
Real-Time Systems Journal manuscript No.
(will be inserted by the editor)

Analysis and Implementation of the Multiprocessor

BandWidth Inheritance Protocol

Dario Faggioli(∗) · Giuseppe Lipari(†) ·

Tommaso Cucinotta(§)

Received: date / Accepted: date

Abstract The Multiprocessor Bandwidth Inheritance (M-BWI) protocol is an ex-

tension of the Bandwidth Inheritance (BWI) protocol for symmetric multiprocessor

systems. Similar to Priority Inheritance, M-BWI lets a task that has locked a resource

execute in the resource reservations of the blocked tasks, thus reducing their blocking

time. The protocol is particularly suitable for open systems where different kinds of

tasks dynamically arrive and leave, because it guarantees temporal isolation among

independent subsets of tasks without requiring any information on their temporal pa-

rameters. Additionally, if the temporal parameters of the interacting tasks are known,

it is possible to compute an upper bound to the interference suffered by a task due

to other interacting tasks. Thus, it is possible to provide timing guarantees for a sub-

set of interacting hard real-time tasks. Finally, the M-BWI protocol is neutral to the

underlying scheduling policy: it can be implemented in global, clustered and semi-

partitioned scheduling.

After introducing the M-BWI protocol, in this paper we formally prove its iso-

lation properties, and propose an algorithm to compute an upper bound to the in-

terference suffered by a task. Then, we describe our implementation of the protocol

for the LITMUSRT real-time testbed, and measure its overhead. Finally, we com-

The research leading to these results has received funding from the European Community’s Seventh Frame-

work Programme FP7 under grant agreement n.248465 “S(o)OS – Service-oriented Operating Systems.”

and under grant agreement n. 246556, “RBUCE-UP”

(*) Real-Time Systems Laboratory, Scuola Superiore Sant’Anna

Via G. Moruzzi 1, 56124, Pisa (Italy)

e-mail: d.faggioli@sssup.it

(§) Alcatel-Lucent Bell Labs

Blanchardstown Business & Technology Park, Dublin (Ireland)

e-mail: tommaso.cucinotta@alcatel-lucent.com

(†) Laboratoire Spécification et Vérification, École Normal Supérieure Cachan,

61, Avenue du Président Wilson, 94235 Cachan,

and PRES Universud Paris

e-mail: giuseppe.lipari@lsv.ens-cachan.fr

2 Dario Faggioli(∗) et al.

pare M-BWI against FMLP and OMLP, two other protocols for resource sharing in

multiprocessor systems.

Keywords Resource sharing · Real-Time ·Multiprocessors · Resource Reservation ·
Priority Inheritance

1 Introduction

Multi-core platforms are being increasingly used in all areas of computing. They con-

stitute an important step for the achievement of greater performance in the wide area

of high-end servers and high-performance computing, as witnessed by the movement

from the “frequency race” to the “core race”. Furthermore, they constitute a promis-

ing technology for embedded and real-time systems, where providing the same com-

puting power with multiple cores at reduced frequency may lead to advantages in

terms of power consumption, something particularly important for battery-operated

devices.

Therefore, an increasing effort is being dedicated in the real-time literature for

multiprocessor scheduling, analysis and design methodologies. Particularly, one of

the key challenges in this context is constituted by resource synchronisation proto-

cols, allowing multiple threads, possibly deployed on multiple cores, to access shared

resources still keeping serialisability [24] of the accesses. On symmetric shared-

memory multi-core platforms, commonly used types of shared resources are in-memory

shared data structures used for communication and synchronisation purposes. To

avoid inconsistencies due to concurrency and parallelism, access to shared data must

be protected by an appropriate access scheme.

Many different approaches have been proposed so far, including lock-based tech-

niques, guaranteeing mutual exclusion among code sections accessing the same data,

but also wait-free [12] and lock-free [2] techniques, which instead allow for true

concurrent execution of the operations on the data structures, via appropriate ac-

cess schemes guaranteeing consistency of the operations. Recently, the transactional

memory (TM) programming paradigm is gaining momentum, thanks to its ability to

make it easier to code certain types of interactions of parallel software.

However, most widely used techniques in the programming practice so far are

based on mutually exclusive semaphores (a.k.a., mutexes): before accessing a shared

memory area, a task must lock a semaphore and unlock it after completing the access.

The mutex can be successfully locked by only one task at a time; if another task

tries to lock an already locked mutex, it is blocked, i.e. it cannot continue its normal

execution. The blocked task will be unblocked only when the mutex is unlocked by

its owner.

In single processor systems, the blocked task is removed from its ready queue,

and the scheduler chooses a new task to be executed. In multi-core systems, it may be

useful to let the blocked task execute a waiting loop, until the mutex is unlocked. Such

technique is often called spin-lock or busy-wait. The advantage of busy waiting is that

the overhead of suspending and resuming the task is avoided, and this is particularly

useful when the time between the lock and the unlock operations is very short.

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 3

A resource access protocol is the set of rules that the operating system uses to

manage blocked tasks. These rules mandate whether a task is suspended or performs

a busy-wait; how the queue of tasks blocked on a mutex is ordered; whether the pri-

ority of the task that owns the lock on a mutex is changed and how. When designing

a resource access protocol for real-time applications, there are two important objec-

tives: 1) at run-time, we must use scheduling schemes and resource access protocols

to reduce the blocking time of important tasks; 2) off-line, we must be able to bound

such blocking time and account for it in a schedulability analysis methodology.

In this paper, we consider open real-time systems where tasks can dynamically

enter or leave the system at any time. Therefore, a run-time admission control scheme

is needed to make sure that the new tasks do not jeopardise the schedulability of the

already existing tasks. In addition, for robustness, security and safety issues, it is

necessary to isolate and protect the temporal behaviour of one task from the others.

In this way, it is possible to have tasks with different levels of temporal criticality

coexisting in the same system.

Resource Reservations [44] were proved as effective techniques to achieve the

goals of temporal isolation and real-time execution in open systems. Resource reser-

vation techniques have initially been designed for the execution of independent tasks

on single processor systems. Recently, they were extended to cope with hierarchical

scheduling systems [20, 47, 31], and with tasks that interact with each other using

locks [10, 21, 39]. Lamastra et al. proposed the Bandwidth Inheritance (BWI) pro-

tocol [29, 32] that combines the Constant Bandwidth Server [1] with Priority Inheri-

tance [46] to achieve bandwidth isolation in open systems.

The Multiprocessor BWI (M-BWI) protocol described in this paper is an exten-

sion of the original BandWidth Inheritance Protocol to symmetric multiprocessor/-

multicore systems. In order to reduce task waiting times in M-BWI, busy waiting

techniques are combined with blocking and task migration. The protocol does not re-

quire any information on the temporal parameters of the tasks; hence, it is particularly

suitable to open systems.

Nevertheless, the protocol supports hard real-time guarantees for critical tasks: if

it is possible to estimate such parameters as the worst-case execution times and du-

rations of the critical sections for the subset of tasks interacting with the task under

analysis, then an upper bound to the task waiting times can be computed. Therefore,

in this case it is possible to compute the reservation budget that is necessary to guar-

antee that the critical task will not miss its deadlines.

Finally, the M-BWI protocol is neutral to the underlying scheduling scheme,

since it can be implemented in global, clustered and semi-partitioned scheduling al-

gorithms.

1.1 Paper Contributions

The contribution of this paper is three-fold. First, M-BWI is described and its for-

mal properties are derived and proved correct. Then, schedulability analysis for hard

real-time tasks under M-BWI is presented. Finally, the implementation of M-BWI

in LITMUSRT , a well-known open-source testbed for the evaluation of real-time

4 Dario Faggioli(∗) et al.

scheduling algorithms1, is also presented. An experimental evaluation of M-BWI per-

formed on such an implementation is presented and discussed.

A preliminary version of this work appeared in [19]. In this extended paper the

discussion is more complete and formal; comparison with the FMLP and OMLP pro-

tocols [6, 9] have been added; the evaluation is made through a real implementation

of the proposed technique.

2 Related Work

Several solutions exist for sharing resources in multiprocessor systems. Most of these

have been designed as extensions of uni-processor techniques [43, 42, 11, 33, 22, 28,

16]; fewer have been specifically conceived for multiprocessor systems [15, 6].

The Multiprocessor Priority Ceiling Protocol (MPCP) [43] and its later improve-

ment [42] constitute an adaptation of PCP to work on fixed priority, partitioned mul-

tiprocessor scheduling algorithms. A recent variant [28] of MPCP differs from the

previous ones in the fact that it introduces spin-locks to lower the blocking times of

higher priority tasks, but the protocol still addresses only partitioned, fixed priority

scheduling.

Chen and Tripathi [11] presented an extension of PCP to EDF. Later on, Gai et

al. [22] extended the SRP for partitioned EDF. The paper deals with critical sections

shared between tasks running on different processors by means of FIFO-based spin-

locks, and forbids their nesting.

Concerning global scheduling algorithms, Devi et al. [15] proposed the analysis

for non-preemptive execution of global critical sections and FIFO-based wait queues

under EDF. Block et al. proposed FMLP [6] and validated it for different scheduling

strategies (global and partitioned EDF and Pfair). FMLP employs both FIFO-based

non-preemptive busy waiting and suspension blocking, depending on the critical sec-

tion being declared as short or long by the user. Nesting of critical sections is per-

mitted in FMLP, but the degree of locking parallelism is reduced by grouping the

accesses to shared resources.

Brandenburg and Anderson [8, 9] discuss the definition of blocking time and pri-

ority inversion in multi-processor systems, and present the OMLP class of protocols.

Currently OMLP only supports non-locked resources. Recently, Easwaran and An-

dersson presented the generalisation of PIP for globally scheduled multiprocessor

systems [16]. They also introduced a new solution, which is a tunable adaptation

of PCP with the aim of limiting the number of times a low priority task can block

a higher priority one. Recently Macariu proposed Limited Blocking PCP [34] for

global deadline-based schedulers, but this protocol does not support nesting of criti-

cal sections.

As it comes to sharing resources in reservation-based systems, the first proposals

were made by Caccamo and Sha [10], by Niz et al. [40] and by Holman and Anderson

[26]. Regarding hierarchical systems2, Behnam et al. [3] and Fisher et al. [21] pro-

1 More information is available at: www.litmus-rt.org.
2 These, under certain assumptions and for the purposes of this paper, can be considered as a particular

form of reservation-based systems

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 5

posed specific protocols to deal with shared resources. In these papers, a server that

has not enough remaining budget to complete a critical section blocks before entering

it, until the replenishment time. Davis and Burns [14] proposed a generalisation of

the SRP for hierarchical systems, where servers that are running tasks inside critical

sections are allowed to overcome the budget limit.

