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SUMMARY

Phenotyping is important to understand plant biology, but current solutions are costly, not versatile or are

difficult to deploy. To solve this problem, we present Phenotiki, an affordable system for plant phenotyping

that, relying on off-the-shelf parts, provides an easy to install and maintain platform, offering an out-of-box

experience for a well-established phenotyping need: imaging rosette-shaped plants. The accompanying soft-

ware (with available source code) processes data originating from our device seamlessly and automatically.

Our software relies on machine learning to devise robust algorithms, and includes an automated leaf count

obtained from 2D images without the need of depth (3D). Our affordable device (~€200) can be deployed in

growth chambers or greenhouse to acquire optical 2D images of approximately up to 60 adult Arabidopsis

rosettes concurrently. Data from the device are processed remotely on a workstation or via a cloud applica-

tion (based on CyVerse). In this paper, we present a proof-of-concept validation experiment on top-view

images of 24 Arabidopsis plants in a combination of genotypes that has not been compared previously.

Phenotypic analysis with respect to morphology, growth, color and leaf count has not been performed com-

prehensively before now. We confirm the findings of others on some of the extracted traits, showing that

we can phenotype at reduced cost. We also perform extensive validations with external measurements and

with higher fidelity equipment, and find no loss in statistical accuracy when we use the affordable setting

that we propose. Device set-up instructions and analysis software are publicly available (http://phenotiki.c

om).

Keywords: phenotyping, Arabidopsis thaliana, growth, software, image analysis, affordable, Raspberry Pi,

technical advance.

INTRODUCTION

The plant research community appreciates the need to

rapidly phenotype, in a reliable fashion, the growth of

plants. Having an in-depth understanding of such informa-

tion could help us to identify suitable traits to be used for

breeding new crops. Model plants, such as Arabidopsis

thaliana, combined with quantitative information obtained

manually or via observation, have become an invaluable

tool in this quest (Furbank and Tester, 2011). Recently, the

introduction of digital imaging and automation have radi-

cally changed how phenotypes are described (Rousseau

et al., 2015), in model plants and in general. Experts can

analyze the images offline (i.e. at a later point in time after

the actual plant experiment), disentangling the process of

imaging (sensing) from phenotype analysis. With image

analysis this process has been further simplified (Sozzani

et al., 2014), and the labor effort has been significantly
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reduced, to the point that automated phenotyping is now

sought-after by many laboratories around the world in an

attempt to relieve the phenotyping bottleneck (Furbank

and Tester, 2011).

As a result, several phenotype acquisition approaches

have emerged that can be broadly categorized as those

relying on commercial equipment (e.g. LemnaTec, http://

www.lemnatec.com; CropDesign, http://www.cropdesign.c

om; Phenospex, http://phenospex.com; Photon Systems

Instruments, http://www.psi.cz) or custom-built solutions

that may rely on affordable (e.g. Leister et al., 1999; Tsaf-

taris and Noutsos, 2009; Bours et al., 2012; De Vylder et al.,

2012; Green et al., 2012) or costly imaging sensors coupled

with actuation (Granier et al., 2006; Walter et al., 2007; Jan-

sen et al., 2009; Tisn�e et al., 2013; Brown et al., 2014; Apelt

et al., 2015). Both approaches have a key limitation: a high

entry barrier, as a result of cost or difficult deployment and

maintenance, or the lack of a robust and expandable soft-

ware platform. This has hindered the widespread adoption

of image-based technologies as a practical and standard

tool in plant phenomics for the common lab.

In this paper we propose Phenotiki, an affordable and

yet practical approach to the phenotyping of rosette-

shaped plants that is easy to install and deploy, and is

accompanied by robust, free (with available source code)

software.

Phenotiki (Figure 1) combines an imaging device with

a complete, open, expandable stand-alone software pack-

age (Figure S3), designed to offer an out-of-box experi-

ence when used together. To be affordable (less than

€200), easy to deploy, use and maintain, no moving parts

are used and all hardware is easy to source as it is based

on the Raspberry Pi platform. The software system offers

automated or semi-automated analysis of several visual

phenotypes, based on a wide range of traits, ranging

from typical size and growth descriptors to color and

even leaf count. Our imaging device is tasked with taking

images, and we offer software that runs on the device to

enable easy programmatic control. Analysis (and data

storage) occurs at local workstations or via the web

browser in the Cloud. Our analysis software, to be reli-

able when used in different laboratories (or even with

other imaging systems), integrates analysis algorithms

based on state-of-the-art methods of image processing

and machine learning that have appeared in engineering

conferences and journals, passing the technical scrutiny

of the audience at these venues (Minervini et al., 2014,

2015a; Giuffrida et al., 2015). Notably, we include

machine learning-driven methods for: (i) automated plant

segmentation from tray images (Minervini et al., 2014);

(ii) semi-automated interactive leaf segmentation (Min-

ervini et al., 2015a); and (iii) automated leaf counting

(Giuffrida et al., 2015), all within the confines of afford-

able 2D-based vision without the need for costly 3D cam-

eras (Apelt et al., 2015).

To demonstrate the phenotyping potential of Phenotiki,

we present results from a proof-of-concept experiment

containing several replicates of Arabidopsis (wild-type and

mutants) that were imaged simultaneously. We character-

ized the accuracy of the system with traditional manual

measurements and other (costlier) imaging sensors. Sev-

eral statistical experiments on extracted growth, morpho-

logical and color phenotypes confirmed that Phenotiki can

phenotype at a remarkably reduced cost.

