P(Psol) denotes the set of preferences

satisfied by Psol .
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3 A POCL Algorithm for Planning with Preferences

In this section, we introduce our POCL planning algorithm (cf. Alg. 1) that is
capable of solving problems containing simple preferences.

Algorithm 1: Preference-based POCL algorithm

Input : The fringe fringe = {(Pinit , flawsh(Pinit), flawss(Pinit))}.
Output : A plan or fail.

1 best-netBen := −∞
2 best-P := fail

3 while fringe 6= ∅ and “no timeout” do
4 N := (P, flawsh(P ), flawss(P )) := planSel(fringe)
5 if flawsh(P ) = ∅ and netBen(P) > best-netBen then
6 best-netBen := netBen(P)
7 best-P := P

8 f := flawSel(flawsh(P ) ∪ flawss(P ))
9 fringe := (fringe \ {N}) ∪ resolveFlaw(N, f)

10 return best-P

Alg. 1 is a standard flaw-based POCL algorithm, meaning that every violation
of a solution criterion is represented by a so-called flaw. More precisely, for every
plan component that is involved in the violation of solution criteria 2. to 5. (cf.
previous section), like a precondition of a plan step that is not yet protected
by a causal link, one flaw is introduced to the set of all flaws of the current
plan. Hence, a plan is a solution if there are no flaws. The main procedure
consequently follows the idea of (1) selecting a promising search node/plan from
a search fringe, (2) select a flaw for the current plan, and (3) resolve the selected
flaw using all possible plan modifications and insert the resulting successor plans
into the fringe; this is also the step, where new flaws are calculated. This loop
is continued until the search space is exhausted or some timeout criterion is
satisfied (cf. line 3).

Our algorithm still follows that basic procedure; however, there are important
additional considerations one has to make, since we want to search for a solution
with the best net-benefit, which imposes certain problems to standard flaw-based
POCL algorithms.

To be able to search for plans which satisfy preferences, we need to include
them in the plan structure. To that end, we first normalize the preferences by
transforming them into DNFs. Then, we alter the structure of the artificial goal
action l∞, s.t. it additionally contains all preferences. As our POCL planning
algorithm is based on the concept of flaws, we include additional flaws for the
unsatisfied preferences. However, since these flaws do not violate a solution crite-
rion, they must be distinguishable from the “ordinary” ones. Hence, we differen-
tiate between two classes of flaws: hard flaws, as they were already described in
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the beginning of this section, and soft flaws, which indicate the non-satisfaction
of a preference. The test for a solution is then performed purely based on the
set of hard flaws (cf. line 5).

Alg. 1 has two “decision” points: (1) which search node/plan to work on and
(2) given a search node, which flaw should be resolved next and how will it be
resolved. The implementation of the first decision point defines the main search
strategy. A reasonable strategy is A* with some heuristic judging the quality
or goal distance of a plan. Hence, this heuristic should incorporate both action
costs and preferences. We developed such a heuristic in previous work [4] and
thus focus on the second decision point in this paper: the flaw selection in the
presence of preferences (cf. line 8).

The question which flaw to resolve next is of major importance for the per-
formance of any POCL planner, as the order in which flaws are selected directly
influences the produced search space. Hence, several papers address the problem
of finding appropriate flaw selection functions in POCL planning [12,13,18,20],
but none is tailored to the selection of soft goals. The specification and empirical
evaluation of flaw selection strategies for POCL systems in the presence of soft
flaws is thus one of our main contributions.

The question how to resolve soft goals rises from two sources: First, a soft
flaw does not need to be resolved and must consequently be treated differently
than a hard flaw. Second, since soft flaws are represented as a DNF of literals in
this work, many standard flaw selection strategies are not applicable anymore,
since they are based on flaws being single literals.

4 Soft Flaw Resolution Strategies

The function resolveFlaw(N, f) in line 9 of Algorithm 1 calculates all successor
plans that resulted from addressing and/or resolving the previously selected flaw
f in the plan P of the current search node N = (P, flawsh(P ), flawss(P )).

An important observation when planning in the presence of soft flaws is
that it is not sufficient to alter the POCL solution criterion from “there are
no flaws” to “there are no hard flaws” (cf. line 5). Note that the flaw selec-
tion is not a backtrack point, as in standard POCL planning (without op-
tional goals), all flaws need to be resolved and hence the actual order is ir-
relevant for completeness. Since working on a preference is optional, select-
ing and resolving a soft might invalidate completeness; hence, one must be
able to ignore a soft flaw in order to maintain completeness. Thus, given a
search node N = (P, flawsh(P ), flawss(P )) and a soft flaw f , the function
resolveFlaw(N, f) must also include (P, flawsh(P ), flawss(P ) \ {f}). Other-
wise, the choice to work on the soft flaw f could have the effect that certain
solutions might not be found. Please note that this observation generalizes to
POCL planning with soft flaws and is thus not specific to the case in which a
preference is an at-end preference in DNF.
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Given an unsatisfied preference p in DNF, there are several possibilities how
to work on p, i.e., how to define the function resolveFlaw(N, f) for a search
node N containing the soft flaw f , which represents p.

We evaluated two approaches called the split strategy and the no-split strat-
egy. The general idea of the split strategy is to prevent the system from working
on different disjuncts within the same preference. The no-split strategy, on the
other hand, does allow to work on different disjuncts within the same plan.

4.1 The Split Strategy

The idea behind this strategy is to prevent the search process to work on different
disjuncts in order to safe unnecessary search effort, as a preference in DNF is
satisfied is a single disjuncts satisfied – protecting literals in other disjuncts is
thus unnecessary search effort.

Let p = ϕ1∨· · ·∨ϕn with ϕi = ψi1 ∧· · ·∧ψim be a preference that has never
been addressed before, i.e., the corresponding soft flaw f has never been selected
by the flaw selection function flawSel. Let N = (P, flawsh(P ), flawss(P )) and
f ∈ flawss(P ).

When f is selected the first time, resolveFlaw(N, f) = {N ′, N1, . . . Nn},
where N ′ = (P, flawsh(P ), flawss(P ) \ {f}) for the reason of completeness,
and Ni = (Pi, flawsh(P ), flawss(P )), and Pi being P with p being set to ϕi.

When f is selected, but not for the first time, resolveFlaw(N, f) produces
all possibilities to protect an unprotected literal of the conjunction ϕi = ψi1 ∧
· · · ∧ ψim . The literal to be protected is chosen by the flaw selection function
defined in the next section. The flaw f is removed from the current plan under
consideration as soon as every literal in ϕi is protected by a causal link.

4.2 The No-Split Strategy

As opposed to the last strategy, this one does allow to work different disjuncts
within the same preference. While this strategy does allow for plans containing
redundant plan steps and causal links, it shows advantages in terms of flexibility.

Let p be in DNF and f be the corresponding soft flaw. When we do not
perform splitting into different conjunctions, N ′ = (P, flawsh(P ), flawss(P ) \
{f}) ∈ resolveFlaw(N, f) for N = (P, flawsh(P ), flawss(P )) and f being
selected for the first time is not a sufficient criterion for completeness. Although
it is still a necessary criterion, we also have to take into account p’s disjunctive
structure as follows: Let f and, in particular, the literal ψij be selected by the
flaw selection function. Now, we distinguish two cases: Either some literal in the
disjunct ϕi in which ψij occurs1 was already selected before or ψij is the first
literal selected in ϕi. In the former case, resolveFlaw(N, f) contains all plans
resulting from protecting ψij . In the latter case, this set additionally contains P
but with p modified by ϕi set to false.

1 For the sake of simplicity we assume that there is exactly one disjunct in p containing
ψij . The described procedure is easily adapted to the general case.
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Example Let p = ψ11 ∨ (ψ21 ∧ψ22) be a preference in the solution plan P with
none of its literals being protected by a causal link. Further, let f be the soft flaw
representation of p. Let us assume that P can not be developed into a solution
if ψ21 is protected by a causal link, but there are solutions if protecting ψ11 . Let
us further assume the flaw selection function flawSel estimates ψ21 to be the
most promising literal hence selecting f and, in particular, ψ21 . By assumption,
none of the successor plans of P can be developed to a solution. However, we lose
completeness, since there are solutions if protecting only ψ11 , but not protecting
ψ21 . To solve that problem it is sufficient to allow ignoring disjuncts in the same
way as we allow ignoring a complete preference: When addressing the disjunct
(ψ21 ∧ ψ22) the first time, we additionally add P ′ to the search fringe in which
p is replaced by p′ = ψ11 .

5 Flaw Selection Functions

In line 8 of Algorithm 1, the function flawSel selects a flaw from the current set
of hard and soft flaws. In our experiments we observed the hard flaw selection
strategy Least-Cost Flaw Repair (LCFR) [13] being one of the best performing
strategies. It always selects a flaw f with a minimal number of refinement op-
tions |resolveFlaw(N, f)|. When selecting a soft flaw, we followed that idea and
implemented a strategy selecting a soft flaw with a minimal estimated branch-
ing factor taking into account that each preference is a disjunction (possibly
with exactly one disjunct if the split strategy is used) of conjuncts. We call the
resulting strategies LCFRDNF -

∑
, LCFRDNF -

∏
, and LCFRDNF - min, which

estimate the branching factor based on the “cheapest” disjunct of a preference
based on summarizing, multiplying or taking the minimal number of refinement
options for each literal in that disjunct.

Let p = ϕ1∨· · ·∨ϕn with ϕi = ψi1∧· · ·∧ψim and f the soft flaw representing
p in plan P . For ◦ ∈ {

∑
,
∏
,min}, we define the preference-based Least-Cost

Flaw Repair strategy as follows:

LCFRDNF - ◦ (N, f) := min
ϕi

◦
ψij

|resolveFlaw(N, f(ψij ))|

where f(ψij ) is the flaw representation of the literal ψij assuming only unpro-
tected literals are taken into account.

Example LCFRDNF - min always selects a soft flaw for which there is a literal
with a minimal number of supporters. However, it completely ignores the size of
the conjuncts. For example, let p = ψ11∨(ψ21∧ψ22) and |resolveFlaw(N, f(ψ))|
be 2, 1, and 3 for ψ := ψ11 , ψ21 , and ψ22 , respectively. Then, LCFRDNF - min = 1
selecting its argmin ψ21 ignoring that ψ22 also has to be supported afterwards in
order to fulfill p. The other two strategies try to address that overly optimistic
estimate of LCFRDNF - min by taking into account all conjuncts. In the previous
example, LCFRDNF -◦ = 2 for ◦ ∈ {

∑
,
∏
} and the argmin ψ11 .
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6 Evaluation

In this section, we evaluate the POCL algorithm using the presented strategies.
Our evaluation focuses on three different questions:

– Does one of the two proposed soft-flaw-resolution techniques perform better
than the other?

– In which order should hard and soft flaws be addressed, i.e., is it beneficial
to work on preferences before a plan is a solution?

– Is there a soft flaw selection strategy that outperforms the others?