Furthermore, there is work ongoing by Nemati et al. [37, 36, 38] on both inte-

grating the FMLP in hierarchical scheduling frameworks, or using a new adaptation

of SRP, called MHSRP, for resource sharing in hierarchically scheduled multiproces-

sors.

Guan et al. recently [23] addressed resource sharing in graph-based real-time task

models, proposing a new protocol called ACP which tackles the particular issue that

often the actually accessed resources are determined only at run-time, depending on

which branches the code actually executes.

For all these algorithms, the correctness of the scheduling algorithm depends on

the correct setting of the parameters, among which there are worst-case computation

times and durations of critical section. If the length of a critical section is underesti-

mated, any task can miss a deadline. In other words, there is no isolation (or a very

limited kind of isolation) and an error can propagate and cause a fault in another

part of the system. For example, in [3] and [21], if the length of a critical section on a

global resource is underestimated, the system could be overloaded and any task could

miss its deadline.

To the best of our knowledge, the only two attempts to overcome this problem

are the BandWidth Inheritance protocol by Lamastra et al. [29, 32], and the non-

preemptive access to shared resources by Bertogna et al. [5, 25]. These approaches

are well suited for open systems, but are limited to uni-processors. Also limited to

uniprocessors was the attempt at tackling priority inheritance in deadline-based sys-

tems by Jansen et al. [27], in which a protocol similar to priority-ceiling was designed

for EDF-based scheduling, and the schedulability analysis technique based on the

demand-bound function for EDF was extended for such a protocol.

3 System Model

In this paper we focus on shared memory symmetric multiprocessor systems, con-

sisting of m identical unit-capacity processors that share a common memory space.

A task τi is defined as a sequence of jobs Ji,j – each job is a sequential piece of

work to be executed on one processor at a time. Every job has an arrival time ai,j
and a computation time ci,j . A task is sporadic if ai,j+1 ≥ ai,j + Ti, and Ti is the

minimum inter-arrival time. If ∀j ai,j+1 = ai,j + Ti, then the task is periodic with

period Ti. The worst-case execution time (WCET) of τi is an upper bound on the job

computation time: Ci ≥ maxj{ci,j}. Real-time tasks have a relative deadline Di,

and each job has an absolute deadline di,j = ai,j +Di, which is the absolute time by

which the job has to complete.

Hard real-time tasks must respect all their deadlines. Soft real-time tasks can

tolerate occasional and limited violations of their timing constraints. Non real-time

tasks have no particular timing behaviour to comply with.

6 Dario Faggioli(∗) et al.

3.1 Critical Sections

Concurrently running tasks often need to interact through shared data structures, lo-

cated in common memory areas. One way to avoid inconsistencies is to protect the

shared variables with mutex semaphores (also called locks). In this paper we de-

note shared data structures protected by mutex semaphores as software resources or

simply resources. In order to access a resource, a task has to first lock the resource

semaphore; only one task at time can lock the same semaphore. From now on, the

k-th mutex semaphore will simply be called resource, and it will be denoted by Rk.

When τj successfully locks a resource Rk, it is said to become the lock owner of

Rk, and we denote this situation with Rk → τj . If another task τi tries to lock Rk

while it is owned by τj , we say that τi is blocked on Rk: this is denoted with τi → Rk.

In fact, τi cannot continue its execution until τj releases the resource. Typically, the

operating system suspends τi until it can be granted access to Rk. Alternatively, τi
can continue executing a busy-wait, i.e. it still occupies the processor waiting in a

loop until the resource is released. When τj releases Rk, we say that it unlocks the

resource; one of the blocked tasks (if any) is unblocked and becomes the new owner

of Rk.

Notice that in this paper the term blocking refers only to a task suspension due

to a lock operation on an already locked resource. Other types of suspensions (for

example the end of a task job) are simply called suspensions or self-suspensions.

Also, notice that our definition of task blocking on a resource has no relationship

with the concepts of priority and priority inversion: it simply indicates that a task

cannot continue execution until the resource is released. Therefore, as it will become

more apparent in Section 6, the definition and results presented by Brandenburg and

Anderson [8, 9] do not apply to our case.

The section of code between a lock operation and the corresponding unlock op-

eration on the same resource is called critical section. A critical section of task τi on

resource Rh can be nested inside another critical section on a different resource Rk

if the lock on Rh is performed between the lock and the unlock on Rk. Two critical

sections on Rk and Rh are properly nested when executed in the following order:

lock on Rk, lock on Rh, unlock on Rh and unlock on Rk. We assume that critical

sections are always properly nested.

In the case of nested critical sections, chained blocking is possible. A blocking

chain from a task τi to a task τj is a sequence of alternating tasks and resources:

Hi,j = {τi → Ri,1 → τi,1 → Ri,2 → . . .→ Ri,ν−1 → τj}

such that τj is the lock owner on resource Ri,ν−1 and τi is blocked on Ri,1
3; each

other task in the chain accesses resources with nested critical sections, being the lock

owner of the preceding resource and blocking on the following resource. For exam-

ple, the following blocking chain H1,3 = {τ1 → R1 → τ2 → R2 → τ3} consists of

3 tasks: τ3 that accesses R2, τ2 that accesses R2 with a critical section nested inside

a critical section on R1, and τ1 accessing R1. This means that at run-time τ1 can be

3 Notice that we have re-labelled both tasks and resources in the chain to highlight the blocking se-

quence.

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 7

blocked by τ2, and indirectly by τ3. In this case τ1 is said to be interacting with τ2
and τ3.

A blocking chain is a “snapshot” of a specific run-time situation. However, the

concept of blocking chain can also be used to denote a potential situation that may

happen at run-time. For example, chain H1,3 can be built off-line by analysing the

critical sections used by each task, and then at run-time it may happen or not. There-

fore, in order to perform a schedulability analysis, it is possible to analyse the task

code and build a set of potential blocking chains to understand the relationship be-

tween the tasks. In the previous example, τ1 may or may not be blocked by τ3 in

a specific run. However, τ3 cannot be blocked by τ1, unless another blocking chain

H3,1 exists. Generally speaking τi can be blocked by τj if and only if a blocking

chain Hi,j exists.

Deadlock can be detected both off-line and on-line by computing blocking chains.

If a blocking chain contains the same task or the same resource twice, then a locking

cycle is possible, and a deadlock can happen at run-time. To simplify presentation,

and without loss of generality, in this paper we assume that deadlock is not possible.

Thus a task never appears more than once in each blocking chain, and all chains are

finite sequences. However, our implementation in Section 7 can detect deadlocks at

run-time.

We define the subset of tasks interacting with τi as follows:

Ψi = {τj |∃Hi,j}. (1)

Two tasks τi and τh are said to be non-interacting if and only if τj /∈ Ψi and τi /∈ Ψj .

The set of tasks that directly or indirectly interact with a resource Rk is defined as:

Γk = {τj |∃Hj,h = {τj → . . . Rk → τh}} (2)

The ultimate goal of the M-BWI protocol is to provide bandwidth isolation between

groups of non-interacting tasks: if τj /∈ Ψi, then τj cannot block τi and it cannot

interfere with its execution (see Section 4).

3.2 Multiprocessor Scheduling

In multiprocessor systems, scheduling algorithms can be classified into global, par-

titioned and clustered. Global scheduling algorithms have only one queue for ready

tasks, and the first m tasks in the queue are executed on them available processors. As

a consequence, a task can execute on any of the m processors, and can migrate from

one processor to another even while executing a job. Global scheduling is possible on

symmetric multiprocessor systems where all processors have equivalent characteris-

tics (e.g., the same instruction set architecture).

Partitioning entails a static allocation of tasks to processors. The scheduler man-

ages m different queues, one for each processor, and a task cannot migrate between

processors. Partitioned scheduling is possible on a wide variety of hardware platform,

including heterogeneous multiprocessors.

In clustered scheduling, the set of processors is divided into disjoint subsets (clus-

ters) and each task is statically assigned to one cluster. Global scheduling is possible

8 Dario Faggioli(∗) et al.

within each cluster: there is one queue for each cluster, and a task can migrate be-

tween processors of its assigned cluster. Again, each cluster must consist of equiva-

lent processors.

In this paper we assume that task migration is possible, i.e. that a task can occa-

sionally migrate from one processor to another one. Therefore, we restrict our atten-

tion to symmetric multiprocessors platforms.

Regarding the scheduling algorithm, we do not make any specific assumption.

The underlying scheduling mechanism can be global, partitioned or clustered schedul-

ing. However, for the latter two algorithms, we assume that a task can occasionally

violate the initial partitioning, and temporarily migrate from its assigned processor

to another one not assigned to it for the sake of shortening the blocking time due

to shared resources. For this reason, from now on we refer to these schedulers as

semi-partitioned schedulers.

The mechanism will be explained in greater details in Section 5.

3.3 Resource Reservation

The main goal of our protocol is to guarantee timing isolation between non-interacting

tasks. An effective way to provide timing isolation in real-time systems is to use the

resource reservation paradigm [44, 1]. The idea is to wrap tasks inside schedulable

entities called servers that monitor and limit the resource usage of the tasks.

A server Si has a maximum budget Qi and a period Pi, and serves one task 4. The

server is a schedulable entity: it means that the scheduler treats a server as it were a

task. Therefore, depending on the specific scheduling algorithm, a server is assigned

a priority (static of dynamic), and it is inserted in a ready queue. Each server then gen-

erates “jobs” which have computation times (bounded by the maximum budget) and

absolute deadlines. To distinguish between the absolute deadline assigned to server

jobs, and absolute deadlines assigned to real-time tasks, we call the former “schedul-

ing deadlines”.