Figure 1. Overview of the Phenotiki system and

screen captures showing the graphical user inter-

faces to operate its hardware and software compo-

nents. (a) Schematic of the proposed distributed

sensing and analysis framework illustrating the

main components of our phenotyping platform. (b)

Web interface to configure and operate the Pheno-

tiki device from the browser. (c) Stand-alone ver-

sion of the image-analysis software. (d) Cloud-

based version of the image analysis software that

runs on a web browser. [Colour figure can be

viewed at wileyonlinelibrary.com].
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RESULTS

Plant material

The experiment involved 24 A. thaliana plants, including

the wild type (ecotype Col-0) and four different mutants, all

in the Col-0 background, with an arrangement as shown in

Figure 2(b). The constitutive triple response 1 (ctr1; Kieber

et al., 1993) and ethylene insensitive 2 (ein2.1; Guzm�an

and Ecker, 1990) are defective in ethylene signaling. The

pgm mutant is unable to accumulate transitory starch as a

consequence of a mutation in the plastidic isoform of the

phosphoglucomutase (PGM), which is required for starch

synthesis (Caspar et al., 1985). The adh1 mutant is defec-

tive in alcohol dehydrogenase activity, an enzyme playing

an essential role in plant tolerance to hypoxia (Perata and

Alpi, 1993). Although pgm and ctr1 are well known to dis-

play reduced growth, ein2.1 and adh1 mutations do not

have a major impact on growth, at least based on the origi-

nal reports describing these mutants. The ctr1 mutant con-

stitutively displays phenotypes associated with ethylene

signaling, the consequences of which include extreme

dwarfism (Kieber et al., 1993). The ein2.1 mutant, which is

insensitive to ethylene, instead displays minor phenotypic

differences when compared with the wild type, although it

has been reported to grow slightly bigger (Guzm�an and

Ecker, 1990). The pgm mutant is smaller than the wild type

(Caspar et al., 1985). Interestingly, the growth of a similar

mutant (starch-free 1; stf1) was recently studied by digital

imaging, providing an interesting benchmark for our study

(Wiese et al., 2007). Further details on growth conditions

are provided in the Experimental procedures.

Brief overview of the Phenotiki system

Phenotiki is composed of an affordable image-acquisition

device (of less than €200 in material cost) and a suite of (s-

tand-alone or web-based) software tools for image analy-

sis. The architecture of Phenotiki is illustrated in Figure 1.

The Phenotiki device consists of a Raspberry Pi embed-

ded computer (http://www.raspberrypi.org) operating the

RaspiCam fixed-focus (and fixed-zoom) imaging sensor. As

Figure S1 shows, the device is small (10 9 6.5 9 3.5 cm)

and lightweight (115 g), and it was affixed with zip ties to

the ceiling of the growth chamber. The device was

enclosed in plastic housing (Figure S1) and could wire-

lessly connect to the Internet after it was set up (a com-

plete equipment list is provided in Appendix S1). We

devised graphical software (Figures 1b and S2; Video

clip S1) for ease of interaction with the device, which

allowed us to define an acquisition schedule and parame-

ters for time-lapse 2D optical imaging of the scene and

data transmission. Phenotiki was calibrated and configured

to acquire top-view images (Figure 2a) with a preset time

schedule (every 12 h, respectively, at the beginning and

the end of the 12-h photoperiod) and fixed imaging condi-

tions (e.g. focus, exposure, field of view) over a period of

26 days, resulting in a time-lapse sequence of 52 images in

total.

Data storage and processing were decoupled from

acquisition. Image data can be transmitted over the local

network or the Internet to a centralized repository (on site

or remote) for analysis. Our device can also directly con-

nect to CyVerse (formerly iPlant Collaborative, http://

www.cyverse.org) to upload data, and using our modules

built upon the BisQue framework (Goff et al., 2011) can

offer a Cloud-based application to store and analyze the

images for higher throughput potential (see Appendix S2

for the naming of modules on CyVerse). For this paper,

results were obtained based on the stand-alone software

after imaging data were collected at a local workstation.

The same software base is used in both the stand-alone

and the Cloud applications (screen shots shown in Fig-

ures 1c,d, S3 and S4; usage demonstrated in Video

clips S2 and S3). Robust (and validated) image processing

algorithms have been efficiently implemented to enable

annotation, detection, tracking and segmenting plants

from the background (Minervini et al., 2014), and also

counting leaves automatically (Giuffrida et al., 2015). These

are available as modules that can be either used through

the stand-alone graphical interface (Figure S3) or in the

web-based application (Figure S4). This design also

Figure 2. Example imaging data acquired by the Phenotiki system. (a) Orig-

inal image and (b) illustration of the randomized arrangement of the geno-

types in the scene. (c) A growing adh1 subject at different stages (numbers

in red denote days after sowing), with the plant delineated via automatic

segmentation (Minervini et al., 2014). [Colour figure can be viewed at

wileyonlinelibrary.com].
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demonstrates how our platform can be extended to

address future hypotheses.

We obtained phenotypic information related to plant

growth, morphology, color and leaf count. Measurements

were exported from our software in machine-readable for-

mat and were imported to MATLAB (http://mathworks.com)

and R (http://www.r-project.org) for visualization and statis-

tical analysis. The plant segmentation and leaf-counting

components of our system can operate autonomously on

large data sets once they have been configured. Before

analyzing the entire data set for plant growth, we anno-

tated one image (i.e. delineating the plants from the back-

ground, a task that can be completed efficiently with the

aid of our semi-interactive annotation tool, described in

detail in Appendices S2 and S3), on the basis of which

optimal operational parameters were found automatically

by our software through an optimization process, thus

eliminating the need for the user to trial parameters. The

same parameters were applied to the entire image

sequence of the experiments presented herein. We also

used annotations of the number of plant leaves for a set of

representative training images to learn a model that can

estimate the leaf count of unseen images, and then applied

this model to the entire data set.

Software and sensor set-up instructions are in the public

domain at http://phenotiki.com. Further details on imaging

set-up, computer vision approaches and the definition of

the scored visual traits (see also Figure S5) are provided in

the Experimental procedures section and in Appen-

dices S2–S4. Measurement validation with non-image

measurements and comparison with a higher-grade cam-

era follow the presentation of phenotypic findings.