6.1 System Configuration

Since we want to maximize the net-benefit, we define our plan selection strategy
planSel to prefer a plan P with maximal value of netBen(P) − h(P ), where
h(P ) is a heuristic function estimating the action costs necessary to achieve all
hard goals of the current partial plan P . To be more precise, h is a variant of the
additive heuristic for POCL planning, as described by Younes and Simmons [25].
Our heuristic guidance is thus limited to action costs ignoring the benefit of
satisfied preferences. Although we developed a heuristic for POCL which takes
into account optional goals [4], we did not yet implement that heuristic.

We observed that our plan selection strategy planSel selects a unique plan
in only 45% to 70% of all cases. To avoid a random plan selection among the
plans with an identical value of netBen(P)− h(P ), we can define an arbitrarily
long sequence of tie-breakers. In all experiments, the following sequence was
used: Maximize Benefit (MB) → Minimize Costs (MC) → Minimize # Ignored
Preferences (MIP). MB maximizes the sum of the fulfilled preferences’ benefit
thus ignoring action costs, whereas MC minimizes these costs. MIP minimizes
the number of ignored preferences to favor plans which still have the potential
to fulfill more preferences. If a unique plan was still not found, a plan is picked
at random.

The function flawSel consists of two parts: a sequence responsible for se-
lecting a hard flaw and a sequence for selecting soft flaws, respectively. The hard
flaw selection sequence flawSelh is always given by Prefer Hard Flaw (PHF) →
LCFR → Earliest Flaws (EF) → Select Hard Flaw (SHF). PHF always favors
a hard flaw before a soft flaw. As a consequence, a soft flaw can only be selected
by a subsequent flaw selection if the current plan has no more hard flaws. LCFR
minimizes the branching factor as explained in the previous section. EF favors
flaws which were introduced earlier to a plan and SHF finally ensures that some
(random) hard flaw is selected if the choice is still invariant. For the selection
of soft flaws, we use the flaw selection sequence flawSels given by Prefer Soft
Flaw (PSF) → LCFRDNF -◦ → Select Soft Flaw (SHF). PSF and SSF behave
exactly as PHF and SHF , but for soft instead of hard flaws. LCFRDNF -◦ is one
of the three strategies as described in the last section.

In the empirical evaluation, we tested the system configuration with the
planSel function as described above and all of the following combinations:
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– For f being a soft flaw, resolveFlaw(P, f) implements the Split Strategy or
the No-Split Strategy.

– The flaw selection strategy flawSel is one of the sequences flawSelhs :=
flawSelh → flawSels and flawSelsh := flawSels → flawSelh

Note that there are actually six flaw selection sequences, as each soft flaw
selection sequence contains the LCFRDNF -◦ strategy which is parametrized by
◦ ∈ {

∑
,
∏
,min}. In total, we thus evaluated twelve different configurations for

every problem instance.

6.2 Benchmarks and Empirical Results

To compare our proposed strategies we evaluated two very different domains.
The first domain is a randomly generated domain to obtain a very large

set of problem instances containing many preferences. The problems specify a
goal description (which is not mandatory in preference-based planning) and 100
preferences consisting of 2 to 5 disjuncts, each of which being a conjunction of
size 2 to 6.

The second domain is from an ongoing research project in which we want
to assist a human user in every-day life situations like making appointments
and going shopping. The domain is still rather small and only a few problem
instances are modeled, yet. Each of them specifies certain mandatory goals as
well as between 5 and 12 preferences in DNF.

Random Domain In the random domain, we evaluated 120 problem instances
and report the net-benefit of the best plan found by each configuration within a
search space limit of 10,000 plans.

We visualize our results by means of a histogram (Fig. 1a) and a boxplot
(Fig. 1b). Please note that we only include 6 of the 12 tested configurations
in the diagrams because we observed one configuration parameter to cause the
search to fail consistently: In only two problem instances our system was able
to find a solution if the flaw selection sequence flawSelsh is chosen, in which
soft flaws are resolved first. This perfectly meets our expectations, as it is more
important to have any valid solution than to have a plan that satisfies many
preferences but does not respect the solution criteria.

Comparing the remaining configurations, we clearly notice that using the
split strategy in combination with LCFRDNF - min is dominated by all other
configurations (Fig. 1b). In almost 100 of all 120 instances it produced only
plans with a net-benefit of up to 250, the mean being close to zero and 2200
being the maximal net-benefit achieved by any configuration/problem instance
combination (Fig. 1a). This result is not surprising, since further investigation
shows that both the split strategy as well as the LCFRDNF - min strategy perform
worse than their respective counterparts.

When we compare the different versions of the soft flaw selection strategy,
the results clearly show that LCFRDNF - min is dominated by LCFRDNF -

∑
and

LCFRDNF -
∏

(Fig. 1b). While the latter two strategies mostly find solutions of
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similar quality (Fig. 1a), the respective difference between these two strategies
and LCFRDNF - min is quite large. This observation is quite plausible as the
LCFRDNF - min strategy completely ignores the size of the conjunctions upon
which it bases its decision.

The last remaining comparison is the one between the two flaw resolution
strategies split and no-split. We observe that the no-split strategy clearly domi-
nates the split strategy. We do not know the cause of that behavior and regard
this result as the most interesting one. A possible cause of the advantage of the
split strategy might be its flexibility to switch to some disjunct after the planner
already worked on another. Consider the following example for clarification: Let
P be a solution and p = ψ11 ∨ (ψ21 ∧ψ22) one of its preferences. Further, let ψ22

be the literal selected by the flaw selection function. Let us assume protecting
ψ22 introduced new hard flaws which need be to be resolved first before the
planning system can continue working on p. Let P ′ be the resulting solution in
which ψ11 and ψ21 are still unprotected. Assuming that no solution exists if ψ21

is protected by a causal link, the only possibility for the split strategy to protect
ψ11 is to refine P which might take longer than refining P ′ or a plan along the
path from P to P ′.
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(a) Histogram for net-benefit.
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(b) Boxplot for mean value and distribu-
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Fig. 1: Fig. 1a shows the impact of the chosen configurations on plan quality
while Fig. 1b shows the distribution and mean value of the net-benefit of the best
solution found by the different configurations. s stands for the split strategy, no-s
for the no-split strategy and min, +, and ∗ stand for corresponding LCFRDNF -◦
soft flaw selection strategies, ◦ being min,

∑
, and

∏
, respectively.
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User Assistance Domain Because our domain models and corresponding
problem instances are quite small, optimal solutions can be found very fast.
Thus, we set a timeout of only 1.5 minutes and report the best net-benefit of
any solution and the current search space size when that solution was found.
Tab. 1 shows the results obtained by two runs taking the mean values.

Table 1: This table shows the impact of the different configurations (rows) on
different problem instances (columns) in the user assistance domain. netBen

denotes the net benefit of the best found solution and SS the size of the search
space when it was found. Configurations are named as in Fig. 1. hs stands for
the flaw selection function flawSelhs and sh for flawSelsh.

#1 #2 #3 #4 #5
netBen SS netBen SS netBen SS netBen SS netBen SS

s/min
hs 25 64194 10 786 7 184 2 5079 31 121
sh -42 1 0 1 7 294 0 1 0 1

s/+
hs 26 15908 20 658 12 272687 2 2223 31 125
sh -42 1 0 1 7 153 0 1 0 1

s/∗ hs 13 177 13 4705 12 418678 2 2223 31 123
sh -42 1 0 1 7 133 0 1 0 1

no-s/min
hs 28 1466 10 144 9 82561 2 1768 31 619
sh -42 1 0 1 7 76 0 1 15 285942

no-s/+
hs 17 134 20 442 7 94 2 1215 31 701
sh -42 1 0 1 7 100 0 1 0 1

no-s/*
hs 32 1776 15 243 7 82901 2 1215 31 116
sh -42 1 0 1 7 60 0 1 0 1

In the evaluation of the previous domain we were able to identify five very
clear observations. The results of the user assistance domain do not reproduce
these observations that clearly. In this domain, almost all configurations can
find optimal solutions; there are only a few deviations which can not justify any
conclusion.

However, our results do not contradict the previous observations as well, since
all configuration comparisons result more or less in a tie. Furthermore, there is
one observation that we can confirm very clearly. Preferring soft flaws before
hard flaws (strategy flawSelsh) is strongly dominated by the reverse ordering.
In almost all cases the best quality is significantly worse compared to the opposite
ordering. There is only one instance (cf. instance 3, last configuration), in which
flawSelsh explores less nodes than flawSelhs.

7 Conclusion & Future Work

In this paper, we introduced a POCL algorithm capable of solving problems
with (simple) preferences while optimizing their net-benefit. For selecting and
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satisfying a preference during planning, we developed three novel flaw selection
functions, which are based on a successful strategy known from (standard) POCL
planning without preferences. Furthermore, we addressed the question of how to
address preferences when they are represented in terms of a disjunctive normal
form. We evaluated these strategies empirically on two different domains.

Our empirical evaluation is still preliminary: So far, the plan selection strat-
egy does not take into account the preferences; future work will thus include an
empirical evaluation with a plan selection function guided by the preferences.
Furthermore, we did not evaluate problems from the IPC which also remains
future work.
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This work combines recent advances in combinatorial search under memory limitation, namely
bitvector and symbolic search. Bitvector search assumes a bijective mapping between state and
memory addresses, while symbolic search compactly represents state sets. The memory require-
ments vary with the structure of the problem to be solved.

The integration of the two algorithms into one hybrid algorithm for strongly solving general
games initiates a BDD-based solving algorithm, which consists of a forward computation of the
reachable state set, possibly followed by a layered backward retrograde analysis. If the main memory
becomes exhausted, it switches to explicit-state two-bit retrograde search.

We use the classical game of Connect Four as a case study, and solve some instances of the
problem space-efficiently with the proposed hybrid search algorithm.

1 Introduction

This works combines recent advances in AI search under memory limitation, namely bitvector search that
has been successfully applied in solving, e.g., Pancake Flipping [15], and Rubik’s Cube, Chinese Check-
ers [21], Nine-Men-Morris [13], Awari [19], or Checkers endgames [20]; as well as symbolic search,
which has been successfully applied in solving cost-optimal AI planning problems [9] and strongly solv-
ing general games [14].

Bitvector search [6] assumes a perfect hash function, in form of a one-to-one mapping between state
and memory address indices, so that each state only takes a constant number of bits (the state itself
is implicitly encoded in the memory address), while symbolic search [18] compactly represents and
progresses state sets usually represented in form of BDDs [5].

When addressing practical needs in the applications, the memory requirements for explicit-state
space search based on a bitvector encoding of the state space, and for a BDD-based symbolic state
space traversal based on a binary encoding of a state, vary with the structure of the problem to be solved.
The sweet spot of efficient space usage is mostly between the two extremes.