The scheduling deadline is calculated by the reservation algorithm and it is used

only for scheduling purposes (for example in the CBS algorithm [1], the schedul-

ing deadline is used to order the queue of servers according to the Earliest Deadline

First policy). When the server is dispatched to execute, the server task is executed

instead according to the resource reservation algorithm in use. Notice that, when us-

ing resource reservations, priority (both static or dynamic) is assigned to servers, and

not to tasks. A set of servers is said to be schedulable by a scheduling algorithm if

each server job completes before its scheduling deadline. In general, schedulability of

servers is not related with schedulability of the wrapped tasks. However, if the set of

servers is schedulable, and there is an appropriate relationship between task parame-

ters and server parameters, server schedulability may imply task schedulability. For

example, when serving sporadic real-time tasks, if the server maximum budget is not

less than the task WCET, and the server period is not larger than the task minimum

4 Resource reservation and servers can also be used as the basis for hierarchical scheduling, in which

case each server is assigned more than one task. In this paper, however, we will not take hierarchical

scheduling into account.

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 9

inter-arrival time, then the task will meet its deadlines provided that the server meets

its deadlines.

Many resource reservation algorithms have been proposed in the literature, both

for fixed priority and for dynamic priority scheduling. They differ on the rules for

updating their budget, suspending the task when the budget is depleted, reclaiming

unused budget, etc. However, all of them provide some basic properties: a reserved

task τi is guaranteed to execute at least for Qi time units over every time interval of

Pi time units; therefore, tasks are both confined (i.e., their capability of meeting their

deadlines only depends on their own behaviour) and protected from each other (i.e.,

they always receive their reserved share of the CPU, without any interference from

other tasks). The latter property is called timing isolation.

Two examples of resource reservation algorithms are the Constant Bandwidth

Server (CBS [1]), for dynamic priority scheduling, and the Sporadic Server (SS [48]),

for fixed priority scheduling. To describe a resource reservation algorithm, it is pos-

sible to use a state machine formalism. The state machine diagram of a server for

a general reservation algorithm is depicted in Fig. 1. Usually, a server has a current

budget (or simply budget) that is consumed while the served task is being executed,

and a priority. Initially the server is in the Idle state. When a job of the served task is

activated, the server moves to the Active state and it is inserted in the ready queue

of the scheduler; in addition, its budget and priority are updated according to the

server algorithm rules. When an active server is dispatched, it becomes Running,

and its served task is executed; while the task executes, its budget is decreased. From

there on, the server may:

– become Active again, if preempted by another server;

– become Recharging, if its budget is depleted;

– become Idle, if its task self-suspends (for example because of an end of job

event).

On the way out from Recharging and Idle, the reservation algorithm checks

whether the budget and the priority/deadline of the server needs to be updated. A

more complete description of the state machine for algorithms like the CBS [1] can

be found in [35].

Idle Active
wake_up

Running

preemption

suspend

dispatch

Recharging

recharged

bdg_exhausted

Fig. 1 State machine diagram of a resource reservation server.

10 Dario Faggioli(∗) et al.

4 The BandWidth Inheritance Protocol

If tasks share resources using the resource reservation paradigm, they might start

interfering with each other. In fact, a special type of priority inversion is possible in

such a case, due to the fact that a server may exhaust its budget while serving a task

inside a critical section: the blocked tasks then need to wait for the server to recharge

its budget. If the server is allowed to continue executing with a negative budget,

scheduling anomalies appear that may prevent schedulability analysis, as explained

for example in [32, 18].

For uni-processor systems, the Bandwidth Inheritance Protocol (BWI, see [32])

solves this issue by allowing server inheritance. The server of a lock-owner task can

leverage not only its own budget to complete the critical section, but also the inherited

budgets of servers possibly blocked on the lock it is owning.

This mechanism is similar to the Priority Inheritance mechanism. It helps the

lock-owner to anticipate the resource release. Moreover, tasks that are not involved in

the resource contention are not influenced, thus preserving timing isolation between

non-interacting tasks.

A more detailed description of the BWI protocol and its properties can be found

in [32]. In this paper we extend the BWI protocol to the multi-processor case.

In [45], BWI has been extended with the Clearing Fund algorithm. The idea is

to pay back the budget that a task steals to other tasks by means of the bandwidth

inheritance mechanism. While a similar technique can also be applied to M-BWI, for

simplicity in this paper we restrict our attention to the original BWI protocol, and we

leave an extension of the Clearing Fund algorithm as future work.

5 Multiprocessor Bandwidth Inheritance

When trying to adapt the BWI protocol to multiprocessor systems, the problem is to

decide what to do when a task τA tries to lock a resource R whose lock owner τB is

executing on a different processor. It makes no sense to execute τB on more than one

CPU at the same time. However, just blocking τA and suspending the server may cre-

ate problems to the resource reservation algorithm: as shown in [32], the suspended

server must be treated as if its task completed its job; and the task unblocking must be

considered as a new job. Whereas this strategy preserves the semantic of the resource

reservation, it may be impossible to provide any timing guarantee to τA.

To solve this problem, M-BWI lets the blocked task τA perform a busy-wait inside

its server. However, if the lock owner τB is not executing, because its server has

been preempted (or exhausted its budget during the critical section) the inheritance

mechanisms of BWI takes place and τB is executed in the server of the blocked task

τA, thus reducing its waiting time. Therefore, it is necessary to understand what is the

status of the lock owner before taking a decision on how to resolve the contention.

It is also important to decide how to order the queue of tasks blocked on a locked

resource.

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 11

5.1 State Machine

A server using the M-BWI protocol has some additional states. The new state ma-

chine is depicted in Figure 2 using the UML State Chart notation. In this diagram we

show the old states grouped into a composite state called Reservation. As long as the

task does not try to lock a resource, the server follows its original behaviour and stays

inside the Reservation state.

Reservation

Idle Active
wake_up

Running
dispatch

preemption

suspend

Recharging

recharged

bdg_exhausted

BWI

lock

unlock Active

Recharging

Idle

Running

Executing Spinning

preemption

bdg_exhausted

suspension [not bwi]

wake_up

sig1

inn-lock

[LO running][LO not running]

recharging

Fig. 2 State machine diagram of a resource reservation server when M-BWI is in place.

Now, let us describe the protocol rules. Let λj denote the set of blocked tasks

waiting for τj to release some resource: λj = {τk | τk → . . . → τj}. Let ρk denote

the set of all tasks blocked on resource Rk including the current lock-owner. Also, let

Λj denote the set of servers currently inherited by τj (Sj included): Λj = {Sk | τk ∈
λj} ∪ {Sj}.

– Locking rule. When the task τi executing inside its server Si tries to lock a

resourceRk, the server moves into the BWI composite state, and more specifically

inside the BWI.Running state, which is itself a state composed of two sub-

states, Executing and Spinning. The set ρk now includes τi. We have two

cases to consider:

a) If the resource is free, the server simply moves into the BWI.Running.Executing

sub-state and executes the critical section.

b) If the resource is occupied, then the chain of blocked tasks is followed until

one that is not blocked is found (this is always possible when there is no

deadlock), let it be τj . Then, τj inherits server Si, i.e. Si is added to Λj . If

τj is already executing in another server on another processor, then Server Si

moves into the BWI.Running.Spinning sub-state. Otherwise, it moves

into BWI.Running.Executing and starts executing τj . This operation

may involve a migration of task τj from one server to another one running on

a different processor.

Notice that in all cases Si remains in the BWI.Running state, i.e. it is not sus-

pended.

– Preemption rule. When server Si is preempted while in the BWI.Running

state, it moves to the BWI.Active state. We have two cases:

12 Dario Faggioli(∗) et al.

a) If the server was in the BWI.Running.Spinning sub-state, it simply

moves to BWI.Active;

b) Suppose it was in the BWI.Running.Executing state, executing task τj .

Then the list Λj of all servers inherited by τj is iterated to see if one of the

serversSk ∈ Λj is running. This means thatSk must be in the BWI.Running.Spinning

sub-state. Then, Sk moves to the BWI.Running.Executing sub-state

and will now execute τj (transition sig in the figure).

If there is more than one server in Λj that is BWI.Running.Spinning,

only one of them is selected and moved to BWI.Running.Executing,

for example the one with the largest remaining budget, or the one with the

earliest deadline.

This operation may involve a migration of task τj from server Si into server

Sk.

– Recharging rule. If the budget of a server in the BWI.Running state is ex-

hausted, the server moves to the BWI.Recharging state. This rule is similar to

the Preemption rule described above, so both cases a) and b) apply.

– Dispatch rule. If server Si in the BWI.Active state is dispatched, it moves to

the BWI.Running state. This rule is similar to the locking rule described above,

and there are two cases to consider:

a) The lock-owner task is already executing in another server on another proces-

sor: then Si moves to the BWI.Running.Spinning sub-state.

b) The lock-owner task is not currently executing; then Si moves to the BWI.Running.Executing

sub-state and starts executing the lock-owner task.

– Inner locking. If a task that is already the lock owner of a resource Rl tries to

lock another resource Rh (this happens in case of nested critical section), then it

behaves like in the locking rule above. In particular, if the resource is occupied,

the lock owner of Rh is found and inherits Si. If the lock-owner is already run-

ning in another server, Si moves from the BWI.Running.Executing to the

BWI.Running.Spinning sub-states (transition inn-lock in the figure).

– Unlocking rule. Suppose that a task τj is executing an outer critical section on re-

sourceRk and unlocks it. Its current executing server must be in the BWI.Running.Executing

sub-state (due to inheritance, it may or may not be Sj).

If there are blocked tasks in ρk, the first one (in FIFO order) is woken up, let it be

τi. The unblocked task τi will inherit all servers that were inherited by τj , and all

inherited servers are discarded from Λj (excluding Sj):

Λi ← Λi ∪ Λj \ Sj (3)

Λj ← Sj

Sj goes out of the BWI composite state (transition unlock) and returns into the

Reservation composite state, more precisely into its Reservation.Running

sub-state. Notice that this operation may involve a migration (task τj may need to

return executing into its own server on a different processor).

– Inner unlocking rule. If a task τj is executing a nested critical section on re-

source Rk and unlocks it, its currently executing server continues to stay in the

BWI.Running.Executing sub-state. If there are blocked tasks in ρk waiting

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 13

for Rk, then the first one (according to the FIFO ordering) is woken up, let it be

τi, and the sets are updated as follows:

ρk ← ρk \ τj

∀τh ∈ ρk

{

Λj ← Λj \ Sh

Λi ← Λi ∪ Sh

This operation may involve a migration.

– Suspension rule. While holding a resource, it may happen that a task τj self

suspends or blocks on a resource that is not under the control of the M-BWI

protocol. This should not be allowed in a hard real-time application, otherwise

it becomes impossible to analyse and test the schedulability. However, in a open

system, where not everything is under control, it may happen that a task self-

suspends while holding a M-BWI resource.