Phenotypic results

Phenotyping plant area and morphology. We compared

the rosette size achieved by different genotypes based on

projected leaf area (PLA), diameter and perimeter. Results

are shown in Figure 3(a,c,d). Separate repeated-measures

ANOVA with the Greenhouse–Geisser correction were used

to assess the effects on each of the descriptors of time

(within-subject factor), genotype (between-subject factor)

and their interaction. For all three descriptors there was a

significant time–genotype interaction (P < 0.01). Tukey–
Kramer’s multiple comparison (P < 0.05) revealed that

three distinct groups can be identified: Col-0 and ein2.1

presented the largest size; adh1 and pgm presented med-

ium size; and ctr1 exhibited extreme dwarfism, and hence

the smallest size. These results were expected for pgm

(Caspar et al., 1985; Apelt et al., 2015) and ctr1 (Kieber

et al., 1993). In the case of ein2.1, a larger plant diameter

was previously reported for 24-day-old plants (Guzm�an

and Ecker, 1990), whereas our data showed a plant diame-

ter slightly smaller than the wild type in the case of ein2.1

(Figure 3c). No obvious phenotypes were previously

reported for adh1 mutants. Since the enzyme ADH is

involved in hypoxia tolerance it is tempting to speculate

that the adopted watering plan (twice a week by sub-irriga-

tion for all plants) might have led to root hypoxia for adh1

mutants, which are more sensitive to watering level, with

consequences on plant growth.

Compactness data did not suggest any evident group-

ings (Figure 3e); however, note that ein2.1 presented

higher compactness than Col-0 (P < 0.01, paired Student’s

t-test), although they shared similar size. Higher stockiness

was consistently observed for ctr1 with respect to the other

genotypes (Figure 3f), although this may partly result from

the considerably smaller size of the ctr1 plants and fixed

(per plant) imaging resolution, so that the extremely dwarf

plants will appear concentrated and more circular.

We also adopted a parametric model-driven approach to

growth analysis based on Richards’ growth curve

(Appendix S5) and observed PLA data, the result of which

is shown in Figure S6 and Table S1. Average normalized

growth rates indicated slower growth for ctr1 and pgm with

respect to the other genotypes. In fact, the time of inflection

in the growth curves (c) of ctr1 and pgm was estimated,

respectively, at approximately 42 and 36 days after sowing,

whereas this was 30 days after sowing for the wild type.

Finally, based on 95% confidence intervals for the estimated

value of parameter k, we observed that the growth rate of

pgmwas significantly lower than Col-0, ein2.1 and adh1.

Phenotyping growth stage based on leaf counting. We

also compared leaf-counting progression (Figure 4a) and

developmental growth stages among genotypes, identified

by the number of leaves, based on the scale discussed in

Boyes et al. (2001). In Figure 4(b) we highlight which day

after sowing a group of plants (i.e. genotype) developed

four leaves (1.04), 10 leaves (1.10), 14 leaves (1.14) and

later leaf-related stages (>1.14), respectively. In accordance

with the previous analysis based on plant size, we observe

that ein2.1 and Col-0 reached successive growth stages

more rapidly than the other genotypes, with pgm and ctr1

producing new leaves at a markedly slower pace than the

wild type. A pairwise Tukey–Kramer comparison (following

a significant repeated-measures ANOVA) on leaf count data,

as plotted in Figure 4(a), confirmed that adh1, pgm and

ctr1 differed from the wild type (P < 0.05, cf. Table S3).

Phenotyping diel growth dynamics. Differences in diurnal

and nocturnal growth rates were assessed based on the

average (aggregated throughout the experiment) relative

growth rate (RGR), using a one-way ANOVA followed by

Tukey–Kramer multiple comparison amongst the five

groups, with the results shown in Figure 5. Overall, consid-

ering a diel growth cycle, ctr1 presented a lower RGR than

the other genotypes (P < 0.01). Also ein2.1 had a lower

growth rate than the control (P < 0.05). When considering
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Figure 3. Plant size, morphology and color (hue)

traits (y-axis) plotted against time (x-axis). Measure-

ments were taken for 25 days every 12 h. Geno-

types are identified by color and variance is

denoted by shaded areas. The legend in panel (a)

applies to all panels. To improve the clarity of visu-

alization of panel (b), a third-order Savitzky–Golay

smoothing filter with a kernel size of seven was

applied to each time series. Also shown is the HSV

(hue, saturation and value) color wheel, with values

for H ranging from 0 to 360°, and an indication of

the average value for adh1 (77°) and for the other

four genotypes collectively (82°). [Colour figure can

be viewed at wileyonlinelibrary.com].

Figure 4. Leaf-counting data (a, b), estimated by

our automated leaf-counting algorithm and (c, d)

derived from the expert annotations. Results are

shown as (a, c) time-series plots and (b, d) growth

progression bars (Boyes et al., 2001). The learning-

based counting algorithm was trained on a subset

of plant images and then applied to the entire data

set. [Colour figure can be viewed at wileyonlineli-

brary.com].
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diurnal growth, pgm exhibited a considerably higher (ap-

proximately double) growth rate than the other genotypes

(P < 0.01). During night-time, growth of pgm decreased

considerably. Reduced nocturnal growth was previously

reported by Wiese et al. (2007) using the stf1 mutant that,

as in the case of pgm, is defective in the plastidial phos-

phoglucomutase enzyme. Differences in diurnal and noc-

turnal growth rates within a genotype were assessed via

paired Student’s t-test, which was significant for pgm and

ctr1 (P < 0.01), showing preferential growth during the

day, and also for adh1 (P < 0.05). On the other hand, no

significant difference in diurnal and nocturnal RGR was

observed for ein2.1 and Col-0. Daily cyclic patterns as evi-

dent in Figure 3 were also demonstrated by power spectral

density estimation of the PLA data (Figure 3a) shown in

Appendix S6.