We will address the integration of the two algorithms into a single hybrid combined explicit-state and
symbolic search algorithm for strongly solving general games described in the game description language
GDL [17]. First, it initiates a BDD-based solving algorithm, which consists of a forward computation
of the reachable state set, followed by a layered backward retrograde analysis. Based on the players’
turn, for general two-player games the state space can become twice as large as the number of possible
game positions. As the state vector for the first player and the second player to move are interleaved, the
player’s turn can be found by looking at the mod 2 value of a state’s rank.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
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Figure 1: The Game Connect Four: The Player with the Pieces Shaded in Gray has Won.

For the BDD exploration and solving we will apply the layered approach that is described in [14].
After storing BDDs for each layer of the set of reachable states, the solving algorithm chains backward
layer by layer, with decreasing distance to the initial state instead of increasing distance to the goal states.
This way, the BDDs for all but the currently addressed layers can be flushed to and read from disk.

For the explicit-state space analysis we will use a bitvector-based retrograde analysis algorithm.
We achieve the connection from the explicit to the symbolic representation obtained in the reachability
analysis by applying efficient ranking and unranking with BDDs [7].

If the main memory requirements become exhausted, the hybrid algorithm switches to explicit-state
two-bit backward state space search. The BDD representation of the forward-layer that is currently
worked on in the retrograde analysis serves as a perfect hash function to address the index in the bitvector
with the state and to retrieve and reconstruct it from the index.

We use Connect Four as a case study, and solve some instances of the problem space-efficiently
with the proposed hybrid search algorithm. Moreover, we predict the search efforts needed for strongly
solving larger Connect Four problems with the approach.

The paper is structured as follows. First, we motivate the problem of limited main memory capac-
ity that we encountered, while trying to strongly solve the game of Connect Four with symbolic search.
Next, we introduce bitvector-based search as used in combinatorial games as well as ranking and unrank-
ing with BDDs. We then show how to combine the algorithm into one hybrid search strategy. Finally, we
provide initial experiments in smaller instances of the Connect Four problem, predict the search efforts
for solving larger instances, discuss the outcome and conclude.

2 Case Study: Connect Four

Although most of the algorithms are applicable to most two-player games, our focus is on one particular
case, namely the game Connect Four (see Figure 1). The game [2, 1] is played on a grid of c columns
and r rows. In the classical setting we have c = 7 and r = 6. While the game is simple to follow and
play, it can be rather challenging to win. This game is similar to Tic-Tac-Toe, with two main differences:
The players must connect four of their pieces (horizontally, vertically, or diagonally) in order to win and
gravity pulls the pieces always as far to the bottom of the chosen column as possible. The number of
states for different settings of c× r is shown in Table 1.

BDD search can efficiently execute a breadth-first enumeration of the state space in (7×6) Connect
Four [8]. Table 2 displays the exploration results of the search (derived on an Intel Xeon X5690 CPU
with 3.47 GHz and 192 GB RAM – forward search takes less than 16 GB). It has been formally shown
that – while the reachable set leads to polynomially-sized BDDs – the symbolic representation of the
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Table 1: Number of Reachable States for Various Connect Four Instances.
Layer 7×6 6×6 6×5 5×6 5×5

0 1 1 1 1 1
1 7 6 6 5 5
2 49 36 36 25 25
3 238 156 156 95 95
4 1,120 651 651 345 345
5 4,263 2,256 2,256 1,075 1,075
6 16,422 7,876 7,870 3,355 3,350
7 54,859 24,330 24,120 9,495 9,355
8 184,275 74,922 72,312 26,480 25,060
9 558,186 211,042 194,122 68,602 60,842

10 1,662,623 576,266 502,058 169,107 139,632
11 4,568,683 1,468,114 1,202,338 394,032 299,764
12 12,236,101 3,596,076 2,734,506 866,916 596,136
13 30,929,111 8,394,784 5,868,640 1,836,560 1,128,408
14 75,437,595 18,629,174 11,812,224 3,620,237 1,948,956
15 176,541,259 39,979,044 22,771,514 6,955,925 3,231,341
16 394,591,391 80,684,814 40,496,484 12,286,909 4,769,837
17 858,218,743 159,433,890 69,753,028 21,344,079 6,789,890
18 1,763,883,894 292,803,624 108,862,608 33,562,334 8,396,345
19 3,568,259,802 531,045,746 165,943,600 51,966,652 9,955,530
20 6,746,155,945 884,124,974 224,098,249 71,726,433 9,812,925
21 12,673,345,045 1,463,364,020 296,344,032 97,556,959 9,020,543
22 22,010,823,988 2,196,180,492 338,749,998 116,176,690 6,632,480
23 38,263,228,189 3,286,589,804 378,092,536 134,736,003 4,345,913
24 60,830,813,459 4,398,259,442 352,607,428 132,834,750 2,011,598
25 97,266,114,959 5,862,955,926 314,710,752 124,251,351 584,249
26 140,728,569,039 6,891,603,916 224,395,452 97,021,801
27 205,289,508,055 8,034,014,154 149,076,078 70,647,088
28 268,057,611,944 8,106,160,185 74,046,977 40,708,770
29 352,626,845,666 7,994,700,764 30,162,078 19,932,896
30 410,378,505,447 6,636,410,522 6,440,532 5,629,467
31 479,206,477,733 5,261,162,538
32 488,906,447,183 3,435,759,942
33 496,636,890,702 2,095,299,732
34 433,471,730,336 998,252,492
35 370,947,887,723 401,230,354
36 266,313,901,222 90,026,720
37 183,615,682,381
38 104,004,465,349
39 55,156,010,773
40 22,695,896,495
41 7,811,825,938
42 1,459,332,899
Σ 4,531,985,219,092 69,212,342,175 2,818,972,642 1,044,334,437 69,763,700

termination criterion appears to be exponential [10]. The set of all 4,531,985,219,092 reachable states
can be found within a few hours of computation, while explicit-state search took about 10,000 hours.

As illustrated in Table 3, of the 4,531,985,219,092 reachable states only 1,211,380,164,911 (about
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Table 2: Number of Nodes and States in (7×6) Connect Four (l layer, n BDD nodes, s states).
l n s
0 85 1
1 163 7
2 316 49
3 513 238
4 890 1,120
5 1,502 4,263
6 2,390 16,422
7 4,022 54,859
8 7,231 184,275
9 12,300 558,186

10 21,304 1,662,623
11 36,285 4,568,683
12 56,360 12,236,101
13 98,509 30,929,111
14 155,224 75,437,595
15 299,618 176,541,259
16 477,658 394,591,391
17 909,552 858,218,743
18 1,411,969 1,763,883,894
19 2,579,276 3,568,259,802
20 3,819,845 6,746,155,945
21 6,484,038 12,673,345,045

l n s
22 9,021,770 22,010,823,988
23 14,147,195 38,263,228,189
24 18,419,345 60,830,813,459
25 26,752,487 97,266,114,959
26 32,470,229 140,728,569,039
27 43,735,234 205,289,508,055
28 49,881,463 268,057,611,944
29 62,630,776 352,626,845,666
30 67,227,899 410,378,505,447
31 78,552,207 479,206,477,733
32 78,855,269 488,906,447,183
33 86,113,718 496,636,890,702
34 81,020,323 433,471,730,336
35 81,731,891 370,947,887,723
36 70,932,427 266,313,901,222
37 64,284,620 183,615,682,381
38 49,500,513 104,004,465,349
39 38,777,133 55,156,010,773
40 24,442,147 22,695,896,495
41 13,880,474 7,811,825,938
42 4,839,221 1,459,332,899

Total 4,531,985,219,092

26.72%) have been left unsolved in the layered BDD retrograde analysis. (More precisely, there are
1,265,297,048,241 states left unsolved by the algorithm, but the remaining set of 53,916,883,330 states
in layer 30 is implied by the solvability status of the other states in the layer.)

Even while providing space in form of 192 GB of RAM, however, it was not possible to proceed the
symbolic solving algorithm to layers smaller than 30. The reason is while the peak of the solution for
the state sets has already been passed, the BDDs for representing the state sets are still growing.

This motivates looking at other options for memory-limited search and a hybrid approach that takes
the symbolic information into account to eventually perform the complete solution of the problem.

3 Binary Decision Diagrams for Strongly Solving Games

Binary decision diagrams (BDDs) are a memory-efficient data structure used to represent Boolean func-
tions [5] as well as to perform set-based search [18]. In short, a BDD is a directed acyclic graph with
one root and two terminal nodes, the 0- and the 1-sink. Each internal node corresponds to a binary vari-
able and has two successors, one (along the Then-edge) representing that the current variable is true (1)
and the other (along the Else-edge) representing that it is false (0). For any assignment of the variables
derived from a path from the root to the 1-sink the represented function will be evaluated to 1.

Bryant [5] proposed using a fixed variable ordering, for which he also provided two reduction rules
(eliminating nodes with the same Then and Else successors and merging two nodes representing the same
variable that share the same Then successor as well as the same Else successor). These BDDs are called
reduced ordered binary decision diagrams (ROBDDs). Whenever we mention BDDs in this paper, we
actually refer to ROBDDs. We also assume that the variable ordering is the same for all the BDDs and
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Table 3: Result of Symbolic Retrograde Analysis (excl. terminal goals, l layer, n BDD nodes, s states).

l n (won) s (won) n (draw) s (draw) n (lost) s (lost)
...

...
...

...
...

...
...

29 o.o.m. o.o.m. o.o.m. o.o.m. o.o.m. o.o.m.
30 589,818,676 199,698,237,436 442,186,667 6,071,049,190 o.o.m. o.o.m.
31 458,334,850 64,575,211,590 391,835,510 7,481,813,611 600,184,350 201,906,000,786
32 434,712,475 221,858,140,210 329,128,230 9,048,082,187 431,635,078 57,701,213,064
33 296,171,698 59,055,227,990 265,790,497 10,381,952,902 407,772,871 194,705,107,378
34 269,914,837 180,530,409,295 204,879,421 11,668,229,290 255,030,652 45,845,152,952
35 158,392,456 37,941,816,854 151,396,255 12,225,240,861 231,007,885 132,714,989,361
36 140,866,642 98,839,977,654 106,870,288 12,431,825,174 121,562,152 24,027,994,344
37 68,384,931 14,174,513,115 72,503,659 11,509,102,126 105,342,224 57,747,247,782
38 58,428,179 32,161,409,500 44,463,367 10,220,085,105 42,722,598 6,906,069,443
39 19,660,468 2,395,524,395 27,201,091 7,792,641,079 35,022,531 13,697,133,737
40 17,499,402 4,831,822,472 13,858,002 5,153,271,363 8,233,719 738,628,818
41 0 0 5,994,843 2,496,557,393 7,059,429 1,033,139,763
42 0 0 0 0 0 0

has been optimized prior to the search.

BDDs have been shown to be very effective in the verification of hard- and software systems, where
BDD traversal is referred to as symbolic model checking [18]. Adopting terminology to state space
search, we are interested in the image of a state set S with respect to a transition relation Trans. The
result is a characteristic function of all states reachable from the states in S in one step.