In that case, all the servers in Λj move to BWI.Idle and are removed from

the scheduler ready queues until τj wakes up again. When waking up, all servers

in Λj move to the BWI.Active state and the rules of the resource reservation

algorithm are applied to update the budget and the priority of each server.

5.2 Examples

We now describe two complete examples of the M-BWI protocol. In the following

figures, each time-line represents a server, and the default task of server SA is τA,

of server SB is τB , etc. However, since with M-BWI tasks can execute in servers

different from their default one, the label in the execution rectangle denotes which

task is executing in the corresponding server. White rectangles are tasks executing

non critical code, light grey rectangles are critical sections and dark grey rectangles

correspond to servers that are busy waiting. Which critical section is being executed

by which task can again be inferred by the execution label, thus A1 denotes task τA
executing a critical section on resource R1. Finally, upside dashed arrows represent

“inheritance events”, i.e., tasks inheriting servers as consequences of some blocking.

The schedule for the first example is depicted in Figure 3. It consists of 3 tasks,

τA, τB , τC , executed on 2 processors, that access only resource R1.

At time 6, τB tries to lock R1, which is already owned by τC , thus τC inherits SB

and starts executing its critical section on R1 inside it. When τA tries to lock R1 at

time 9, both τC and τB inherit SA, and both SA and SB can execute τC . Therefore,

one of the two servers (SA in this example) enters the Spinning state. Also, the FIFO

wake-up policy is highlighted in this example: when, at time 14, τC releases R1, τB
grabs the lock because it issued the locking request before τA.

The second example, depicted in Figure 4, is more complicated by the presence

of 5 tasks on 2 processors, two resources, and nested critical sections: the request for

R1 is issued by τC at time 7 when it already owns R2.

Notice that, despite the fact that both τD and τE only use R2, they are blocked by

τA, which uses only R1. This is because the behaviour of τC establishes the blocking

chains HD,A = {τD → R2 → τC → R1 → τA} and HE,A = {τE → R2 → τC →

14 Dario Faggioli(∗) et al.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

SA

SB

SC

A

L(R1)

A1

U(R1)

A

B

L(R1)

C1 B1

U(R1)

B

C C1

L(R1)

U(R1)

C

Fig. 3 First example, 3 tasks on 2 CPUs and 1 resource.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

SA

SB

SC

SD

SE

A

L(R1)

A1

U(R1)

A

B B

C

L(R2)

C2

L(R1)

U(R1) U(R2)

C

D

L(R2)

A1 C1 C2 D2

U(R2)

D

E

L(R2)

E2

U(R2)

E

Fig. 4 Second example, 5 tasks on 2 CPUs with 2 resources — task τC accesses R1 inside R2.

R1 → τA}. For the same reason SD and SE are subject to interference either by busy

waiting or executing τA until it releases R1. This is a blocking-chain situation similar

to what happens with priority inheritance in single processor systems.

5.3 Proof of Correctness

In this section, we will prove the correctness of the protocol. Let us start by defining

what we mean by “correct protocol”:

– First of all, we require that a task is never executed on two processors at the same

time.

– Second, we require that the server is never blocked: that is, if task τi blocks, its

server Si will continue to execute either a busy-wait or some other task. Server

Si can suspend due to recharging, but it will never move to the BWI.Idle state,

unless its currently executing task self-suspends.

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 15

– Finally, we require that, if a schedulability test deems the set of reservations to

be schedulable when access to resources is ignored, then no server will miss its

deadline at run-time when executed with the corresponding scheduling algorithm.

Notice that at this point we do not assume a specific scheduling algorithm (fixed

or dynamic priority, semi-partitioned or global): we only assume a resource reser-

vation algorithm, and an appropriate schedulability test for the admission control of

reservations. The only requirement is that the set of reservations be schedulable on

the selected combination of scheduling algorithm and hardware platform when access

to resources is not considered.

Lemma 1 If M-BWI is used as a resource access protocol, a task never executes on

more than one server at the same time.

Proof Suppose that τj is a lock owner that has inherited some server. For τj to execute

in more than one server, at least two servers inΛj should be in the Running.Executing

sub-state. However, the Locking rule specifically forbids this situation: in particular,

in case b), the protocol looks at the lock owner task τj , ad if it already executing

(i.e. if its server is in the BWI.Running.Executing), then the server of the new

blocked task goes into BWI.Running.Spinning state.

Similar observations hold for the Dispatch and Inner locking rules. Hence the

lemma is proved. ⊓⊔

Lemma 2 Consider a set of reservations that uses the M-BWI protocol to access

shared resources. Further, suppose that task τi and all tasks in Ψi never suspend

inside a critical section, and never access a resource not handled by M-BWI. Then,

when in the BWI state, server Si always has exactly one non-blocked task to serve

and never enters the BWI.Idle state.

Proof The second part of the Lemma holds trivially: in fact, in order for Si to enter

the BWI.Idle state, it must happen that τi or any of the tasks from which it is

blocked, self suspends while inside a critical section, against the hypothesis.

It remains to be proved that Si has always exactly one non-blocked task to serve.

In M-BWI a server can be inherited by a task due to blocking. This happens in the

Locking and Inner locking rules. Also, in the Unlocking and Inner unlocking rules, a

task can inherit many servers at once. Therefore, a task can execute in more than one

server.

We will now prove that, when in the BWI state, server Si has at most one non-

blocked task to serve. By Induction. Let us denote with t0 the first instant in which

τi accesses a resource, entering state BWI. The lemma trivially holds immediately

before t0. Assume the lemma holds for all instants before time t, with t ≥ t0.

Suppose a task blocks at time t. In the Locking rule a task τi may block on a

resource already occupied by another task τj . As a consequence, τj inherits Si. Si

had only one non-blocked task (τi) before this event: hence, it has only one non-

blocked task (τj) after the event. A similar observation is valid in the Inner Locking

rule.

Suppose that a task τj releases a resource Rk at time t. In the Unlocking rule, τj
wakes up one task τi that inherits all servers in Λj , except Sj . All these servers had

16 Dario Faggioli(∗) et al.

only one non-blocked task (τj) to serve before t; they still have one non-blocked task

(τi) to serve after t. A similar observation holds for the Inner unblocking rule.

No other rule modifies any of the sets Λi. Hence the lemma is proved. ⊓⊔

The previous lemma implies that, under M-BWI, a server is never suspended

before its task completes its job, unless the task itself (or any of its interfering tasks)

self suspends inside a critical section. This is a very important property because it

tells us that, from an external point of view, the behaviour of the reservation algorithm

does not change. In other words, we can still view a server as a sporadic task with

WCET equal to the maximum budget Qi and minimum inter-arrival time equal to

Pi, ignoring the fact that they access resources. Resource access, locking, blocking

and busy wait have been “hidden” under the M-BWI internal mechanism. Therefore,

we can continue to use the classical schedulability tests to guarantee that the servers

will never miss their deadlines. This is formally proved by the following conclusive

theorem.

Theorem 1 Consider a set of reservations that is schedulable on a system when ac-

cess to resources is ignored, and that uses M-BWI as a resource access protocol.

Then, every server always respects its scheduling deadline.

Proof Theorem 2 proves that a server is never blocked: a server can become idle (ei-

ther Reservation.Idle or BWI.Idle) only if it self suspends or if it is blocked

by a task that self suspends.

Notice in Figure 2 that the states inside Reservation and the states inside BWI

were named alike with the purpose of highlighting the similarity between the two

composite states. A server can move fromReservation.Running to BWI.Running

and vice versa through a lock/unlock operation on a resource managed by the M-BWI

protocol. Notice also that the server moves from one state to another inside each high

level composite state responding to the same events: a preemption event moves a

server from Running to Active in both composite states; a bdg exhausted

event moves the server from Running to Recharging in both composite states;

etc. Also, the operations on the budget and priority of a reservation are identical in

the two composite states, except that, while inside the BWI composite state, a server

can execute a different task than its originally assigned one.

Therefore, from the point of view of an external observer, if we hide the pres-

ence of the two high level composite states, Reservation and BWI, and the lock

and unlock events, then the behaviour of any server Si cannot be distinguished from

another server with the same budget and period that does not access any resource.

In any resource reservation algorithm, the schedulability of a set of reservations

(i.e. the ability of the servers to meet their scheduling deadlines) depends only on

their maximum budgets and periods. Since by hypothesis the set of reservations is

schedulable on the system when ignoring resource access, it follows that the set of

reservations continues to be schedulable also when resource access is considered. ⊓⊔

The most important consequence of Theorem 1 is that the ability of a server to

meet its scheduling deadline is not influenced by the behaviour of the served tasks,

but only by the global schedulability test for reservations. Therefore, regardless of

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 17

the fact that a task accesses critical sections or not, and for how long, the server will

not miss its scheduling deadlines.

The first fundamental implication is that, to ensure that a task τi will complete

before its deadline under all conditions, we must assign it a server Si with enough

budget and an appropriate period. If τi is sporadic and does not access any resource,

it suffices to assign Si a budget no less than the task’s WCET, and a period no larger

than the task’s minimum inter-arrival time. In fact, the server will always stay inside

the Reservation composite state and will not be influenced by the presence of

other tasks in the system. We say that task τi is then temporally isolated from the rest

of the system.

If τi does access some resource, then Si can be inherited by other tasks due to

blocking and the server budget can be consumed by other tasks. However, the set of

tasks that can consume Qi is limited to Ψi, i.e. the set of interacting tasks for τi. To

ensure the schedulability of τi, we must assign Si enough budget to cover for the task

WCET and the duration of the critical sections of the interacting tasks. If a task does

not belong to Ψi, then it cannot inherit Si and cannot influence the schedulability of

τi.
The conclusion is that M-BWI guarantees temporal isolation: it restricts the inter-

ference between tasks, and makes sure that only interacting tasks can interfere with

each other.

6 M-BWI Interference Analysis

In the previous section we have demonstrated that M-BWI does indeed provide tem-

poral isolation, without requiring any knowledge of the tasks temporal parameters.

Also, M-BWI seamlessly integrates with existing resource reservation schedulers.

Therefore, it is possible to avoid the difficult task of performing temporal analysis for

soft real-time systems; for example, adaptive scheduling strategies [41, 13] may be

used at run-time to appropriately dimension the budgets of the reservations.