Phenotyping color. The color of plant subjects was in

general bright green, and after an initial adjustment it did

not vary significantly throughout the experiment (Fig-

ure 3b). On the other hand, a comparison among groups

revealed that the color of adh1 statistically differed from

the other genotypes. We measured color changes quantita-

tively using the HSV (hue, saturation and value) color

space. On average, the color of adh1 (hue = 77°) differed

from all other genotypes (hue = 82°), with a drift towards

yellow hues (Figure 3b), as highlighted by a repeated-mea-

sures ANOVA followed by Tukey–Kramer multiple compar-

ison (P < 0.01). The yellowish color of adh1 again suggests

that the plants suffered from root hypoxia, and this trait

was found by our analysis based on Phenotiki.

Measurement validation

Validating plant growth measurements. Central to mea-

suring plant growth with our software is the algorithm for

delineating (segmenting) the plants from the background.

Whereas previously the plant segmentation algorithm has

been validated against manual image-based plant delin-

eations, showing 97% overlap agreement (Minervini et al.,

2014), here we compare its performance with the tradi-

tional non-image-based measurement approach, as per-

formed by others (De Vylder et al., 2012). Specifically, we

recorded the diameter of each subject measured on a

daily basis at the end of the photoperiod using a digital

caliper, obtaining 360 manual measurements overall.

Those were compared with image-based calibrated values

obtained automatically using our software on the corre-

sponding images. The scatter plot in Figure 6(a) shows

excellent agreement between automatic and manual mea-

surements, with a concordance correlation coefficient for

repeated measures of ⍴CCC,RM = 0.997 (lower 95% confi-

dence limit = 0.995), which is proper for longitudinal stud-

ies when within-subject correlation may exist as a result

of repeated measures (Carrasco et al., 2013). Additionally,

the quantile–quantile plot in Figure 6(b) shows that mea-

surements obtained with the two methods follow similar

distributions. To demonstrate that our accuracy is consis-

tent across measurement range, the Bland–Altman (B–A)
plot in Figure S7 compares measurement difference with

the mean for each pair of observations. The B–A analysis

was conducted with the method described by Bland and

Altman (2007), which accounts for repeated measures.

The average measurement was 3.655 cm and given the

small bias of �0.048 cm, and 95% limits of agreement

(mean difference � 1.96 SD) from �0.394 to 0.298 cm, we

can conclude that automatic and manual measurements

of rosette diameter were in excellent agreement.

Comparison with a higher grade camera with optical

zoom. The Phenotiki device uses the RaspiCam fixed-

Figure 5. Average relative growth rate (RGR) by genotype across the duration of the study (from 12 to 37 days after sowing). Shown are, respectively, diel, diur-

nal and nocturnal RGR. Data are represented as means � standard errors of the mean. The lines and asterisks above the bars indicate statistically significant dif-

ferences in average RGR between genotypes, as determined by Tukey–Kramer multiple comparisons test (*P < 0.05; **P < 0.01). [Colour figure can be viewed at

wileyonlinelibrary.com].
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focus camera to acquire images of the scene. With the

absence of moving parts and focusing options, cameras

with fixed focus are cheaper and easier to set than those

with autofocus or manual focus; however, the latter in gen-

eral provide higher-quality images. To assess whether

such higher quality provides any additional benefits (e.g.

higher statistical power) for a similar phenotyping experi-

ment to ours, we also used a more expensive consumer-

grade Canon camera with movable optics, which has a

higher effective resolution because of the movable lens

(zoom), but was also placed to image at an effective field

of view assuming imaging at 50 cm (typical of a growth

shelf). To permit the comparison, the Canon was installed

alongside the RaspiCam, to take images of the same plants

and arrangement at exactly the same time of the day.

First, we validated the Canon sensor against manual

measurements of rosette diameter. Repeating the same

regression and B–A type analyses as described previously,

no differences were found in measurement accuracy with

manual measurements (Figure S8). Comparing limits of

agreement and bias between the Canon and the RaspiCam,

differences were minimal (Figures S7 and S8), indicating

that there was no difference between the two camera sen-

sors with respect to manual measurements.

We repeated all the phenotypic analyses described in

the previous section using images from the Canon camera.

In all cases we observed agreement on the statistical differ-

ences already found using the RaspiCam. As an example,

Table S2 compares the results of the pairwise Tukey–Kra-
mer comparison (following a significant repeated-mea-

sures ANOVA) between PLA data of different genotypes

obtained with RaspiCam and Canon sensors, respectively.

Observe that the P values are close to each other and at a

significance level of 0.05 the conclusions are the same.

Finally, to determine whether sensor quality was a factor

we pooled PLA data measured respectively by RaspiCam

and Canon, and added camera type as an additional factor

to the above ANOVA setting. We found that the camera type

was insignificant (P = 0.696).

Validating leaf counting. To automatically estimate the

number of plant leaves in 2D images without 3D informa-

tion, we devised a machine vision algorithm that predicts

the number of leaves based on plant features in the

images that are learned in a data-driven fashion (Giuffrida

et al., 2015).1 For the purpose of this validation experiment

all image data were labeled by a human expert (with the

use of the annotation tool) to associate the number of

leaves in each of the 1248 plant images in our data set,

which was then used to train and evaluate the method.

Figure 4 shows the time series of the number of leaves

for each genotype (Figure 4c) and growth progression bar

(Figure 4d), as derived from the expert annotations. One

can readily observe that growth trends are in agreement

between predicted and ground-truth (expert) counts (Fig-

ure 4a,c). This is also evident when visualized with growth

progression bars (Boyes et al., 2001) of the predicted (Fig-

ure 4b) and expert-derived data (Figure 4d), demonstrating

that our algorithm can detect the specific growth stages of

a plant (principal growth stage 1; Boyes et al., 2001).