For the application of the image operator we need two sets of variables, one, x, representing the
current state variables, another, x′, representing the successor state variables. The image Succ of the state
set S is then computed as Succ(x′) = ∃x (Trans(x,x′) ∧ S(x)). The preimage Pre of the state set S is
computed as Pre(x) = ∃x′ (Trans(x,x′) ∧ S(x′)) and results in the set of predecessor states.

Using the image operator, implementing a layered symbolic breadth-first search (BFS) is straight-
forward. All we need to do is to apply the image operator to the initial state resulting in the first layer,
then apply the image operator to the first layer resulting in the second and so on. The search ends when
no successor states can be found. General games (and in this case, Connect Four) are guaranteed to
terminate after a finite number of steps, so that the forward search will eventually terminate as well.

For strongly solving two-player games [14], we find all the reachable states by performing layered
symbolic BFS, storing all layers separately. The solving starts in the last reached layer and performs
regression search towards the initial state, which resides in layer 0. The last reached layer contains
only terminal states (otherwise the forward search would have progressed farther), which can be solved
immediately by calculating the conjunction with the BDDs representing the rewards for the two players.
Once this is done, the search continues in the preceding layer. If another layer contains terminal states as
well, these are solved in the same manner before continuing with the remaining states of that layer. The
rewards are handled in a certain order: In case of a zero-sum game the order is always according to the
highest reward of the active player, modeling the MiniMax procedure [23]. All the solved states of the
successor layer are loaded in this order and the preimage is calculated, which results in those states of
the current layer that will achieve the same rewards, so that they can be stored on the disk as well. Once
the initial state is solved and stored the strong solution resides completely on the hard disk.
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4 Ranking and Unranking with BDDs

A rank is a unique number of a state and the inverse process of unranking reconstructs the state given its
rank. Perfect hash functions to efficiently rank and unrank states have been shown to be very successful
in traversing single-player problems like Rubik’s Cube or the Pancake Problem [15] or two-player games
like Awari [19]. They are also used for creating pattern databases [4]. The problem of the construction of
perfect hash functions for algorithms like two-bit breadth-first search is that they are problem-dependent.

The approach exploited in this paper builds on top of findings by [7], who illustrated that ranking
and unranking of states in a state set represented as a BDD is available in time linear to the length of the
state vector (in binary). In other words, BDD ranking aims at the symbolic equivalent of constructing a
perfect hash function in explicit-state space search [3]. For the construction of the perfect hash function,
the underlying state set to be hashed is generated in advance in form of a BDD. This is plausible when
computing strong solutions to problems, where we are interested in the game-theoretical value of all
reachable states. Applications are, e.g., endgame databases or planning tasks where the problem to be
solved is harder than computing the reachability set.

The index(n) of a BDD node n is its unique position in the shared representation and level(n) its
position in the variable ordering. Moreover, we assume the 1-sink to have index 1 and the 0-sink to have
index 0. Let C f = |{a ∈ {0,1}n | f (a) = 1}| denote the number of satisfying assignments (satcount, here
also sc for short) of f . With bin (and invbin) we denote the conversion of the binary value of a bitvector
(and its inverse). The rank of a satisfying assignment a ∈ {0,1}n is the position in the lexicographical
ordering of all satisfying assignments, while the unranking of a number r in {0, . . . ,C f −1} is its inverse.

Figure 2 shows the ranking and unranking functions in pseudo-code. The procedures determine the
rank given a satisfying assignment and vice versa. They access the satcount values on the Else-successor
of each node (adding for the ranking and subtracting in the unranking). Missing nodes (due to BDD
reduction) have to be accounted for by their binary representation, i.e., gaps of l missing nodes are
accounted for 2l . While the ranking procedure is recursive the unranking procedure is not.

The satcount values of all BDD nodes are precomputed and stored along with the nodes. As BDDs are
reduced, not all variables on a path are present but need to be accounted for in the satcount procedure.
The time (and space) complexity of it is O(|G f |), where |G f | is the number of nodes of the BDD G f

representing f . With the precomputed values, rank and unrank both require linear time O(n), where n is
the number of variables in the function represented in the BDD. [7] provide invariances showing that the
procedures work correctly.

4.1 Ranking and Unranking Examples

To illustrate the ranking and unranking procedures, take the example BDD given in Figure 3. Assume
we want to calculate the rank of state s = 110011. The rank of s is then

rank(s) = 0+ rA(v13,s)−1 = (21−0−1 · sc(v11)+0+ rA(v16,s))−1

= sc(v11)+(23−1−1 · sc(v8)+bin(0) · sc(v9)+ rA(v9,s))−1

= sc(v11)+2sc(v8)+(0+ rA(v5,s))−1

= sc(v11)+2sc(v8)+(26−4−1 · sc(v0)+bin(1) · sc(v1)+ rA(v1,s))−1

= sc(v11)+2sc(v8)+2sc(v0)+ sc(v1)+1−1

= 14+2 ·5+2 ·0+1+1−1 = 25
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r ank ( s )
i = l e v e l ( r o o t ) ;
d = b i n ( s [ 0 . . i −1 ] ) ;
re turn d* sc ( r o o t ) + rankAux ( r o o t , s ) − 1 ;

rankAux ( n , s )
i f ( n <= 1) re turn n ;
i = l e v e l ( n ) ;
j = l e v e l ( E l s e ( n ) ) ;
k = l e v e l ( Then ( n ) ) ;
i f ( s [ i ] == 0)

re turn b i n ( s [ i + 1 . . j −1]) * sc ( E l s e ( n ) )
+ rankAux ( E l s e ( n ) , s ) ;

e l s e
re turn 2^ ( j−i −1) * sc ( E l s e ( n ) )

+ b i n ( s [ i + 1 . . k−1]) * sc ( Then ( n ) )
+ rankAux ( Then ( n ) , s ) ;

unrank ( r )
i = l e v e l ( r o o t ) ;
d = r / s c ( r o o t ) ;
s [ 0 . . i −1] = i n v b i n ( d ) ;
n = r o o t ;
whi le ( n > 1)

r = r mod s a t C o u n t ( n ) ;
j = l e v e l ( E l s e ( n ) ) ;
k = l e v e l ( Then ( n ) ) ;
i f ( r < ( 2 ^ ( j−i −1) * sc ( E l s e ( n ) ) ) )

s [ i ] = 0 ;
d = r / s c ( E l s e ( n ) ) ;
s [ i + 1 . . j −1] = i n v b i n ( d ) ;
n = E l s e ( n ) ;
i = j ;

e l s e
s [ i ] = 1 ;
r = r − ( 2 ^ ( j−i −1) * sc ( E l s e ( n ) ) ) ;
d = r / s c ( Then ( n ) ) ;
s [ i + 1 . . k−1] = i n v b i n ( d ) ;
n = Then ( n ) ;
i = k ;

re turn s ;

Figure 2: Ranking and Unranking.

with rA(s,vi) being the recursive call of the rankAux function for state s in node vi and sc(vi) the satcount
stored in node vi.

For unranking the state with index 19 (r = 19) from the BDD depicted in Figure 3 we get:

• i = 0,n = v13: r = 19 mod sc(v13) = 19 mod 30 = 19 6< 21−0−1sc(v11) = 14, thus s[0] = 1; r =
r−21−0−1sc(v11) = 19−14 = 5

• i = 1,n = v12: r = 5 mod sc(v12) = 5 mod 16 = 5 < 23−1−1sc(v8) = 2 · 5 = 10, thus s[1] = 0;
s[2] = invbin(r/sc(v8)) = invbin(5/5) = 1

• i = 3,n = v8: r = 5 mod sc(v8) = 5 mod 5 = 0 < 24−3−1sc(v4) = 1, thus s[3] = 0

• i = 4,n = v4: r = 0 mod sc(v4) = 0 mod 1 = 0 6< 26−4−1sc(v0) = 0, thus s[4] = 1; r = r−
26−4−1sc(v0) = 0−0 = 0

• i = 5,n = v2: r = 0 mod sc(v2) = 0 mod 1 = 0 6< 27−6−1sc(v12) = 0, thus s[5] = 1; r = r−
27−6−1sc(v12) = 0−0

• i = 6;n = v1: return s (= 101011)

5 Retrograde Analysis on a Bitvector

Two-bit breadth-first search has first been used to enumerate so-called Cayley Graphs [6]. As a sub-
sequent result the authors proved an upper bound to solve every possible configuration of Rubik’s
Cube [16]. By performing a breadth-first search over subsets of configurations in 63 hours together
with the help of 128 processor cores and 7 TB of disk space it was shown that 26 moves always suffice
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Figure 3: BDD for the ranking and unranking examples. Dashed arrows denote Else-edges; solid ones
Then-edges. The numbers in the nodes correspond to the satcount. Each vi denotes the index (i) of the
corresponding node.

to rescramble it. [15] has applied the two-bit breadth-first search algorithm to generate the state spaces
for hard instances of the Pancake problem I/O-efficiently.

In the two-bit breadth-first search algorithm every state is expanded at most once. The two bits
encode values in {0, . . . ,3} with value 3 representing an unvisited state, and values 0, 1, or 2 denoting the
current search depth mod 3. This allows to distinguish generated and visited states from ones expanded
in the current breadth-first layer.

5.1 Adaptation to Our Setting

In our implementation (see Algorithm 4) we also use two bits, but with a different meaning. We apply
the algorithm to solve two-player zero-sum games where the outcomes are only won/lost/drawn from the
starting player’s point of view. This is reflected in the interpretation of the two bits: Value 0 means that
the state has not yet been evaluated; value 1 means it is won by the starting player (the player with index
0); value 2 means it is won by the player with index 1; value 3 means it is drawn. Retrograde analysis
solves the entire set of positions in backward direction, starting from won and lost terminal ones. Bit-
state retrograde analysis applies backward BFS starting from the states that are already decided.

For the sake of simplicity, the rank and unrank functions are both context-sensitive wrt. to the layer
of the search in which the operations take place. In the implementation we use BDDs for the different
layers.

The algorithm assumes a maximal number of moves, that terminal drawn states appear only in the
last layer (as is the case in Connect Four; extension to different settings is possible), that the game is
turn-taking, and that the player can be found in the encoding of the game. It takes as input a decision
procedure for determining whether a situation is won by one of the players as well as the index of the last
reached layer (maxlayer). Starting at the final layer, it iterates toward the initial state residing in layer 0.

For each layer, it first of all determines the number of states. Next it sets all values of the vector B
for the states in the current state to 0 – not yet solved. Then it iterates over all states in that layer.