Open systems may also include hard real-time applications, for which we must

guarantee the respect of every temporal constraint. To perform an off-line analysis

and provide guarantees, it is necessary to estimate the parameters (computation times,

critical sections length, etc.) of the hard real-time tasks. Without isolation, however,

the temporal parameters of every single task in the system must be precisely esti-

mated. In M-BWI, this analysis can be restricted to the subset of tasks that interact

with the hard real-time task under analysis. In particular, this is required to be able to

compute the interference of interacting tasks.

The interference time Ii is defined as the maximum amount of time a server Si is

running but it is not executing its default task τi. In other words, Ii for Si is the sum

of two types of time interval:

– the ones when tasks other than τi execute inside Si;

– the ones when τi is blocked and Si busy-waits in BWI.Running.Spinning

state.

Schedulability guarantees to hard real-time activities in the system are given by

the following theorem.

18 Dario Faggioli(∗) et al.

Theorem 2 Consider a set of reservations schedulable on a system when access to

resources is not considered. When M-BWI is used as a resource access protocol,

hard real-time task τi, with WCET Ci and minimum inter-arrival time Ti, attached to

a server Si = (Qi ≥ Ci + Ii, Pi ≤ Ti), never misses its deadline.

Proof By contradiction. From Theorem 1, no server in the system misses its schedul-

ing deadline. In order for τi to miss its deadline, the server has to go into the recharg-

ing state before τi has completed its instance. It follows that, from the activation of

the task instance, the server has consumed all its budget by executing part of task τi
and other interfering tasks. However, the amount of interference is upper bounded by

Ii, the computation time of τi is upper bounded by Ci, and Qi ≥ Ci + Ii. Hence, the

server never reaches the recharging state, and the theorem follows. ⊓⊔

Computing a bound on the interference for a hard real-time tasks is not easy in

the general case of nested critical sections. In the following, we propose an algorithm

to compute an upper bound to the interference that exhaustively checks all possi-

ble blocking conditions. The algorithm has super-exponential complexity, because it

looks at all possible permutations of sequences of blocking tasks. However, consider

that this algorithm is to be executed off-line; also, consider that in most practical

cases, the number of resources and tasks involved in the computation is relatively

small (i.e. below 10).

In the following, we also assume that the underlying scheduling algorithm is

global EDF, which means that on a multiprocessor platform with m processors there

is one global queue of servers, and the first m earliest deadline servers execute on

the m processors. Also, we assume the Constant Bandwidth Server [1] as resource

reservation algorithm.

6.1 Interference Computation

We start by observing that the two types of interference that a server can be subject

to are “equivalent” from the point of view of the blocked task.

Theorem 3 The interference for a server Si is given by the sum of one or more

instances of critical sections of tasks in Ψi.

Proof Theorem 2 states that a server never blocks. It follows that when a task τi tries

to access a resource that is already locked by another task τj , there are two possible

cases. In one case, task τj is not executing because it is not the earliest deadline task,

or because its server budget is 0. In this case, Si inherits the locking tasks τj .

In the second case case, τj is executing on a different processor, so τi blocks and

Si spin locks, waiting for the τj to release the resource. It is easy to see that in both

cases τi has to wait the same amount of time, that is the duration of the critical section

of τj plus the possible interference time that τj can be subject to (due for example to

nested critical sections). ⊓⊔

Theorems 2 and 3, combined together, tell us that there can be no indirect block-

ing in M-BWI.

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 19

Therefore, in order to compute the interference, we will assume that each one

of the n tasks in the system executes on its own dedicated processor with a server

that has maximum budget equal to its period. In this way, all active tasks are ready

to execute, and the only possible type of interference is the second one (spin-lock).

Also, in computing the interference for a job of task τi, we will assume that all other

tasks will have minimal period and are always ready to interfere with τi. In this way

we will compute a pessimistic but safe upper bound on the interference.

Once such upper bound has been computed on the dedicated virtual processors,

we can go back to the original system with m < n shared processors scheduled by

global EDF, and in the worst-case the interference will not be larger than the one

computed on the dedicated virtual processor platform.

We now compute the interference on the dedicated virtual multiprocessor plat-

form. Let us start by modelling the critical sections.

We enumerate all critical sections of a task, and we denote by cs
(j)
i the j-th critical

section of task τi. Also, the algorithm will make use of the following notation:

– R(cs
(j)
i) is the resource accessed by the critical section

– csseti(Rk) is the set of all critical sections of task τi that access Rk.

– outer(cs
(j)
i) is the set of all critical sections within which cs

(j)
i is nested. If cs

(j)
i

is an outermost critical section, outer(cs
(j)
i) = ∅.

– bres(cs
(j)
i) is the set of all resources that have to be locked before task τi can

access critical section cs
(j)
i . In practice, it is the set of all resources accessed by

the critical sections in outer(cs
(j)
i), and of course it can be empty if cs

(j)
i is an

outermost critical section.

– outmosti the set of outermost critical sections of task τi
– inner

′(cs
(j)
i) is the set of critical sections that are directly nested inside cs

(j)
i .

– inner(cs
(j)
i) is the set of all critical sections nested inside cs

(j)
i , (i.e., the transitive

closure of function inner
′() on cs

(j)
i)

The algorithm for the computation of the interference is reported in Figure 5. The

algorithm consists of three functions: INTERFERENCE is the main function that is

called by the user to compute the interference for a task τi. In turn, it calls function

COMPUTEINTERFERENCE which performs the actual computation.

COMPUTEINTERFERENCE is a recursive function that takes 4 parameters. The

first one is the task on which we want to compute the interference; the second one,

CSSET, is the set of the critical sections of τi on which we want to compute the

interference; the third parameter, BTASKS, is a set of blocking tasks (i.e. tasks that,

in the enumerated scenario under analysis, have already blocked task τi on this or on

some other critical section on another resource); the fourth parameter, BRES, is the

set of locked resources, i.e. resources that have already been locked by some of the

tasks in BTASKS.

The task can in principle block on each critical section in CSSET, therefore we

have to sum the interference for each one of these critical sections. For each critical

section, the set of tasks that can block τi is given by Θ = Γ (R(cs)) \Btasks (line 8).

20 Dario Faggioli(∗) et al.

The algorithm then explores all possible orderings in which the tasks in Θ block

task τi on the current critical section (the cycle at lines 11-14). To understand why

this is important, let us analyse one simple example.

Example: consider three tasks: τ1 accesses R2; τ2 and τ3 both access R2 with a

critical section nested inside another critical section on R1. It is easy to show that τ2
and τ3 cannot both block τ1 on R2. By contradiction: since access is granted in FIFO

order, the fact that τ1 has to wait for both τ2 and τ3 to release R2 implies that both

tasks must have issued a request on R2 before τ1 issues its request on R2. However,

this means that both tasks must have successfully locked resource R1, because both

access R2 with critical sections nested inside critical sections on R1: this contradicts

the mutual exclusion on R1, hence only one between τ2 and τ3 can block τ1 on R2.

In the general case, we have to try all permutations of the tasks in Θ that can pos-

sibly block τi. For this reason, the algorithm performs a while cycle (line 11) in which

it explores all possible permutations, computing the interference for each permutation

by invoking function COMPUTEPERMUTATION, and selecting the maximum. Func-

tion NEXTPERMUTATION generates a new permutation of set Θ and returns false if

no more permutations are possible.

After performing this step, function COMPUTEINTERFERENCE is called recur-

sively on inner critical sections of CS (second parameter inner′(cs)), by passing the

set of blocking tasks and blocking resources (the latter one now contains resource

R(cs)).
Function COMPUTEPERMUTATION performs the actual computation. It first se-

lects the first task in the sequence (let it be task τj); then it selects the set of critical

sections of this task on the resource Rk. Of course, τj can block τi only on one of

those critical sections, hence it is necessary to see which one causes the worst-case

interference. Hence, the algorithm first analyses if the set of resources in BRES(csj)
is free (line 27); if it is not, it means that the task cannot arrive before τi and lock

the resource, otherwise some mutual exclusion constraint is violated. If it is possi-

ble, then we have to compute the length of the critical section plus the maximum

interference that τj can suffer on this critical section; therefore, we recursively in-

voke function COMPUTEINTERFERENCE on τj (line 29). Among all possible critical

sections of τj we select the one that produces the maximum interference on τi (lines

31-32). We perform this computations for all tasks in Θ, keeping track at each cycle

of the blocking resources and of the blocking tasks (lines 23 and 37).

Example. In the previous example, consider the first permutation {τ2, τ3}. Func-

tion COMPUTEPERMUTATION will first add τ2 to the list BTASKS (line 23); then it

will look at all critical sections of τ2 onR2 (line 26); then it will compute BRES(CSJ) =
{R1}, and add it to the list of blocked resources TEMPBRES; then it will add the dura-

tion of its critical section on R2 (line 29). Since it has no other inner critical section, it

exits from the loop setting LOCALBRES to {R1}. Now it goes back to line 22, adding

τ3 to BTASKS. However, it will realise that τ3 cannot contribute to the interference

because BRES(csj) ∩ BRES = {R1} is non-empty.

Convergence and deadlock. The algorithm converges, since at each recursive step

function COMPUTEINTERFERENCE is called with larger sets BTASKS and a larger

BRES.

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 21

1: function INTERFERENCE(τi)

2: return COMPUTEINTERFERENCE(τi, outermosti, {τi}, ∅)
3: end function

4: function COMPUTEINTERFERENCE(τi,CSSet,BTasks,BRes)

5: sum← 0
6: for all cs ∈ CSSet do

7: LocalBRes← BRes ∪ {R(cs)}
8: Θ ← Γ (R(cs)) \ Btasks
9: flag ← true

10: partial ← 0
11: while flag do

12: partial← max {partial, COMPUTEPERMUTATION(τi, Θ,R(cs),BTasks, LocalBRes)}.
13: flag ← NEXTPERMUTATION(Θ)
14: end while

15: sum← sum+ partial+ COMPUTEINTERFERENCE(τi, inner
′(cs),BTasks, LocalBRes)

16: end for

17: return sum

18: end function

19: function COMPUTEPERMUTATION(τi, Θ,Rk,BTasks,BRes)

20: sum← 0
21: LocalBRes← BRes

22: for all τj ∈ Θ do

23: LocalBTask← BTasks ∪ {τ}
24: maxl← 0
25: MaxLocalBRes← LocalBRes

26: for all csj ∈ cssetj(Rk) do

27: if bres(csj) ∩ BRes ≡ ∅ then

28: TempBRes← LocalBRes ∪ bres(csj)
29: l← length(csj)+COMPUTEINTERFERENCE(τj , inner

′(csj), LocalBTask,TempBRes)
30: if maxl < l then

31: maxl← l

32: MaxLocalBRes← TempBRes

33: end if

34: end if

35: end for

36: sum← sum+maxl

37: LocalBRes← MaxLocalBRes

38: end for

39: return sum

40: end function

Fig. 5 Algorithm for computing the interference

The algorithm is correct under the assumption that there is no deadlock. We as-

sume that deadlock is avoided by making sure that resources are totally ordered and

nested critical sections access resources according to the selected order. More for-

mally, if ≺ is the total order relationship between resources, we require that:

∀cs
(j)
i , ∀Rk ∈ bres(cs

(j)
i), Rk ≺ R(cs

(j)
i)

Proof of correctness. We now prove the relationship between the interference com-

puted by the algorithm in Figure 5 and the interference in the shared system.