Quantitative analysis is shown in Table 1, reporting four

(now standard) evaluation metrics (Scharr et al., 2016),

which compare agreement between the ground-truth and

the predicted count as: difference in count (DiC), absolute

difference in count (|DiC|), mean squared error (MSE) and

coefficient of determination (R2). With respect to the algo-

rithm presented in Giuffrida et al. (2015), Phenotiki adopts

an extended version that relies on image features and also

plant genotype and projected leaf-area variables to esti-

mate the number of leaves (further details can be found in

the Experimental procedures). The results produced by the

algorithm agree with leaf counts made by expert inspec-

tors (R2 = 0.94 on the testing set), with mean and standard

deviations of less than 1 in absolute count (|DiC|). Auto-

mated leaf counts differed from an expert’s manual count

by not more than one leaf in 83% of examples.

As a further validation, we evaluated whether inter-

changing the expert data with the automated predictions

had any effect in statistical comparison testing. Table S3

compares the results of the pairwise Tukey–Kramer com-

parison (following a significant repeated-measures ANOVA)

between count data of different genotypes obtained with

the expert data and the automated counting, respectively.

Observe that the P values are close to each other and at

the 0.05 significance level the phenotypic conclusions are

the same.

Figure 6. Agreement between rosette diameter measured from images

using Phenotiki (automatic) and manually with a caliper (manual). (a) Scat-

ter plot with fitted linear regression (dashed red line) and 45° rising line

(black solid line). (b) Q–Q plot with superimposed red line joining the first

and third quartiles of each distribution. [Colour figure can be viewed at

wileyonlinelibrary.com].

1An earlier version of this algorithm won the first place in the 2015

edition of the Leaf Counting Challenge (http://www.plant-phe

notyping.org/CVPPP2015-challenge).
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DISCUSSION

We presented an affordable and easy to use solution to

plant phenotyping. It was validated using a proof-of-con-

cept phenotyping experiment with Arabidopsis genotypes

(some of which with known growth characteristics) to

demonstrate that, despite the employment of low-cost

hardware, it can characterize growth in a satisfactory fash-

ion. The system was validated extensively using non-

image-based methods via measuring rosette diameter with

a caliper and also using expert annotation of the images

via manual counting of plant leaves. The underlying plant

segmentation algorithm has also been previously vali-

dated with manual delineations of plants (Minervini et al.,

2014). Furthermore, it was also compared with a higher-

grade camera that had movable optics. Overall, we found

no significant differences between the measurements

obtained with our system and those obtained by other

means.

We adopted a distributed design and decoupled sensing

from analysis and storage. This lowered the cost of the

device and provides scalability. We rely on an off-the-shelf

embedded computer (the Raspberry Pi) and a fixed-optics

camera sensor for several reasons. The Raspberry Pi is

affordable and offers sufficient computational power; fur-

thermore, it has a large following and a vast user and

development community, and several core suppliers. This

credit-card sized yet complete computer attached to the

imaging sensor can be used for storage (i.e. the device can

serve even as simple data logger), but is used in Phenotiki

to control the imaging sensor and transmit data to the

computational unit. The fixed-optics sensor offers robust-

ness to environmental conditions by reducing

condensation effects with the lack of movable parts; alter-

natively, moving optics cameras require expensive hous-

ing to protect against condensation.

Our device can be set up in less than 1 day. Hardware

components can be easily obtained from one of the many

suppliers. Additional step-by-step instructions on assem-

bling and installing the device and software are available

on the Phenotiki website (http://phenotiki.com).2 This also

installs the software that allows the control and set up of

the imaging settings via web-based interface. In addition,

it provides guidelines for the calibration processes. The

device can be attached to growth chambers or shelves

and requires a single cable for power. Once installed it

can operate unattended with the same imaging parame-

ters and requires virtually no maintenance when not dis-

placed. This level of technology readiness is

unprecedented for an affordable, yet integrated, plant

phenotyping system.

With its small footprint, the device easily fits in a growth

chamber and does not cover much of the chamber lights.

For example, by installing it 1 m above the plants, the

camera ensures a field of view of 0.5 m2, which would per-

mit the imaging of about 60 Arabidopsis plants grown in

pots throughout their life cycle, with an imaging resolution

suitable for the phenotyping applications shown in this

article. Equivalently, when placed 50 cm above the plants,

the device can image approximately 30 subjects, offering

even higher resolution. Informal discussions with several

plant scientists confirmed that this is adequate when pilot

Table 1 Quantitative performance of the leaf counting algorithm in Phenotiki

Phenotiki Giuffrida et al. (2015)

Training Testinga Training Testing

DiC 0.032 � 0.772 0.186 � 0.995 0.107 � 1.171 0.247 � 0.1.428
|DiC| 0.580 � 0.509 0.702 � 0.728 0.880 � 0.779 1.048 � 1.000
MSE 0.596 1.022 1.380 2.096
R2 0.967 0.939 0.926 0.876

We compared the original algorithm described in Giuffrida et al. (2015) and the extended version proposed in this article. Difference in
count (DiC), absolute difference in count (|DiC|), mean squared error (MSE) and coefficient of determination (R2). Lower DiC, |DiC| and MSE
are better, whereas higher R2 is better. The best results are highlighted in bold.
These data, following typical practice in machine-learning literature, reflect performance under a random sampling of the sets that we train
on and test on. We follow a strict subject-out 50% split of the complete data. The data set includes 24 plants imaged for 26 days. The data
set is split into two halves, randomly selecting 12 plants each time (and all the pictures of a plant across time) as a training set and the
remaining 12 plants as a testing set (used to assess generalization error), ensuring that both subsets include examples of all genotypes
(Col-0, adh1, ctr1, ein2.1 and pgm). Hence the values of DiC and |DiC| reflect the average and the standard deviation on each set, whereas
MSE and R2 are, by definition, aggregates.
aIf we are to repeat this random split many times (in machine learning this is a form of cross-validation) we see that performance remains
the same, with average and standard deviations of the same measurements as 0.041 � 0.154 (DiC), 0.841 � 0.067 (|DiC|), 1.335 � 0.180
(MSE), 0.923 � 0.008 (R2). This indicates stability with respect to the set that we train on.