It takes one state (by unranking it from the layer), checks whether it is won by one of the players.
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r e t r o g r a d e ( won , m a x l a y e r s )
f o r l a y e r i n maxlayer s , . . . , 0

m = sc ( bdd ( l a y e r ) )
f o r i i n 0 , . . . ,m − 1

B[ l a y e r ] [ i ] = 0
f o r i i n 0 , . . . ,m − 1

s t a t e = unrank ( i )
i f ( won ( s t a t e ) )

i f ( l a y e r mod 2 == 1)
B[ l a y e r ] [ i ] = 1

e l s e
B[ l a y e r ] [ i ] = 2

e l s e i f ( l a y e r == maxlaye r )
B[ l a y e r ] [ i ] = 3

e l s e
s u c c s = expand ( s t a t e )
p r o c e s s ( s u c c s )

p r o c e s s ( s u c c s )
i f ( l a y e r mod 2 == 1)

f o r a l l s i n s u c c s
i f B[ l a y e r + 1 ] [ r ank ( s ) ] == 2

B[ l a y e r ] [ r ank ( i ) ] = 2
break

e l s e i f (B[ l a y e r + 1 ] [ r ank ( s ) ] == 3)
B[ l a y e r ] [ r ank ( i ) ] = 3

i f (B[ l a y e r ] [ r ank ( i ) ] == 0)
B[ l a y e r ] [ r ank ( i ) ] = 1

e l s e
f o r a l l s i n s u c c s

i f B[ l a y e r + 1 ] [ r ank ( s ) ] == 1
B[ l a y e r ] [ r ank ( i ) ] = 1
break

e l s e i f (B[ l a y e r + 1 ] [ r ank ( s ) ] == 3)
B[ l a y e r ] [ r ank ( i ) ] = 3

i f (B[ l a y e r ] [ r ank ( i ) ] == 0)
B[ l a y e r ] [ r ank ( i ) ] = 2

Figure 4: Retrograde Analysis with Bits for Two-Player Zero-Sum Game (rank and unrank are sensitive
to the layer they are called in).

If so, it can be solved correspondingly (setting its value to either 1 or 2). Otherwise, if it resides in the
final layer, it must be a drawn state (value 3). In case neither holds, we calculate the state’s successors.
For each successor we check whether it is won by the currently active player, which is determined by
checking the current layer’s index. In this case the state is assigned the same value and we continue
with the next state. Otherwise if the successor is drawn, the value of this state is set to draw as well. In
the end, if the state is still unsolved that means that all successors are won by the opponent, so that the
corresponding value is assigned to this state as well.

6 Hybrid Algorithm

The hybrid algorithm combines the two precursing approaches. It generates the state space with symbolic
forward search on disk and subsequently applies explicit-state retrograde analysis based on the results in
form of the BDD encoded layers read from disk.

Figure 5 illustrates the strong solution process. On the right hand side we see the bitvector used in
retrograde analysis and on the left hand side we see the BDD generated in forward search and used in
backward search.

The process of solving one layer is depicted in Figure 5 (right). While the bitvector in the layer n
(shown at the bottom of the figure) is scanned and states within the layer are unranked and expanded,
existing information on the solvability status of ranked successor states in the subsequent layer n+1 is
retrieved.

Ranking and unranking wrt. the BDD is executed to look up the status (won/lost/drawn) of a node in
the set of successors. We observed that there is a trade-off for evaluating immediate termination. There
are two options, one is procedural by evaluating the goal condition directly on the explicit state, the other
is a dictionary lookup by traversing the corresponding reward BDD. In our case of Connect Four the
latter was not only more general but also faster. A third option would be to determine if there are any
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Figure 5: Hybrid Algorithm: Visualization of Data Flow in the Strong Solution Process (left). Processing
a Layer in the Retrograde Analysis (right).

successors and set the rewards according to the current layer (as it is done in the pseudo-code).
To increase the exploration performance of the system we distributed the explicit-state solving al-

gorithms on multiple CPU cores. We divide the bitvector for the layer to be solved into equally-sized
chunks. The bitvector for the next layer is shared among all the threads.

For the ease of implementation, we duplicate the query BDDs for each individual core. This is
unfortunate, as we only use concurrent read in the BDD for evaluating the perfect hash function but the
computation of the rank involves setting and reading local variables and requires significant changes in
the BDD package to be organized lock-free. There are distributed usages of BDD libraries, e.g., reported
by Christian Stangier documented in the CUDD files, but – up to our knowledge – there is no currently
available multi-core version. Recent research work shows some steps into that direction [22], but the
status is far from being at library use.

Compared to the size of the bitvector the BDDs for the reachability layers are considerably smaller,
so that we can afford re-reading the BDDs for each running thread.

Our prototype currently works with reachability sets from forward symbolic search and a complete
explicit-state retrograde analysis. In a subsequent refinement of the implementation the hybrid search
algorithm can be extended to start solving using symbolic search and then switch over to explicit search
using the stored solutions if the BDD solving cannot finish within certain amounts of RAM.

7 Experiments

The experiments for the hybrid algorithm have been conducted on a Desktop PC with an Intel i7-920
CPU (with 2.66 GHz) with four hyperthreaded cores. It is equipped with 24 GB RAM, which mainly
limits the maximum number of elements we could handle (operating system: Ubuntu Linux; Compiler:
GNU’s g++ optimized with flag -O3). For multi-core parallelization we used pthreads. As indicated
above, the BDDs for the (7×6) Connect Four have been generated on a much larger cluster computer,
running a single Java program via a native interface to CUDD that was compiled and optimized on 64
bits with GNU’s g++. The program ran on a single core with main memory bounded by 192 GB RAM
(details of this machine were given above).
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Table 4: Results for (5×5) Connect Four with 69,763,699 States, Different Termination Criteria, Single-
and Multi-Core.

Algorithm Time States/Sec
1 Core Direct Goal Evaluation 283s 246,514
8 Core Direct Goal Evaluation 123s 567,184

1 Core BDD Goal 291s 239,737
8 Core BDD Goal 131s 532,547

1 Core No Succ. BDD 288s 242,235
8 Core No Succ. BDD 127s 549,320

Table 5: Results for (6× 5) Connect Four with 2,938,430,579 States, Different Termination Criteria,
Single- and Multi-Core.

Algorithm Time States/Sec
1 Core Direct Goal Evaluation 14,197s 206,975
2 Core Direct Goal Evaluation 7,540s 389,712
8 Core Direct Goal Evaluation 3,510s 837,159

1 Core No Succ. BDD 14,944s 196,629
2 Core No Succ. BDD 7,665s 383,356
8 Core No Succ. BDD 3,600s 816,230

The results of the solving of (5× 5) Connect Four are shown in Table 4. We see that more cores
are helpful to reduce the running time significantly. Moreover, the performance for the three strategies
to elevate the goal conditions varies only a little. By a small margin, the direct evaluation that has the
lowest memory requirements is best.

For the (5×5) case using a bitvector the total space requirements are 17 MB, while the BDDs take
28 MB. However, when loading the data in RAM we also need the reachability sets in form of a BDD
taking 5.4 MB, and the goal BDDs taking 4.7 MB. All in all, we obtain memory needs in the order of
22.4 MB, which still documents a possible saving in memory. The last 4.7 MB could be saved by not
using the goal BDDs but rather by evaluation of the condition explicitly

For solving (6×5) Connect Four the results are depicted in Table 5. Again, we see that more cores
clearly reduce runtime (with two cores by a factor of rougly two; with eight cores by a factor of roughly
four – note that our CPU uses Hyperthreading, i.e., it has only four physical cores, so the speedup seems
to be linear in the number of used cores). Concerning the goal evaluations, we can see that again the
direct evaluation is a bit faster. The third criterion was not tested because it was expected to take more
space without any significant speed-up.

Table 6 gives some insight into the actual sizes required by the BDDs and the bitvectors in the
solving of (6× 5) Connect Four. For each forward layer we provide the number of states in that layer,
the number of BDD nodes needed to represent them, the size of the BDD representation of all states in
that layer (assuming that each node requires 20 bytes), the size of the corresponding bitvector as well as
a theoretical estimation of the memory required to solve that layer with the hybrid approach in case of a
single-core based setting. The required memory is simply the sum of the BDD sizes of the current and
the successor layer (both must be loaded for the ranking and unranking in the algorithm) as well as the
sizes of the bitvectors (both must be loaded for the actual solving). Performing pure symbolic search we
arrive at a peak node count of 136,001,819. Assuming the same node size of 20 bytes this corresponds
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Table 6: Space consumption computing (6× 5) Connect Four. l is the layer, s the number of states in
that layer, n the number of BDD nodes needed to represent it, sizebdd the size of the corresponding BDD
(assuming 20 Bytes per node), sizebv the size of the corresponding bitvector, and memreq the memory
needed for solving a layer (i.e., loading the current and successor layer’s bitvectors and BDDs) in a
single-core setting.

l s n sizebdd sizebv memreq
0 1 61 1.2KB 1B 3.5KB
1 6 116 2.3KB 2B 6.6KB
2 36 223 4.4KB 9B 12KB
3 156 366 7.2KB 39B 20KB
4 651 637 13KB 163B 34KB
5 2,256 1,080 21KB 564B 57KB
6 7,870 1,702 33KB 1.9KB 96KB
7 24,120 2,793 55KB 5.9KB 171KB
8 72,312 4,772 93KB 18KB 305KB
9 194,122 7,498 146KB 47KB 526KB

10 502,058 10,722 209KB 123KB 964KB
11 1,202,338 17,316 338KB 294KB 1.8MB
12 2,734,506 25,987 508KB 668KB 3.4MB
13 5,868,640 43,898 857KB 1.4MB 6.4MB
14 11,812,224 68,223 1.3MB 2.8MB 12MB
15 22,771,514 122,322 2.3MB 5.4MB 21MB
16 40,496,484 187,493 3.6MB 9.7MB 36MB
17 69,753,028 327,553 6.2MB 17MB 58MB
18 108,862,608 475,887 9.1MB 26MB 89MB
19 165,943,600 769,944 15MB 40MB 127MB
20 224,098,249 1,004,398 19MB 53MB 171MB
21 296,344,032 1,437,885 27MB 71MB 210MB
22 338,749,998 1,656,510 32MB 81MB 242MB
23 378,092,536 2,080,932 40MB 90MB 254MB
24 352,607,428 2,123,251 41MB 84MB 243MB
25 314,710,752 2,294,960 44MB 75MB 210MB
26 224,395,452 2,004,090 38MB 54MB 162MB
27 149,076,078 1,814,442 35MB 36MB 111MB
28 74,046,977 1,257,586 24MB 18MB 64MB
29 30,162,078 789,650 15MB 7.2MB 29MB
30 6,440,532 282,339 5.4MB 1.5MB 6.9MB

to roughly 2.5 GB. Seeing that the highest required size in the hybrid approach is 254 MB the savings
become apparent.

Note that the column memreq of Table 6 refers to theortical values under ideal circumstances of a
static BDD package allocating only space for the BDD nodes that appear on disk. The BDD package in
use, however, has its own memory pool implementation, and, therefore, a significant overhead. Hence,
we also computed the practical values (by analyzing VIRT and RES provided in the Unix command
top after finalizing a layer). E.g., in layer 23 of the retrograde classification algorithm, we observed the
maximal real peak memory requirements of 390 MB (VIRT) and 287 MB (RES)1.