22 Dario Faggioli(∗) et al.

Theorem 4 Consider a system consisting of n tasks {τ1, τ2, . . . , τn}, each one served

by a server Si with parameters (Qi, Pi), scheduled by Global EDF on m processors,

and M-BWI as a resource access protocol.

The interference time I ′i computed by Algorithm Interference (Figure 5) is an

upper bound on the worst case interference Ii of task τi.

Proof Suppose that for some task τi, interference Ii > I ′i . From Theorem 3 it follows

that some critical section contributes to Ii but not to I ′i . This means that some possible

blocking chain H was not explored by the algorithm.

Now we will prove that this cannot happen, thus showing that all possible block-

ing chains are explored, by using induction.

Base of the induction step. Suppose that the blocking chain has length 3, i.e.

H = {τi → Rk → τj}. Then, τj ∈ Θ for task τi (line 8), and all feasible critical

sections of τj on Rk are explored by function COMPUTEPERMUTATION (cycle at

lines 25-35), and are therefore accounted for in Ii.

Induction hypothesis. Suppose that, for all τl, all blocking chains Hi,l of length

n ≥ 3 have been accounted for in I ′i . Consider a blocking chainHi,j of length n+2 (if

any): Hi,j = {τi → . . . Rp → τl → Rk → τj}. By the induction step, the sub-chain

Hi,l = {τi,→ . . . τl} has been explored. Also, τl accesses Rk with a critical section

nested inside a critical section on Rp. While computing the interference caused by the

critical section csl of τl on Rp, the algorithm also takes into account the interference

caused by all inner critical sections (line 29), including the one of τj on Rk. Finally,

consider that all permutations are considered, including the one in which τj arrives

before τl.

Therefore, by induction we conclude that all possible blocking chains are ex-

plored in all possible orders. ⊓⊔

Complexity. The algorithm is very complex. It explores all possible blocking chains

starting from every outermost critical section of τi. Since the while cycle at line 11

is performed O(p!), where p = |Θ|, and function INTERFERENCE is recursive, the

algorithm has super-exponential complexity.

However, it is important to highlight that the algorithm will be executed off-line;

that the complexity is greatly reduced when critical sections are not nested; and that

the number of interacting tasks in practical applications is usually low. In all our

simulations (see Section 8) with |Θ| ≤ 6, we have never experienced a computation

time of the algorithm superior to one second on a modern PC. With |Θ| = 10 the

duration of the algorithm is around 2-3 minutes; for a larger number of tasks, the

algorithm becomes intractable.

The algorithm is pessimistic; we do not take into account task periods or server

periods in the analysis, therefore it may be that the actual worst-case interference

time is lower than the one computed by this algorithm.

On the other hand, please notice that this algorithm can be applied to a more gen-

eral setting than M-BWI systems: in particular, it can be used for a system consisting

of a set of tasks, partitioned onto a multi-processor platform, which access global

resources with a FIFO policy.

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 23

7 Implementation in LITMUS
RT

The M-BWI protocol has been implemented on the real-time scheduling and syn-

chronisation testbed called LITMUSRT , developed and maintained by the UNC

real-time research group. Having a real implementation of the protocol allows us

to perform more complex evaluations than just simulations, and get real data about

scheduling overheads and actual execution times of the real-time tasks, as well as to

measure performance figures.

LITMUSRT was chosen as the basis for the implementation of M-BWI be-

cause it is a well-established evaluation platform (especially for scheduling and syn-

chronisation overheads) in the real-time research community. In fact, LITMUSRT

includes feather-trace, an efficient and minimally intrusive mechanism for recording

timestamps and tracing overheads of kernel code paths. Moreover, it already supports

a variety of scheduling and synchronisation schemes. Therefore it will be easier (in

future works) to adapt M-BWI to them and compare it with other solutions. The cur-

rent version of LITMUSRT is available as a patch against Linux 2.6.36, or via UNC

git repository (see LITMUSRT web page).

LITMUSRT employs a “plug-in based” architecture, where different scheduling

algorithms can be “plugged”, activated, and changed dynamically at run-time. Con-

sistently with the remainder of this paper, M-BWI has been implemented for global

EDF, i.e., inside the plug-in called C-EDF (since it also supports clustered schedul-

ing if configured accordingly). Our M-BWI patch against the development trunk (the

git repository) version of LITMUSRT is available at:

http://retis.sssup.it/people/tommaso/papers/RTSJ11/index.html.

This section reports the principal aspects and the fundamental design choices that

drove the implementation.

7.1 Implementing the Constant BandWidth Server

As the first step, the C-EDF plug-in has been enriched with the typical deadline post-

ponement of the CBS algorithm, which was not included in the standard distribution

of LITMUSRT . After this modification it is possible for a task to ask for budget en-

forcement but, upon reaching the limit, to have it replenished and get a deadline post-

ponement, rather than being suspended till the next period. This is done by a new pa-

rameter in the real-time API LITMUSRT offers to tasks, called budget action

that can be set to POSTPONE DEADLINE.

Of course, CBS also prescribes that, when a new instance arrives, the current

scheduling parameters need to be checked against the possibility of keeping using

them, or calculating a new deadline and issue a budget replenishment. This was re-

alised by instrumenting the task wake-up hook of the plug-in, i.e., cedf task wake up.

The amount of modified code is small (8 files changed, 167 lines inserted, 33

deleted), thanks to the extensible architecture of LITMUSRT and to the high level

of separation of concerns between tasks, jobs and budget enforcement it achieves.

24 Dario Faggioli(∗) et al.

7.2 Implementing Proxy Execution

The fundamental block on top of which M-BWI has been implemented is a mecha-

nism known as proxy execution. This basically means that a task τi can be the proxy

of some other tasks τj , i.e., whenever the scheduler selects τi, it is τj that is actually

dispatched to run. It is a general mechanism, but it is also particularly well suited for

implementing a protocol like M-BWI.

Thanks to the simple plug-in architecture of LITMUSRT , the implementation

of this mechanism was rather simple, although some additional overhead may have

been introduced. In fact, it has been necessary to decouple what the scheduling al-

gorithm thinks it is the “scheduled” task (the proxy), from the task that is actually

sent to the CPU (the proxied). Also, touching the logic behind the implementation of

the scheduling algorithm (global or clustered EDF, in this case) can be completely

avoided, and the code responsible for priority queues management, task migration,

etc., keeps functioning the same as before the introduction of proxy execution.

If tasks are allowed to block or suspend (e.g., for the purpose of accessing an

I/O device) while being proxied, this has to be dealt with explicitly (it corresponds

to transition from BWI.Running to BWI.Idle in the state diagram of Figure 2).

In fact, when a task self-suspends, it is necessary to remove all its proxies from the

ready queue. However, walking through the list of all the proxies of a task is O(n) —

with n number of tasks blocked on the resources the task owns when it suspends —

overhead that can be easily avoided, at least for this case. In fact, the proxies of the

suspending task are left in the ready queue, and it is only when one of them is picked

up by the scheduler that, if the proxied task is still not runnable, they are removed

from the queue and a new candidate task is selected. On the other hand, when a task

that is being proxied by some other tasks wakes up, not only that task, but also all its

proxies have to wake up. In this case, there is no way for achieving this than going

through the list of all the waking task’s proxies, during its actual wake-up, and putting

all of them back to the ready queue.

In LITMUSRT , self-suspension and blocking are handled by the same function

cedf task block. Therefore, to implement the correct behaviour,cedf task block

and cedf task wake up have been modified. For each task, a list of tasks that are

proxying it at any given time is added to the process control block (task struct).

The list is updated when a new proxying relationship is established or removed, and

it is traversed at each self-suspension or wake-up of a proxied task. Each task is

provided with a pointer to its current proxy (proxying for) which is filled and

updated when the proxying status of the task changes. Such field is also referenced

within the scheduler code, in order to determine whether the selected task is a proxy

or not.

Implementing proxy execution was more complex than just adding budget post-

ponement (478 line additions, 74 line deletions).

As a final remark, consider that when resource reservations are being used, the

budgets of the involved servers need to be properly managed while the proxy execu-

tion mechanism is triggered. The details of the budget updating are described in the

next section.

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 25

7.3 Implementing Multiprocessor BandWidth Inheritance

Using a mechanism like proxy execution, implementing M-BWI is a matter of having

FIFO wait queues for locks and taking care of the busy waiting of all the proxies

whose proxying task is already running on some CPU.

The former is achieved by adding a new type of lock (bwi semaphore) in the

LITMUSRT kernel, backed up with a standard Linux waitqueue, which supports

FIFO enqueue and dequeue operations. Each semaphore protects its internal data

structures (mainly the waitqueue and a pointer to the owner of the lock itself) by

concurrent access from more than one CPU at the same time by a non-interruptible

spin-lock (a native Linux spinlock t). Moreover, when the locking or releasing

code for a lock needs to update a proxying for field, it is required for it to acquire

the spin-lock that serialises all the scheduling decision for the system (or for the

cluster) of the LITMUSRT scheduler.

For the busy wait part, a special kernel thread (a native Linux kthread) called

pe stub-k is spawned for each CPU during plug-in initialisation, and it is initially

in a blocked state. When a task τi running on CPU k needs to busy wait, this special

thread is selected as the new proxy for τi, while the real value of proxying for of

τi is cached. Therefore, pe stub-k executes in place of τi, depleting its budget τi
as it runs.