2We maintain software and user manuals at an external repository

to permit their continuous updating.
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studies are sought after. The system can reach higher

throughput while still maintaining affordability by increas-

ing the number of sensors: because of its compact size

and low cost, multiple Phenotiki devices can be readily

deployed to offer even higher imaging resolution or

throughput. Thus we avoid complex and costly solutions

based on robotics and actuation (as for example in Tisn�e

et al., 2013), which typically have a larger footprint reduc-

ing further the already hard to find growth chamber space,

and require specific know-how and maintenance, necessi-

tating additional in-house expertise (which may not be

available at length) or service contracts (when develop-

ment has been outsourced).

The imaging data acquired by the device are sent to a

local workstation or to the Cloud. The on-site data hosting

and processing on a workstation is ideal for laboratories

with expected small throughput, and for users who prefer

to rely on local, in-house computational infrastructure. On

the other hand, our distributed approach permits us to

outsource storage and computation to the Cloud, thus

relieving the user from the cost of purchasing and main-

taining a high-performance computing infrastructure

in situ when throughput will be high. Furthermore, by

relying on the Cloud, the additional computational needs

to analyze higher throughput data can be readily met

because of its immediate resource scalability, and the

implementation of asynchronous upload mechanisms that

are used by our device to send data to the Cloud. When

the available network bandwidth or storage capacity is

limited (which could occur in laboratories in countries

with poorer Internet infrastructure), we can potentially

integrate image compression algorithms within the Phe-

notiki device (Minervini and Tsaftaris, 2013; Minervini

et al., 2015c).

Our analysis software and graphical interface are built

on top of MATLAB and are publicly available to the academic

community. We provide pre-compiled versions of the soft-

ware that do not require a MATLAB installation or license,

and can be executed as a stand-alone program. Our source

code is also available to permit third-party extensions. For

those that do not want to rely on local processing, image

analysis modules of Phenotiki for plant segmentation and

annotation are available on the BisQue platform provided

by CyVerse (Goff et al., 2011). Our interface is intuitive and

our software is designed in a modular fashion, such that

new analysis pipelines can be integrated.

Most of the available software packages for plant phe-

notyping (http://plant-image-analysis.org; Lobet et al.,

2013) are tuned to specific set-ups and assumptions.

Instead, we wanted to create software that potentially can

be adopted in a variety of experimental settings anticipat-

ing that it will be used in several laboratories. This neces-

sitates image-processing algorithms that are adaptable.

Approaches that rely on constraining the experimental

setting and applying thresholds on image intensity values

(e.g. De Vylder et al., 2012; Easlon and Bloom, 2014) are

not readily portable across different labs because they

offer limited robustness to varying conditions (e.g.

changes in plant appearance as a result of senescence or

treatment), changes in illumination (e.g. different daylight

conditions) or unplanned alterations in the background

(e.g. algae growing on soil). In fact, the need for robust

image-analysis algorithms and software has been labeled

as the new bottleneck in plant phenotyping (Minervini

et al., 2015b; Tsaftaris et al., 2016).

Our software can reliably extract plant growth traits,

color traits and leaf count based on efficient implementa-

tions of validated algorithms centered on state-of-the-art

methods of image processing and machine learning (Min-

ervini et al., 2014, 2015a; Giuffrida et al., 2015), which are

designed to provide robustness to variable experimental

settings and perform well with 2D fixed-focus imaging.

Although leaf count has also been used previously as a

phenotypic parameter (Jansen et al., 2009; Arvidsson

et al., 2011), here we adopt a learning-based object count-

ing method for plant leaves using affordable 2D-based

vision without the need for expensive (and low-throughput

without actuation) 3D vision (Apelt et al., 2015).

To provide a reference of the computational time

required by our image-analysis software, on a local work-

station (Intel Xeon CPU 3.50 GHz, 64 GB RAM and running

Linux) the extraction of plant segmentation and morpho-

logical traits took about 5.5 seconds per tray image (24

plants). Training the leaf-counting model on a data set

composed of 200 single plant images required ~3.5 min.

Predicting the number of leaves of a plant using the

learned model took less than a second per plant image.

Central to our software design and machine learning is

the notion of training (annotated) data to learn from. We

use them to learn how to count leaves for a specific plant

species, and also to optimize parameters to make the algo-

rithms adapt to new experimental settings, relieving the

user from manually tuning parameters. To help alleviate

the process of creating annotated data we also provide an

interactive tool for plant- and leaf-level annotations that

uses state-of-the-art image processing techniques to mini-

mize expert input (Minervini et al., 2015a). We observed

that annotating plant leaves using our tool (the by-pro-

ducts of which include leaf count and plant segmentation)

requires on average less than 3 min, in contrast with a

completely manual approach requiring on average 30 min

for a trained operator to annotate a single plant. Annotat-

ing only for the purpose of leaf counting (which involves

clicking on each leaf, to help mental memory) takes ~1 min

per plant.

Phenotiki has been primarily tested on Arabidopsis;

however, with its open architecture and choice of algo-

rithm design, we envision that with suitable choices of
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algorithm parameters3 the Phenotiki platform could also

be used to image and extract traits in other plant species.