1By inspecting values from top in between two consecutive layers, we detected slightly higher intermediate RAM require-
ments of 351 MB (RES).
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Table 7: Classification of all states in won, draw and lost in (6×6) Connect Four.
l won(black) draw won(white)
0 1 0 0
1 6 0 0
2 6 24 6
3 98 52 6
4 131 220 300
5 1,324 534 398
6 1,752 1,580 4,544
7 13,868 3,982 6,480
8 18,640 10,280 46,002
9 118,724 25,104 67,214

10 156,360 56,710 363,196
11 815,366 129,592 523,156
12 1,050,857 267,636 2,277,583
13 4,597,758 565,760 3,231,266
14 5,831,790 1,098,276 11,699,108
15 21,523,754 2,144,618 16,310,672
16 27,021,039 3,911,893 49,751,882
17 83,960,708 7,060,426 68,412,756
18 104,937,956 12,096,840 175,768,828
19 272,162,860 20,210,438 238,672,448
20 339,135,354 32,320,349 512,669,271
21 725,182,660 50,189,136 687,992,224
22 901,278,168 75,033,304 1,219,869,020
23 1,561,655,780 108,518,894 1,616,415,130
24 1,929,105,096 150,351,002 2,318,803,344
25 2,645,054,112 202,034,082 3,015,867,732
26 3,223,332,998 259,072,600 3,409,198,318
27 3,392,753,538 322,390,736 4,318,869,880
28 4,030,760,404 384,569,265 3,690,830,516
29 3,089,884,946 435,398,174 4,469,417,644
30 3,476,328,802 471,148,650 2,688,933,070
31 1,785,392,828 468,490,136 3,007,279,574
32 1,841,291,613 450,464,011 1,144,004,318
33 554,598,782 373,041,874 1,167,659,076
34 502,035,320 276,221,222 219,995,950
35 54,244,612 149,951,066 197,034,676
36 40,044,990 49,981,730 0

The CPU time used to process all 2,938,430,579 states of (6× 5) Connect Four is about 3,500 sec-
onds. That’s about 800,000 states per second on average.

On one core, the (6× 6) exploration finished in 958,283 seconds, or approx. 11 days. It generated
about 72,184.34 states/second. The peak of the real memory requirements was encountered in layers 29
and 28 with 6.5 GB. At the end of the exploration, a 14.5 GB-sized strong solution bitvector database was
computed and flushed to disk. The outcome is that the second player wins, validating published results
(e.g., by Tromp and Kissmann). Table 7 shows the final classification result. Unfortunately, on our
machine we could not finalize the BDD-based solving due to the limited amount of RAM, even though
24 GB were reported to be sufficient for its completion in about 10 hours with the layered approach.
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If the solving speed goes down to 200,000 states per second for (6× 7) Connect Four, solving the
entire layer 29 would take about 352,626,845,666/200,000/602≈ 488 hours, or little more than 20 days.
For the remaining total of 1,265,297,048,241 states to be solved we estimate a CPU search time of (at
least) 1,752 hours or 73 days. In layer 30, the BDD for the reachable states and the two BDDs computed
for the solution consume disk space in the order of a few GB only but still take several hours to be loaded.
Investing two bits for each state in layer 29 requires 2 · 352,626,845,666 Bits ≈ 82.1 GB. Therefore, it
may be possible for the hybrid search algorithm in this paper to finalize the entire solution process within
192 GB, while the symbolic algorithm could not finish it. However, for an entire retrograde analysis
our computer infrastructure is not sufficient to provide sufficient amount of random access memory to
finalize the solving experiment for the (7×6) Connect Four instance. In layers 32/33 the bitvectors alone
would occupy 2 · (488,906,447,183+496,636,890,702) Bits ≈ 229.5 GB.

Therefore, we looked at the memory profile of a smaller instance, namely the (5×5), (6×5) and the
(6×6) Connect Four variants. In all cases, we could show moderate savings in RAM in trade-off with a
– still acceptable – slow-down in the run-time behavior: the entire BDD exploration for (6×5) (running
on a single core of a modern PC) took about 40m, while the hybrid exploration (running on a multi-core
PC) lasted for about one hour.

8 Conclusion

Memory-limitation is often a more severe problem to combinatorial search algorithms than computation
time. In this paper we have combined two very promising approaches to cope with the problem within
main memory, namely the compact representation of state sets in form of a BDD and the implicit repre-
sentation of states by main memory addresses. Depending on the problem at hand, the one or the other
can be advantageous. For cases like Connect Four, it is also the case that the memory profile for the one
or the other is better in different parts of the search, so that we addressed the problem of how to change
from one representation to the other.

The bridge between the explicit and symbolic search is linear-time perfect hashing based on the
BDD representation of the state sets encountered. We introduce a hybrid solving algorithm for two-
player general games and showed in the case study of Connect Four that memory savings are indeed
possible. We predicted the space and time needs to finalize the solution for (6× 7) Connect Four on a
contemporary multi-core computer, to give a feasibility assessment on the strong solvability of the game
on current technology. Based on the expected significant resources in running time and RAM usagem
for the remaining solution, however, we presented experimental results only for smaller Connect Four
instances.

Wrt. improved BDD exploration one research avenue is to look at problem representations with
preconditions and effects, so that improved image operations based on the concept of transition trees ap-
ply [12]. Another option is to split the BDD in computing the image based on lex(icographic)-partitioning
into equally sized state sets [11].
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Abstract. Power plant scheduling can be very time-consuming in long
term scenarios. At Stadtwerke München GmbH a schedule of 25 years in
one hour intervals is completed in several days with the commercial solu-
tion BoFiT. In order to reduce this huge amount of time, a new software
is developed. This paper describes the new system KEO and focuses on
measures to reduce the CPU-time. These measures are reduction of the
planning horizon, parallelization of the calculation and also, calculation
with typical days. KEO significantly decrease required time to generate
a schedule from 200 hours to roughly 21 minutes.

Keywords: power plant scheduling, long term scenarios, Mixed Integer
Programming, CPU-time, parallelization, planning horizon, k-means

1 Introduction

Stadtwerke München GmbH (SWM) is one of the biggest utility companies in
Germany. SWM uses the software BoFiT from ProCom GmbH [1] for short
term scheduling of their power plants with district heating [2] in 15 minute
intervals. In addition, a long term BoFiT-model exists at SWM. Actually, long
term scenarios in one hour intervals from 2016 till 2025 are calculated. A CPU-
time of approximately 200 hours is required to calculate long term scenarios
with BoFiT 2.19. Among others, this was the reason to develop the system
KEO (KEO means in German Kraftwerkseinsatzoptimierung) to calculate the
optimal operation of power plants in long term scenarios.

With a focus on measures to reduce the CPU-time, KEO will be described in
this paper. At first the planning horizon is divided into single days to decrease
the complexity of the planning problem. Subsequently, the calculation is par-
allelized and typical days are generated with the k-means algorithm. With all
these measures a long term schedule can be calculated in 21 minutes.1 According
to internal regulations of SWM, KEO should have developed based on software
that is still in use in SWM in order to guarantee that other employees will be

1 Both, KEO and BoFiT use CPLEX. But they run at different servers. Thus, a fair
comparison of the CPU-time is not possible. A reduction of the CPU-time by more
than 30% is not expected, if BoFiT would run at the KEO-server.
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able to shortly get familiar with this software. Thus, GAMS [3], MS Excel and
Visual Basic were used.

This paper is structured as follows: In section 2 the mathematical model of
the scheduling problem is explained. Section 3 explains all measures to reduce
the CPU-time. A conclusion is presented in section 4.

2 Model for power plant scheduling

The following power plant fleet of SWM in Munich is implemented in KEO [4]:

– 1 waste incineration plant with cogeneration of heat and power,
– 1 coal-fired power plant with cogeneration of heat and power,
– 3 gas-fired power plants with cogeneration of heat and power,
– 6 gas-fired heating plants,
– geothermal energy (the planned development in Munich [5] is implemented

in KEO).

Very small power plants (e.g. emergency backup generators) and hydro power
plants of SWM in Munich are not implemented in KEO. These plants are too
small and not important for a power plant fleet with district heating. Further-
more, avoided grid use charges (§18 Stromnetzentgeltverordnung (StromNEV)),
control reserve and other ancillary services are not part of the optimization in
KEO.

As an example, Fig. 1 shows a diagram of the waste incineration plant. On the
left hand side, the contract for waste C W can be seen. It contains information
about the minimal and maximal waste which has to be burned per hour. A
minimal amount of waste has to be burned in every hour because of limited
storage capacity for waste. Moreover, the contract gives information about the
cost of waste.

Fig. 1. Diagram of the waste incineration plant.

Connected to the contract are four waste-fueled boilers WB 11, WB 12,
WB 31 and WB 32. By burning waste, steam (blue line) will be generated. The
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generated steam flows through the steam turbine T30 HP (HP stands for high
pressure) and/or through the steam turbine T10 and/or through the pressure
reducing station 40-8 bar (from 40 bar to 8 bar).

The steam from the boilers expands in the steam turbine. Thus, electricity
will be produced (red line) and the steam is on a lower energy level. The waste
incineration plant is connected to the electricity grid ELT . Steam can flow from
the steam turbine T30 HP to the heat exchangers and/or to the steam tur-
bine T30 LP (LP stands for low pressure). T30 COND is a condenser behind
T30 LP . The three heat exchangers WT SGI, WT HWN and WT HWF
transfer the steam to the three district heating grids. Purple lines stand for a
steam grid whereas green lines stand for hot water grids.

The power plant fleet of SWM is modeled with Mixed Integer Programming
(MIP). A MIP-model is designed as follows:

P


MinZ = f(x, y)

s.t. gj(x, y) ≤ 0 j ∈ J

x ∈ X ∩ Rn, y ∈ Y ∩ Zm

(1)

The functions f and g are convex, differentiable and linear. The space X is
compact and convex. The space Y is bounded by hyperplanes of integer values:
Y = {y | y ∩ Zm, Ay ≤ a}.

Assuming a set of assemblies I = 1, . . . , I, a discrete timeframe T in one
hour intervalls with the index t = 1, . . . , T and a set of fuel types J = 1, . . . , J .
The objective of power plant scheduling is maximization of profit by taking
constraints into account. Revenue can be realized by selling electricity ELTt,i

and heat Heatt,i. Costs result from fuel Fuelt,j , CO2 allowances CO2t,i and
taxes Taxest,i.

max Profit =
T∑

t=1

I∑
i=1

J∑
j=1

ELTt,i + Heatt,h − Fuelt,j − Taxest,i − CO2t,i (2)

As a hard constraint the thermal energy demand Demandt,h at all district
heating grids h has to be covered at all times.

Heatt,h = Demandt,h ∀t ∈ T ; h ∈ H (3)

Exemplified, the mathematical model of the four waste-fueled boilers WB 11,
WB 12, WB 31 and WB 32 is presented now. Due to limited number of pages
the formulas of the compulsory utilization, of the priority control and of the
gradient must be omitted. A transfer function makes a connection between fuel
FuelInt,i, efficiency Efficiencyi and produced thermal energy HeatOutt,i.