The special thread checks if the real proxied task of τi is still running some-

where; LITMUSRT provides a dedicated field for that in the process control block,

called scheduled on. Such field is accessed and modified by the scheduler, thus

holding the scheduling decision spin-lock is needed for dealing with it. However, the

busy waiting done by pe stub-k must be preemptive and with external interrupts

enabled for CPU-k. Therefore, pe stub-k performs the following loop:

1. it checks if the real proxying task of τi is still running somewhere by looking at

scheduled on without holding any spin-lock;

2. as soon as it reveals something changed, e.g., scheduled on for the proxying

task becomes NO CPU, it takes the spin-lock and checks the condition again:

– if it is still NO CPU it means the proxying task has been preempted or sus-

pended and, through a request for rescheduling, it tries to start running it;

– if it is no longer NO CPU, someone has already started executing the proxying

task (recall the busy wait performed inside pe-stub-k is preemptable), thus

it goes back to point 1.

8 Simulation Results

The algorithm for computing an upper bound on the interference time described in

Section 6.1 can be used to evaluate how large is the impact of M-BWI on the schedu-

lability of hard real-time tasks in the system. To this end, we performed an analy-

sis of the algorithm on synthetically generated task sets, and we compared the re-

sults against two other protocols: the Flexible Multiprocessor Locking Protocol –

FMLP [6], which allows nested critical sections and mixes suspension and spin-lock

blocking mechanisms; and the Optimal Multiprocessor Locking family of Protocols –

26 Dario Faggioli(∗) et al.

Symbol Description Values

m number of processors 2, 4, 6

n number of tasks 2 or 3 times the number of processors

s number of short resources 2, 4, 6

l number of long resources 0, 2

t threshold between short an long resource from 0.05 to 0.5 in steps of 0.05 (millisec.)

g number of resource groups 1, 2, 3

z nesting probability 10% or 0%

u utilisation per processor from 0.28 to 0.72 in steps of 0.04

Table 1 Parameters of the simulation.

OMLP [9], which combines FIFO queueing with Priority-based queueing of blocked

tasks in order to optimise blocking time. However, at the time of this writing, OMLP

did not support nested critical sections5.

To perform the experiments we generated tasks sets according to the parameters

reported in Table 16.

Since the FMLP protocol distinguishes between short and long resources, we

generates a number of short and long resources for the system, denoted by s and l,
respectively. Critical sections on short resources have duration in [0.05, t) millisec-

onds, where t is the threshold parameter; long critical sections have duration in [t, 0.5]
milliseconds.

A task can have 1, 2 or 3 critical sections, with uniform probability equal to 0.9,

0.4 and 0.1, respectively. A critical section can be nested with probability equal to

0.1, and again it can have 1, 2, or 3 nested critical sections with the above probability.

Long critical sections cannot be nested inside short critical sections. To avoid dead-

lock, we enumerated all resources, and guaranteed that a critical section on resource

with a certain id cannot be nested inside a critical section on a resource with a higher

id.

Task periods are generated with log-uniform distribution between 50 and 1000
milliseconds in steps of 50 milliseconds. Computation times are generated by using

the randfixedsum algorithm [17], which guarantees a uniform distribution of com-

putation times with a fixed utilisation equal to u. Execution times are inclusive of the

duration of their critical sections.

Resources and tasks are divided into g groups (see Table 1). A task can only

access resources from its own group. The simulation parameters have been set so that

a group has at least two tasks and one resource, and no more than 6 tasks each. We

kept the number of tasks per group limited because of the long execution time of

the algorithm for computing the interference of M-BWI when the number of tasks

accessing a given resource exceeded 6. We believe however that the results reported

here are valid for a larger number of tasks per resource. Resource groups have been

introduced in the simulation to highlight the isolation properties of M-BWI.

5 Very recently, Ward and Anderson proposed an extension of OMLP to support nested critical sections

[49].
6 The test program is available on-line as open-source C++ code at https://github.com/

glipari/rtscan. All the experiments described in this paper are available under directory

drivers/mbwi exps/.

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 27

 0

 20

 40

 60

 80

 100

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

N
. s

ch
ed

. s
et

s

Utilization

m=4 n=8 g=2 s=2 l=2 t=0.20

Feasible
M-BWI

FMLP

(a) a)

 0

 20

 40

 60

 80

 100

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

N
. s

ch
ed

. s
et

s

Utilization

m=4 n=8 g=2 s=2 l=0 t=0.50

Feasible
M-BWI

FMLP

(b) b)

Fig. 6 Typical performance scenarios.

We generated 100 task sets for each combination of all these parameters. For each

task set we first tested schedulability using the iterative test by Bertogna et al. [4]. If

the task set was schedulable, the three protocols were analysed: we computed the

interference time for M-BWI using the algorithm in Figure 5; we applied the analysis

described in [6] for FMLP and the analysis described in [9] for OMLP to compute the

blocking times. Then, we added the interference/blocking times to the computation

times of the tasks, and we run again the schedulability test, recording the number of

schedulable task sets for each protocol.

The remainder of this section shows some of the results of these simulations.

8.1 M-BWI vs. FMLP

In these experiments the nesting probability has been set equal to 0.1. All simulation

experiments have shown that M-BWI and FMLP have similar performance, with M-

BWI slightly better than FMLP, except in some specific combination of parameters.

In Figure 6 we report two typical performance result. At the top of the graph we

report the most important parameters of the simulation; on the x axis we report the

total utilisation, whereas on the y axis we report the number of schedulable task sets.

The figure shows three lines: the top red line represents the number of schedulable

task sets when interference and blocking is ignored; the green and blue lines show the

number of schedulable task sets with M-BWI and FMLP, respectively. It is evident

that in this case M-BWI is slightly better than FMLP.

Most of the experiments with different combination of parameters follow a similar

pattern. For example, in Figure 6b we show what happens when l = 0 (no long

resources), and t = 0.50 (threshold set to maximum value). In this case, FMLP sees

all resources as short, and always performs a busy waiting; however, in this case a

“short” resource can have a duration up to 500µ sec. In this case there is no much

difference between the two protocols.

The difference is more evident with other combination of parameters. In Figure

7, we see that for higher number of processors and higher number of tasks, M-BWI

28 Dario Faggioli(∗) et al.

 0

 20

 40

 60

 80

 100

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

N
. s

ch
ed

. s
et

s

Utilization

m=4 n=12 g=2 s=2 l=0 t=0.50

Feasible
M-BWI

FMLP

(a) a)

 0

 20

 40

 60

 80

 100

 1.5 2 2.5 3 3.5 4 4.5

N
. s

ch
ed

. s
et

s

Utilization

m=6 n=18 g=3 s=6 l=2 t=0.30

Feasible
M-BWI

FMLP

(b) b)

Fig. 7 Two example scenarios in which M-BWI outperforms FMLP.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

N
. s

ch
ed

. s
et

s

Utilization

m=2 n=6 g=1 s=4 l=0 t=0.50

Feasible
M-BWI

FMLP

(a) a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

N
. s

ch
ed

. s
et

s

Utilization

m=2 n=6 g=1 s=2 l=0 t=0.50

Feasible
M-BWI

FMLP

(b) b)

Fig. 8 Two scenarios in which FMLP is better than M-BWI.

outperforms FMLP, with or without long resources. Also, in general the number of re-

source groups has a slight beneficial influence on the performance of M-BWI, thanks

to the isolation properties of this protocol.

One combination of parameters favours FMLP. In Figure 8 we see that for m = 2
and n = 6, and only short resources, FMLP actually performs better than M-BWI.

This is probably due to the fact that FMLP uses one single lock for all nested critical

sections. In this way concurrency is reduced, but it avoids the problem of multiple

interference on the external and internal critical section, a problem to which M-BWI

is subject. In all our simulation, the combination of m = 2, n = 6, g = 1, l = 0 is the

only one in which FMLP performs substantially better than M-BWI. However, this

means than none of the two protocols dominates the other. Also, this opens a new line

of research: to investigate when it is advantageous to group together locks for nested

critical sections. We defer such investigation to a future paper.

In Figure 9, we show the impact of the threshold on the performance of the two

protocols. The threshold sets an upper bound to the duration of short critical sections;

in case long resources are present, it also sets a minimum upper bound on the duration

of long critical sections. In Figure 9 we can see that the threshold has a minor effect

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 29

 0

 20

 40

 60

 80

 100

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
. s

ch
ed

. s
et

s

Threshold

m=4 n=12 g=2 s=6 l=0 u=0.48

Feasible
M-BWI

FMLP

(a) a)

 0

 20

 40

 60

 80

 100

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
. s

ch
ed

. s
et

s

Threshold

m=6 n=18 g=3 s=6 l=2 u=0.48

Feasible
M-BWI

FMLP

(b) b)

Fig. 9 Two scenarios in which the performance of FMLP decreases by increasing the threshold.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

N
. s

ch
ed

. s
et

s

Utilization

m=2 n=4 g=2 s=6 l=0 t=0.50

Feasible
M-BWI

FMLP
OMLP

(a) a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

N
. s

ch
ed

. s
et

s

Utilization

m=2 n=6 g=1 s=4 l=0 t=0.50

Feasible
M-BWI

FMLP
OMLP

(b) b)

Fig. 10 When m = 2 and n = 6 and critical sections are not nested, all protocols behave similarly (see

Figure 8).

mainly on FMLP. In general, the threshold has a minor impact on schedulability with

respect to other important parameters, like number of tasks and number of processors.

8.2 No nested critical sections

If we exclude the possibility of nested critical sections, it is possible to compare

M-BWI with OMLP, a protocol generally superior to FMLP which has been demon-

strated to be asymptotically optimal. Therefore, in the set of experiments described

in this section, we set the nesting probability to 0.

First of all, let us confirm our interpretation of the results shown in Figure 8. In

Figure 10, we see the results with the same parameters and no nested critical sections,

and we observe that both OMLP and M-BWI behave slightly better than FMLP. This

confirms that the superior performance of FMLP in the experiments of Figure 8 is

due to the positive effect of grouping access to nested critical sections.

30 Dario Faggioli(∗) et al.

 0

 20

 40

 60

 80

 100

 1.5 2 2.5 3 3.5 4 4.5

N
. s

ch
ed

. s
et

s

Utilization

m=6 n=12 g=2 s=4 l=2 t=0.20

Feasible
M-BWI

FMLP
OMLP

(a) a)

 0

 20

 40

 60

 80

 100

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

N
. s

ch
ed

. s
et

s

Utilization

m=4 n=8 g=2 s=2 l=0 t=0.50

Feasible
M-BWI

FMLP
OMLP

(b) b)

Fig. 11 M-BWI and OMLP have very similar performance.