To provide guidance we discuss briefly this potential. The

plant segmentation algorithm and the leaf annotation tool

are agnostic to plant shape, and could potentially be used

for plants with different structure than Arabidopsis. In fact,

the annotation tool was also evaluated also on publicly

available tobacco plant data (Minervini et al., 2015a). The

leaf counting method in its current form relies on the radial

arrangement of leaves to learn the model, so it could

potentially be used for other plants with radial arrange-

ment of leaves (as evidence from an open challenge on

publicly available data suggest; Giuffrida et al., 2015).

Overall, we anticipate that our methods can be used with

different imaging settings (e.g. different scene background,

different field of view, and others), as long as adequate

feature resolution is present.

Currently, a fully automated leaf segmentation algorithm

is not yet available in Phenotiki, which might be necessary

for investigations into differential leaf growth; however, a

suitable surrogate could be obtained with counting as per-

formed in this article, which could be used to assess plant

status and leaf emergence (Apelt et al., 2015). On the other

hand, the interactive annotation tool can also be used for

semi-automated leaf segmentation, and we are working

towards propagating information for subsequent images

in the time-lapse series to reduce user interaction. More

encouraging are the findings of a recent collation study

and more recent papers using open access data (Minervini

et al., 2016) on automated leaf segmentation (Pape and

Klukas, 2015; Scharr et al., 2016) and other studies (Tess-

mer et al., 2013; Yin et al., 2014), which in the future could

be integrated in our platform. The results reported show a

promising average of 70% accuracy in leaf segmentation

on the basis of single 2D images.

We envision the emergence of a community that sup-

ports and fosters the continued development of the sys-

tem, and thanks to the modular design of our framework,

user contributions will evolve the device and software to

match the needs of diverse and specialized applications.

To further facilitate development, parts of our data and

expert annotations are available openly (Minervini et al.,

2016) and have already been used by the broad image-ana-

lysis community (Pape and Klukas, 2015; Romera-Paredes

and Torr, 2016; Scharr et al., 2016).

In conclusion, Phenotiki offers a complete hardware and

software solution to affordable phenotyping, offering an

out-of-box experience. By relying on open software and

open hardware we hope to lower the entry barrier and

promote the adoption of image-based phenotyping tech-

nologies.

EXPERIMENTAL PROCEDURES

Plants and growth conditions

The experimental set-up included the following Arabidopsis lines:
ecotype Col-0 (five subjects), pgm (plastidial phosphoglucomutase,
N210; five subjects), ctr1 (constitutive triple response 1, N8057; five
subjects), ein2.1 (ethylene insensitive 2.1, N65994; five subjects)
and adh1 (alcohol dehydrogenase 1, N552699; four subjects).
Plants were grown in individual pots under a 12-h light/12-h dark
regime; artificial daylight illumination was provided by cool-white
fluorescent lamps (~100 lmol photons m�2 s�h light intensity).
Temperature was on average ~22°C (daytime) and ~16°C (night-
time). Watering was provided twice a week by subirrigation. Pots
were spaced out in the tray to prevent adult plants from touching.
The arrangement of genotypes in the tray was randomized to elimi-
nate possible bias in the results caused by variations in watering or
lighting conditions (Figure 2b). No treatments were performed.

The Phenotiki device

Our affordable and compact device (Figures 1a and S1) is based
on the Raspberry Pi single-board computer (http://www.raspber
rypi.org) used to control an OmniVision OV5647 fixed-optics com-
plementary metal-oxide semiconductor (CMOS) camera sensor
(known as RaspiCam), with the ability to capture 5-megapixel sta-
tic images of the scene (Figure 2a) in the visible spectrum (i.e.
RGB color images). A complete list of the equipment used to set
up the Phenotiki device and corresponding operating specifica-
tions are provided in Appendix S1. Although we used the Rasp-
berry Pi 1 model B, more recent versions with higher
computational power are also available at the same cost. In addi-
tion, the new RaspiCam V2 version offers higher resolution (8
megapixels). Other types of sensors (e.g. a higher grade camera
or environmental monitoring sensors) can be directly attached to
the Raspberry Pi via Universal Serial Bus (USB) or General-
Purpose Input/Output (GPIO). To facilitate the configuration and
monitoring of the device, we deployed a web-based graphical
user interface to operate it remotely from a laptop or a smart-
phone (Figures 1b and S2; Video clip S1). To reduce storage
requirements without affecting phenotyping accuracy (Minervini
et al., 2015c), images were encoded at the device using the loss-
less compression standard available in the PNG file format
(although Phenotiki supports a variety of lossless and lossy image
formats). At the end of the experiment, a ZIP archive containing
all of the images acquired was automatically created on the Phe-
notiki device, and via the web-based interface of the device we
downloaded it to a local workstation for storage and processing
(Figure S2). Phenotiki can also directly upload data to CyVerse
(with additional options such as upload to FTP servers or Cloud
storage services in development).

Imaging configuration and set-up

The Phenotiki device was placed approximately 1 m above the
plants, affixed via zip-ties on the framework of our chamber. On
the basis of a calibration scale we measured an effective pixel res-
olution of 0.323 mm. At this distance a maximum of 60 Arabidop-
sis plants grown in pots can be imaged (or up to 80 Arabidopsis
rosettes in juvenile stages of development). To obtain consistent
color information, a white reference card was included to perform
automatic white balancing upon image acquisition.

3We offer a grid search module that helps to find a suitable set of

parameters using some annotated data.
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In addition, another higher grade camera (Canon PowerShot
SD1000, shorthanded as Canon) was also used that had movable
optics and could adjust the field of view via optical zoom. This
sensor was set to image at an effective distance of 50 cm, which
is common in growth chambers. This effective distance also dic-
tated the number (24) of subjects used in this study. The diameter
of each plant was manually measured with a caliper and recorded
on a daily basis for reference.