FuelInt,i ∗ Efficiencyi = HeatOutt,i ∀t ∈ T ; i ∈ I (4)

The produced thermal energy HeatOutt,i has a minimal limit MinLimi

and a maximal limit MaxLimi at each waste-fueled boiler. The binary vari-
able OnOfft,i determines if boiler i is running in timeslot t or not.

OnOfft,i ∗MinLimi ≤ HeatOutt,i ∀t ∈ T ; i ∈ I (5)
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OnOfft,i ∗MaxLimi ≥ HeatOutt,i ∀t ∈ T ; i ∈ I (6)

The waste-fueled boiler i starts (Startt,i = 1), if it runs in t and if it does
not run in t− 1. Otherwise, Startt,i = 0.

OnOfft−1,i −OnOfft,i + Startt,i ≥ 0 ∀t ∈ T ; i ∈ I (7)

To control the operation of the waste-fueled boilers a minimal working time
MinOni and a minimal idle time MinOffi are necessary. For this, the binary
variables OnOfft,i and Startt,i are applied. The operation modes of all power
plants in KEO are influenced only by time depended constraints. Another way
is the implementation of starting costs. But it is difficult to determine correct
starting costs. Thus, time dependent constraints are used with observed data
from reality.

Startt,i ∗MinOni −
t+MinEini−1∑

t∗=t

OnOfft∗,i ≤ 0 ∀t ∈ T ; i ∈ I (8)

Startt,i ∗MinOffi −
t−1∑

t∗=t−MinOffi

OnOfft∗,i ≤MinOffi ∀t ∈ T ; i ∈ I (9)

3 Measures to reduce the CPU-time

The application of MIP is established for many optimization problems at the
energy sector [6]. E.g. Bagemihl [7] and Groß[8] use MIP for power plant sche-
duling.

The tool to build the MIP model of KEO is GAMS, because GAMS was still
in use at SWM. All parameters (demand at the district heating grids, electricity
prices, temperature, parameters of power plants, etc.) are stored in MS EXCEL
files. These files are imported into the GAMS model of KEO via GDX interface
of GAMS. The solver is CPLEX 12.2.0.0. It runs until the result of the MIP
problem is greater than three percent of the result of the Linear Programming
(LP) problem. All test runs were conducted on a XEON 5860 with Intel 24 x
3.33 GHz processors and 196.6 GB of RAM under Windows 2008 R2.

In a first step KEO was developed for short term problems with a planning
horizon of only seven days. The short term version of KEO optimized the seven
days en bloc. In the second step it was planned to simplify the short term version
of KEO to calculate long term scenarios of 25 years. This two-stage process was
chosen to discuss all parameters with the departments of SWM on the basis of
single weeks and not on the basis of a simplified model.

One possible way to simplify KEO is to implement e.g. the waste incineration
plant in Fig. 1 only as one element and not as different elements (waste-fueled
boiler, steam turbine, condenser, pressure reducing station, heat exchanger).
This approach helps to reduce the CPU-time. But, at expense of loosing accuracy.
By building the long term version of KEO it was obvious that other measures are
able to reduce the CPU-time to 21 minutes. Thus, a simplification of KEO was
not done. The implemented measures are explained in the following subsections.
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3.1 Fragmentation of the planning horizon

A way to create a long term model out of a short term model is to increase
the planning horizon. Thus, in the long term model 9,125 days (=25 years)
have to be calculated en bloc. Such a huge problem leads to a computer with
an unrealizable RAM (at the moment) and to an unacceptable CPU-time. An
increase of the planning horizon is the wrong approach.

Thus, BoFiT calculates five days en bloc sequentially until all 9,125 days are
calculated. A stronger fragmentation of the planning horizon can be achieved
by calculating only single days instead of five days en bloc. This approach is
realized in KEO. The MIP model of a single day with 24 hours leads to a matrix
in GAMS with 41,989 rows, 27,523 columns and 116,358 elements not equal to
zero. In contrast, the MIP model of seven days leads to a matrix with 293,677
rows, 192,211 columns and 826,662 elements not equal to zero.

At the transition of two separate calculated days it may happen at some
power plants that there are differences between the calculated schedule and the
operation in reality. However, that is not a problem, because KEO should not
calculate a guideline for power plants in reality. KEO was only designed to calcu-
late long term scenarios for the EW-model. The EW-model is a separate model.
It contains the value chain of SWM e.g. for electricity and heat. It operates on
an annual basis. Thus, KEO must only provide the sums of produced electricity,
produced heat and used fuel for each year. It does not matter if a power plant
runs some hours too long or too short at the end or at the beginning of a few
days. The percentage mean value between the calculation with one or seven days
en bloc is 1.0% and the standard deviation is 0.9%.

Table 1 shows the results of the calculation with whole weeks and single
days. KEO performs more than four times faster by calculating only single days
instead of single weeks. Thus, the following calculations are done with a reduced
planning horizon of single days. The results of KEO with single days are very
close to the results of the commercial solution BoFiT. The percentage mean
value between the calculation with KEO and the calculation with BoFiT is 2.9%
and the standard deviation is 3.4%.

Table 1. Fragmentation of the planning horizon.

software BoFiT KEO KEO

calculation type sequential sequential sequential

calculated days en bloc 5 7 1

CPU-time to calculate 25 years 720,000 sec. 261,956 sec. 60,405 sec.

3.2 Parallelization of the calculation

The short term version of KEO calculates all days sequentially. Fig. 2 shows this
approach. KEO starts with Monday, then with Tuesday, etc.
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Fig. 2. Sequential calculation.

It could be observed in experiments that the CPU usage was never higher
than 7% during the sequential calculation of the schedule, and only at the mo-
ments when CPLEX was running. Thus, the calculation was parallelized. The
example in Fig. 3 shows: At first all Mondays of the three weeks are calculated
at the same time, then all Tuesdays, etc. The usage of the CPU is now up to
100%.

Fig. 3. Parallel calculation.

The architecture of KEO was modified to implement the parallelization of
the calculation (see Fig. 4). The file EW-model.xls represents the EW-model
and the file KEO.xlsm contains the Visual Basic source code to control the
parallelization. Furthermore, the interface between KEO and the EW-model is
controlled by KEO.xlsm. Parameters can be transferred from the EW-model to
the parameter files of each year (e.g. 2010.xls for the year 2010). In addition, the
results of the optimization can be transferred to the EW-model.

The parallelization works in this way: At first KEO.xlsm copies all relevant
data of the first calculated day (1st January) of each year into the parameter
files of each year. Then KEO.xlsm starts the optimization of each year at the
same time (only the 1st January will be optimized). For this, KEO.xlsm is using
application programming interfaces (API) to generate an own process for each
year. KEO.xlsm is waiting until a GAMS-process is still running. Thereafter the
second iteration starts. Parameters of the 2nd January of each year are copied into
the parameter files, then the optimization starts parallel, etc. The calculation
of the power plant schedule stops, if 365 days are calculated. The result is a
schedule in one hour intervals from 2016 till 2025. Results are stored by GAMS
in CSV files. KEO.xlsm is using these CSV files to provide for each year the
sums of produced electricity, produced heat and used fuel for the EW-model.

Table 2 shows the results of the sequential and parallel calculation. It can be
seen that the parallel calculation reduces the CPU-time by nearly 68%. Thus,
the parallel calculation is used in the next subsection.
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Fig. 4. Architecture of KEO (two years are calculated parallel in this example).

Table 2. Parallelization of the calculation.

software BoFiT KEO KEO

calculation type sequential sequential parallel

calculated days en bloc 5 1 1

CPU-time to calculate 25 years 720,000 sec. 60,405 sec. 12,760 sec.

3.3 Typical days

The input parameters electricity prices per hour and demand of the district
heating grids per hour are sometimes very similar at different days. To reduce
the CPU-time it is helpful not to calculate 365 days per year. It would be better
to merge similar days to typical days with the aid of cluster analysis and only
to calculate these typical days.

K-means clustering, expectation-maximization (EM) algorithm and hierar-
chical clustering were analyzed in a separate study (not published). In exper-
iments k-means provides better results than the EM algorithm. Hierarchical
clustering was not applicable, because the demand of the district heating grids
and the electricity prices are not normally distributed. But this is a requirement
for the application of the EM algorithm. Thus, k-means was chosen for cluster-
ing. It is worthy of mention that the three day types weekday, Saturday/holiday,
Sunday and the three seasons summer, winter, transition (spring, autumn) are
distinguished.
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Instead of calculating 365 days for every year it is now possible to calculate
only 36 typical days. The CPU-time is reduced to 1,261 seconds for a scenario
of 25 years (see Table 3). The percentage mean value between the calculation
with 36 typical days and 365 days is 0.9% and the standard deviation is 1.2%.

Table 3. Typical days.

software BoFiT KEO KEO

calculation type sequential parallel parallel

calculated days en bloc 5 1 1

calculated days/typical days per year 365 365 36

CPU-time to calculate 25 years 720,000 sec. 12,760 sec. 1,261 sec.

4 Conclusion

It was explained in this paper how KEO works. One focus was the reduction
of the CPU-time. Different measures were introduced to calculate long term
scenarios which lead to a CPU-time of nearly 21 minutes. These measures are
the fragmentation of the planning horizon into single days, the parallelization
of the calculation and the calculation with 36 typical days instead of 365 days
per year. In contrast to 21 minutes, approximately 200 hours are needed by the
commercial solution BoFiT 2.19 to generate a power plant schedule.

In our current activities it is planned to implement a SQL database. This
helps to reduce the CPU-time, because at the moment MS EXCEL is used as a
database.
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Introduction 

We developed a multi agent based decentralized control system for an automated guided 

vehicle system.  Controlling of an automated guided vehicle system, especially a 

decentralized controlling has to deal with two points: route-planning and order 

allocation. We solved these points in a strictly decentralized way meaning that the single 

vehicles are autonomous but behave in a cooperative manner.  

The route-planning was solved using a decentralized version of the free-time window 

approach introduced by ter Mors ([1]) with some modifications to make the agents 

cooperative. The order allocation is done with the help of auctions and intelligent shop 

scheduling. The main ideas are described in [2].  We used a MASON / JADE based 

simulation which can simulate the agv system fast in realistic. The simulation and the 

coupling between the MASON based and the JADE based simulation is described in 

detail in [3]. 

We tested our approach with a real life scenario in contrast to the implemented, central 

control system which is used in this scenario. First results show an overall system 

performance which is slightly better than the used central control. 

Route Planning 

In autonomous controlled AGV systems the individual AGVs have to plan their route 

through the area (for example the warehouse) by their own. But since there are other 

AGVs in the area the risk of conflicts arise. For example see figure 1. In this situation a 

conflict between AGV 1 and AGV 2 would arise at the section of the layout which is 

marked with a red circle if both AGVs would plan without considering the plan of the 

other vehicle.  
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Figure 1 

To avoid such conflicts and the resulting resolutions a form of conflict free routing is 

necessary. The concept of conflict free shortest path routing for AGVs was introduced in 

1985 by Broadbent et. al.[4]. 

In 2007 ter Mors et. al. presented a free path routing approach named context-aware 

routing which solves the conflict free routing problem with an asymptotic running time 

of O(nv log(nv) + nv2) where v corresponds to the number of vehicles and n to the 

number of nodes in the given way graph (see [1]). In their case the agents reserve the 

way segments they plan to use and thus alter the conditions for agents which are 

planning after them (because more reservations are in the system). When agents plan a 

new route they are not allowed to violate reservations (i.e. to use way segments on time 

intervals for which they are reserved by other vehicles). These approach, built for a 

central planning station was used for our decentralized approach. 

Our agents all have graph in which they store the locks they know about. Whenever they 

plan a route (using the algorithm described above and their inner state knowledge) they 

send a lock message to all other agents they can reach. In these lock messages the all 

resource / time slot pairs are stored. The agents which receive these messages include 

these locks in their internal graphs.  When an agent is idle he has to move to an parking 

slot in order to not block important way segments for other agents. 

Our first added cooperative behavior gets rid of the necessity of driving to a parking slot 

when idle. If an agent is idle he reserves its current position for the rest of the time 

horizon and marks this reservation as a parking reservation. If an agent plans his route 

his route he calculates two routes: One ignoring all parking reservations and one in the 

normal way. If the route which ignores the parking reservations is better (e.g. faster or 

shorter) he sends a message to the agents which have made these reservations and ask 

him to give the spot free. These agents than search for a spot with now reservations and 



plan a way to these spots . They then withdraw the old parking reservations and made 

new ones for the found spot. In this way the asking agents can use the better route. 

In the future we want to integrate more cooperative strategies as shown in [2].  

Order Allocation 

The decentralized allocation of orders is an important task in nearly any decentralized 

system (see for example [5]). The purpose of task allocation is to assign the tasks that 

occur in the system to the different entities that could handle them. In the case of an 

AGV system for intralogistics task are usually transportation orders i.e. the order to 

transport a good from a source to a target destination. In decentralized order allocation 

there is no global entity which assigns all of the orders thus the autonomous units have to 

solve this problem by their own. A decentralized order allocation becomes dynamic if 

the assignments can change over time (meaning a once made assignment can be 

revoked). 

We used a dynamic auction to realize order allocation. If an order has to be allocated the 

station on which the order starts sends an order notification message to each agent (or 

each agent in a given range).These agents then send a proposal for this order. The score 

of the proposal can depend on factors like starting time, finishing time, distance driven to 

fulfill the order or similar factors. After a given time the station closes the auction and 

sends a proposal accepted message to the winner and proposal rejected messages to the 

other agents. 

If the score of the transportation order increases the score in the proposal by a certain 

threshold, the agent can give the order back to the station which then restarts the order. 

This can happen at the moment for example when errors occur. In the future, when more 

cooperative strategies have been implemented this can maybe occur more often. 

First Results 

We tested our approach described in the previous sections with a simulation of a 

beverage bottling plant (shown in figure 2).  The area is rectangular with a dimension of 

79m x 125m.  The plant has 33 stations at which loading and unloading of transport 

goods takes place and 4 parking positions.  In average 46 transport orders must be 

performed per hour.  In total 8 AGVs are in use in order to fulfill these transport orders. 

We had access to the central control system which is used for the agv system of these 

bottling plant. 



 

Figure 2 

We compared the following configurations: 

1. Given central control (8  vehicles) 

2. 8 vehicles, decentralized control 

3. 8 vehicles, decentralized control with idle lock negoations 

The results can be seen in table 1. The decentralized approach leads to significant shorter 

average duration of an transport order and 7,9% less driven distance.  The addition of the 

idle lock negations reduce the total driven distance and the  time driven without cargo 

even more. The reason is that the vehicles do not make the drives to the parking slots. 

The parking slots in this scenario are in the far south part of the layout. It is possible that 

these improvements are less significant in scenarios where the parking slots are in more 

central part of the layout. We will make experiments with different layouts in the future 

to check this. 

Table 1 

 Average 
Duration 

Total Driven 
Distance 

Driven 
without cargo 

Average waiting 
time 

Max. waiting 
time 

1 371,1 s 4500 m 56,77 % 67,5 s 278,8 s 

3 275,5 s 4144 m 55,35 % 59,3 s 244,1 s 

5 263,5 s 3897 m 52,12 % 54,12 s 241,6 s 



Conclusion 

Our decentralized approach has led to slightly better system performance then the central 

control in our reference scenario. The addition of the idle lock cooperation has improved 

the performance even more. In the future we want to add more cooperation strategies 

and verify the results with a different scenario. 
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Abstract: Reducing energy consumption is one of the actual challenges in all parts 

of industry. This can lead to a low carbon footprint for activities under 

consideration as well as to cost effective reductions of overall energy 

consumptions. This paper shows two examples how intelligent scheduling 

strategies can be used to limit energy consumption in production to a given range. 

1 Introduction 

Nearly all areas of production and logistics have presented their own „we are going 

green“ proposals. Most often green means the reduction of power consumption but also 

reducing waste, reducing the usage of dangerous ingredients etc. can be found here. To 

meet the reduction goals several actions may be taken: 

 using new technologies e.g. in the production process may reduce ingredients, waste 

as well as energy consumption 

 using new machines may reduce energy consumption and waste 

 changing ingredients may reduce energy consumption 

 rescheduling the production process may reduce energy consumption. 

The last topic shall be tackled in this paper. Especially the “right” scheduling of energy 

intensive production processes can lead to a reduction of overall or peak energy needs 

and this also has some advantages regarding costs. 

This paper introduces the actual project “Scheduling4Green” and will present at first 

some of the problems and production processes in which the scheduling according to 

energy consumption will lead to main advantages. This is followed by some ideas and 

approaches on how to cope with the scheduling regarding energy consumption. Two 

examples from glas production and injection molding shall illustrate the problems and 

approaches. 



2 Energy consumption and costs in production 

Most of the production processes are using special equipment within the single steps that 

are performed. This equipment, typically machines or apparatus, needs energy on a 

constant basis or on a fluctuating basis. The fluctuation is generated by the energy 

consumption within the production process. Such fluctuation is found e.g. in most of the 

processes in which material has to be heated.  

Example 1: Production of security glass. The production process consists mainly of three 

steps. In a first step, the existing sheet of glass is heated up to 640 °C and then cooled 

down quickly by air. The third step is a quality control. Figure 1 shows the power 

consumption profile of this process. 

 

Figure 1: Power consumption profile in security glas production [Ben12] 

Example 2: Injection molding. This technology is used for the production of a lot of 

products and parts mostly made up of plastics. The process has three major steps. In a 

first step, the needed material is fed into a barrel. In the second step it is mixed and 

heated up to its melting point and then pressed into a mold cavity. There it is cooled 

down and hardens to the configuration of the cavity. Figure 2 shows the power 

consumption profile of this process. The difference in the power consumption of the 

process steps is considerable higher than in the example before. 

 



 

Figure 2: Power consumption profile in injection molding [Wil08] 

The energy consumption of production is typically result of a forecast process and is 

used to calculate energy costs on the basis of specific contracts. These contracts usually 

contain peak energy needs (upper bounds) that are basis of the rate. With this forecasts 

the energy producer plans the energy production. If the consumer exceeds the upper 

bounds then a penalty or the next higher rate has to be paid, normally for the whole time 

period. This can easily occur if machines are used in parallel and several of the energy 

peaks of the production processes will superimpose. Therefore most of the companies 

have some kind of emergency plan, if the energy consumption approaches the upper 

bounds, e.g. the unplanned shut down of machines. But this is disturbing the whole 

manufacturing process and eventually damaging the machines. This is the reason for 

looking for a scheduling solution that can lead to a production schedule that avoids the 

power consumption peaks. 

3 Scheduling regarding energy consumption 

As stated in section 2 the main goal of a scheduling algorithm that regards the energy 

consumption should be to keep the energy needs in a given range and avoid peaks. 

Figure 3 and 4 [Giz12] show what this means. Figure 3 shows the accumulated energy 

consumption of five injection molding machines if it is allowed to start them randomly, 

which especially means that they can start at the same time. 



 

Figure 3: Example of accumulated power consumption 

Figure 4 shows the diagram with the reduced accumulated power consumption when a 

fixed delay is used between the start of the machines. This works well because we have a 

simple problem with a few identical machines and processes, which is not the case in 

other examples. 

 

Figure 4: Example of improved accumulated power consumption 



In our project we created in a first step a simulation model to show the effects of 

superimposed energy consumption profiles. Figure 5 gives a sketch of the model build 

with PlantSimulation. During the simulation the energy consumption is collected and 

leads to the profiles in figure 3 and 4. 

 

Figure 5: Simulation model in PlantSimulation [Giz12] 

Actually we are developing a scheduling algorithm that takes into account the energy 

consumption of the process steps and tries to keep the energy consumption within the 

given range. Main conceptual parts in the development of the algorithm are 

 to create a more abstract view of the energy consumption profile that makes it easier 

to schedule it, e.g. use a rectangular function for energy consumption. 

 to find some heuristics that can be used to create a schedule in an easy way, thereby 

using a general order-based heuristic [Sau04] for scheduling. 

References 

[Ben12] Bender, T.: Dynamische Lastganganalyse für eine Produktions- und Energieoptimierung, 

Masters Thesis, Universität Oldenburg, 2012. 

[Giz12] Giza, N.: Simulation von Energieverbrauch in der Produktion am Beispiel der 

Spritzgussindustrie, Bachelor Thesis, Universität Oldenburg, 2012. 

[Sau04] Sauer, J.: Intelligente Ablaufplanung in lokalen und verteilten Anwendungsszenarien, 

Teubner, 2004. 

[SRB13] Sauer, J., Runge, S.A., Bender, T.: Lastgangbezogene Prioritätsregeln für eine 

Produktionsplanung bei der Veredelung von Glasprodukten, in: J. Marx Gómez et al. 

(Eds.), IT-gestütztes Ressourcen- und Energiemanagement, Springer-Verlag, Berlin 

Heidelberg, 2013, pp. 3-9. 

[Wil08] Wilken, M.: Entwicklung eines Systems zur Optimierung der Energieeffizienz in der 

Kunststoffspritzgussindustrie, Diploma Thesis, Universität Oldenburg, 2008. 

 


	Deckblatt.pdf
	cogrob_2
	DiRoccoEtAl_PUK2013
	Bercher13POCLPreferences
	Search Strategies for Partial-Order Causal-Link Planning with Preferences

	conn4submit
	Introduction
	Case Study: Connect Four
	Binary Decision Diagrams for Strongly Solving Games
	Ranking and Unranking with BDDs
	Ranking and Unranking Examples

	Retrograde Analysis on a Bitvector
	Adaptation to Our Setting

	Hybrid Algorithm
	Experiments
	Conclusion

	PuK2013Guenther
	CS_JS_Puk13_2
	JS_Puk13