Image-analysis protocol

The acquired imaging data were processed using our image-ana-
lysis software, which has been designed to operate on images
showing a top view on rosette-shaped plants and relies on the
algorithm by Minervini et al. (2014). To isolate plants from the
background – a process known as segmentation – the algorithm
first automatically localizes plant objects in the tray by placing a
bounding box around each plant, and then each plant is seg-
mented from the background. To enable association across time,
plants from consecutive images are matched (i.e. tracked). Seg-
menting plants in images acquired in a general laboratory setting
can be a challenging task under typical growth-chamber condi-
tions (e.g. with green algae growing on the soil surface, water
reflections, light inhomogeneity, and changes in color and appear-
ance of the plants as a result of senescence or treatments); there-
fore, the adopted algorithm relies on machine learning and a
probabilistic (prior-driven) level set-based active contour model
for accurate plant segmentation that can adapt to scene variability
(Minervini et al., 2014). As the algorithm requires the tuning of
several parameters to achieve this adaptation, we provided a pre-
annotated tray image, via a semi-automated tool, upon which the
algorithm automatically finds optimal parameters (Appendix S2).
We applied the algorithm and found parameters on the images of
the experiment and we extracted a variety of traits to describe
rosette size (area, diameter, perimeter), morphology (compact-
ness, stockiness), growth stage progression (leaf count), and
color, obtaining for each plant a multivariate temporal description
of its visual phenotype. For leaf count, we extended a state-of-the-
art method that predicts automatically the number of visible
rosette leaves (Giuffrida et al., 2015). This learning-based
approach requires a set of annotated training images of single iso-
lated plants and corresponding integer number of visible leaves
(i.e. the actual per-image leaf count). Given a set of training
images, the algorithm learns the features (templates composed of
square patches) and a regression model to predict the number of
leaves. As the original algorithm by Giuffrida et al. (2015) was
designed to be agnostic to scale (in order to accommodate the
variable distance between sensor and camera of the images in the
challenge data set, by design; Table S4), and was tested on a chal-
lenge data set that did not provide genotype information, we
added two extra features: plant genotype (categorical variable)
and projected leaf area (PLA, continuous variable). These proper-
ties provide information related to the typical temporal growth
behavior, or more generally speaking the dose-response charac-
teristics of each plant, to the algorithm (Poorter et al., 2013). The
categorical genotype variable was encoded as five separate
dummy variables. Note that the method does not use the actual
genotype information per se (e.g. does not know that the first
dummy is Col-0). The new features vector is then standardized by
subtracting the mean and dividing by the standard deviation. (Fur-
ther parameter settings are shown in Table S4.)

To facilitate adoption, our image analysis solution is publicly
available as a stand-alone MATLAB-based tool (albeit no MATLAB

installation or license is required), and is accompanied by an

easy-to-use and intuitive graphical user interface (Figures 1c and
S3; Video clip S2), and also as a web application running on the
CyVerse Cloud (Figures 1d and S4; Video clip S3). The software
offers the possibility to analyze image data sets and export or
visualize phenotypic results. Additionally, annotation tools are
available for the user to provide feedback or labeled data (e.g. seg-
mented plants or number of leaves), which are used to train the
models of the learning components in the image-analysis pipe-
line. All code is open source.

The Phenotiki software was designed in a modular fashion. In
the stand-alone version, the user is presented with an integrated
view in which several modules are available to address a variety
of tasks. The modules communicate via a shared data structure
(Figure S9) encapsulating all the metadata associated with an
experiment (e.g. subjects, genotypes, acquisition time, user anno-
tations), and populated or augmented with analysis results (e.g.
plant segmentation masks, phenotype descriptors) obtained after
a module execution. The Cloud-based version of the Phenotiki
software follows a similar design, with the modules integrated in
a composite application within the BisQue framework (Goff et al.,
2011).
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Additional Supporting Information may be found in the online ver-
sion of this article.
Figure S1. Pictures of the proposed affordable Phenotiki device.

Figure S2. Screen captures of our web-based software tool to con-
figure and operate the Phenotiki device.

Figure S3. Screen captures showing the user interface of our
stand-alone plant image analysis software.

Figure S4. Screen captures of our suite of web-based applications
for plant image analysis on the CyVerse cloud platform.

Figure S5. Illustration of some of the visual traits extracted by our
system.

Figure S6. Richards’ growth curve fitted to the PLA data for each
genotype.

Figure S7. Bland–Altman plot showing the agreement between
rosette diameter measured with Phenotiki and manually with a
caliper.

Figure S8. Agreement between rosette diameter measured auto-
matically from images acquired with a Canon camera and manu-
ally with a caliper.

Figure S9. Data structure adopted in the PHENOTIKI analysis soft-
ware.

Table S1. Parameter estimates of the Richards’ growth curve fitted
to PLA data.

Table S2. Pairwise comparisons of PLA results between Col-0 and
the other genotypes.

Table S3. Pairwise comparisons of leaf count results between Col-
0 and the other genotypes.
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Table S4. Parameter-setting for the automatic leaf-counting algo-
rithm.

Appendix S1. List of hardware equipment used to set-up the Phe-
notiki device.

Appendix S2. Additional description of the PHENOTIKI image-analy-
sis software.

Appendix S3. Overview of the computer vision approaches
adopted in the PHENOTIKI image analysis software.

Appendix S4. Plant visual trait descriptors extracted by PHENOTIKI.

Appendix S5. Parametric growth analysis based on Richards’
curve.

Appendix S6. Power spectral density estimation of the PLA data,
highlighting daily cyclic growth patterns.

Video clip S1. Demo of the web-based software to configure the
Phenotiki device.

Video clip S2. Demo of the stand-alone PHENOTIKI image-analysis
software.

Video clip S3. Demo of the PHENOTIKI image-analysis modules on
BisQue/CyVerse.
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