 0

 20

 40

 60

 80

 100

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

N
. s

ch
ed

. s
et

s

Utilization

m=4 n=12 g=2 s=4 l=0 t=0.50

Feasible
M-BWI

FMLP
OMLP

(a) a)

 0

 20

 40

 60

 80

 100

 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

N
. s

ch
ed

. s
et

s

Utilization

m=4 n=12 g=2 s=2 l=0 t=0.50

Feasible
M-BWI

FMLP
OMLP

(b) b)

Fig. 12 Two examples where M-BWI is slightly better than OMLP.

In almost all experiments, the performance of M-BWI and OMLP are so similar

that the two curves are indistinguishable. Two typical scenarios are shown in Figure

11. In some rare cases, M-BWI shows a very small improvement over OMLP: two

examples are shown in Figure 12. This is probably due to the isolation properties

unique to the M-BWI protocol. Also in this case we show the impact of the threshold

in Figure 13: again, the impact is minor. However, notice the great distance between

the curves of FMLP and the curves of OMLP and M-BWI.

9 Experimental Results

In this section, we report performance figures obtained by running synthetically gen-

erated task sets on our implementation of M-BWI on the LITMUSRT operating

system. The aim is to gather insights about how much overhead the protocol en-

tails when executing on real hardware. We have generated the task sets parameters

as described in Section 8. The hardware platform consists of a AMD Opteron pro-

cessor with 48 cores, running at 1.9 GHz frequency. The cores are organised into 4

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 31

 0

 20

 40

 60

 80

 100

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
. s

ch
ed

. s
et

s

Threshold

m=4 n=8 g=3 s=4 l=2 u=0.52

Feasible
M-BWI

FMLP
OMLP

(a) a)

 0

 20

 40

 60

 80

 100

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
. s

ch
ed

. s
et

s

Threshold

m=6 n=18 g=3 s=4 l=2 u=0.48

Feasible
M-BWI

FMLP
OMLP

(b) b)

Fig. 13 The impact of threshold on M-BWI and OMLP.

“islands” of 6 cores each, and all cores inside an island share the same L2 cache.

In the experiments we selected only one island, and disabled the other three. In this

way, the performance figures do not depend on unpredictable behaviours due to cache

conflicts.

Therefore, 10 randomly chosen task sets among the ones generated for 6 CPUs,

with different number of tasks N have been executed for 10 minutes each, while

tracing the overheads with Feather-trace [7]. The number of short resources was fixed

Nshort = 2 ·N and Nlong = M
2 = 3.

In this work, the scheduling overhead (i.e. the duration of the main scheduling

function), the amount of time tasks wait (either being preempted, proxying or busy

waiting) for a resource and the duration of lock and unlock operations are considered.

Scheduling Overhead. To evaluate the impact of M-BWI on the scheduler, we mea-

sured how long it takes for taking a scheduling decision in the following cases: (i)

original LITMUSRT running the generated tasks sets but with tasks not issuing

any resource request during their jobs (“Original” in the graphs); (ii) M-BWI en-

abled LITMUSRT but, again, with tasks not issuing resource requests (“No Res.”

in graphs); (iii) M-BWI enabled LITMUSRT with tasks actually locking and un-

locking resources as prescribed in the task set (“M-BWI” in the graphs). Figure 14

shows the average duration of the scheduler function along with the standard devia-

tion for the three cases, varying the number of tasks. The actual impact of M-BWI on

the scheduler is limited, since the duration of the scheduling function is comparable

for all the three cases, and independent from the number of tasks (when they exceed

the number of available cores). In fact, in the proposed implementation, tasks that

block do not actually leave the ready-queue, but stay there and act like proxies, and

therefore the number of tasks the scheduler has to deal with is practically the same in

all the three cases. It is, however, worth to note that the complexity added for enabling

the proxying logic does not impair scheduling performances at noticeable levels.

Lock and Unlock Overheads. We also measured the overhead associated with the

slow paths of locking and unlocking operations in the M-BWI code. For the lock

32 Dario Faggioli(∗) et al.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

 6 12 18 24 30

A
V

G
. D

ur
at

io
n

[u
s]

Number of Tasks

Average. Duration of the Scheduling Function (6 CPUs)

Original
No Res.
M-BWI

Fig. 14 Average duration of the scheduling function, along with the measured standard deviation (vertical

segments).

path, we measured how long it takes, once it has been determined that a resource

is busy, to find the proxy and ask the scheduler to execute it. In the unlock path,

we measured how long it takes, once it has been determined that there are queued

task waiting for the resource to be released, to reset the proxy relationship for the

unlocking task and build up a new one for the next owner.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 6 12 18 24 30

A
vg

. D
ur

at
io

n
[u

s]

Number of Tasks

Average of Lock and Unlock (Slowpath) Durations with M-BWI (6 CPUs)

Lock
Unlock

Fig. 15 Average lock and unlock slow paths durations in LITMUSRT with M-BWI (vertical segments

highlight the measured standard deviation figures).

Figure 15 shows the average lock and unlock overheads with standard deviations.

In general, locking requires less overhead than unlocking. This can be easily under-

stood observing that, in this implementation, a lock operation only has to setup the

blocking task as a proxy and then asks the scheduler to put this under operation. Un-

locking requires to reset a proxy back to a normal task and finding the new owner of

the resource, but also updating the proxying relationship with the new owner in all

the tasks that are waiting for the resource and that were proxying the releasing task.

Waiting Times. Figure 16 shows the average and standard deviation of the resource

waiting time, i.e., the time interval that elapses from when a task asks to lock a re-

source and when it actually is granted such permission. In M-BWI, during this time,

the task can lie in the ready-queue, preempted by others, it can run and act as a

proxy for the lock owner or it can busy wait, if the lock owner is already executing

elsewhere. The idea behind this experiment is to show that in average, the delay in

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 33

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 6 12 18 24 30

A
vg

. W
ai

tin
g

T
im

e
[u

s]

Number of Tasks

Average of the Resource Waiting Time with M-BWI (6 CPUs)

Wait Time

Fig. 16 Average resource waiting time as a function of the number of tasks. The vertical segments denote

the measured standard deviation figures.

acquiring the resource is limited. Such information can be useful to soft real-time

programmers that can have an idea of the average case in a practical setting.

Figure 16 shows that, on average, waiting for a resource happens for time in-

terval comparable with the length of the critical sections (short ones range from 50
to 200µs, long ones up to 500µs). Obviously there are cases where the resource is

available immediately or when the waiting time is large. Consider that, in these ex-

periments, long critical sections were also present, each one of them able to last up to

500µs, which is about the maximum value for the waiting time in the worst possible

case. Interestingly, when the number of tasks becomes high enough, the waiting time

tends to decrease. This mainly happens because of two reasons: first, it is less likely

for many tasks to insist on the same resources; second, it is more likely for resource

waiting tasks to have at least one running proxy helping the lock owner in releasing

the lock, thus shortening its waiting time.

10 Conclusions and Future Work

In this paper, we presented the Multiprocessor Bandwidth Inheritance (M-BWI) pro-

tocol, an extension of BWI to symmetric multiprocessor systems. The protocol guar-

antees temporal isolation between non-interacting tasks, a property that is useful in

open systems, where tasks can join and leave the system at any time. Like the Priority

Inheritance Protocol, M-BWI does not require the user to specify any additional pa-

rameter, therefore it is readily implementable in real-time operating systems without

any special API. We indeed implemented the protocol on the LITMUSRT real-time

testbed, and we measured the overhead which is almost negligible for many practical

applications. However, it is also possible to perform off-line schedulability analysis:

by knowing the task-resource usage and the lengths of the critical sections, it is pos-

sible to compute the interference that a task can have on its resource reservation by

other interacting tasks.

In the future we want to extend the protocol along different directions. First of

all, it would be interesting to provide interference analysis also for partitioned and

clustered scheduling algorithms, and compare it against other algorithms like M-SRP

34 Dario Faggioli(∗) et al.

and M-PCP. Also, we would like to implement the Clearing Fund mechanism [45] to

return the bandwidth stolen by an interfering task to the original server.

Finally, we would like to implement M-BWI on Linux, on top of the SCHED DEADLINE

patch [30], in order to provide support to a wider class of applications.

References

1. Abeni L, Buttazzo G (1998) Integrating multimedia applications in hard real-

time systems. In: Proc. IEEE Real-Time Systems Symposium, Madrid, Spain,

pp 4–13

2. Anderson JH, Ramamurthy S (1996) A framework for implementing objects and

scheduling tasks in lock-free real-time systems. In: Proc. of the IEEE Real-Time

Systems Symposium (RTSS), IEEE Computer Society, pp 94–105

3. Behnam M, Shin I, Nolte T, Nolin M (2007) Sirap: a synchronization protocol

for hierarchical resource sharing real-time open systems. In: Proceedings of the

7th ACM and IEEE international conference on Embedded software

4. Bertogna M, Cirinei M (2007) Response-time analysis for globally scheduled

symmetric multiprocessor platforms. In: Proc. of the 28th IEEE Real-Time Sys-

tems Symposium (RTSS), Tucson, Arizona (USA)

5. Bertogna M, Checconi F, Faggioli D (2008) Non-Preemptive Access to Shared

Resources in Hierarchical Real-Time Systems. In: Proceedings of the 1st Work-

shop on Compositional Theory and Technology for Real-Time Embedded Sys-

tems, Barcelona, Spain

6. Block A, Leontyev H, Brandenburg BB, Anderson JH (2007) A flexible real-

time locking protocol for multiprocessors. In: Proceedings of the 13th IEEE In-

ternational Conference on Embedded and Real-Time Computing Systems and

Applications, pp 47–56

7. Brandenburg BB, Anderson JH (2007) Feather-trace: A light-weight event trac-

ing toolkit. In: Proc. of the International Workshop on Operating Systems Plat-

forms for Embedded Real-Time applications (OSPERT)

8. Brandenburg BB, Anderson JH (2010) Optimality results for multiprocessor real-

time locking. In: Proc. of the IEEE Real-Time Systems Symposium (RTSS),

IEEE Computer Society, pp 49–60

9. Brandenburg BB, Anderson JH (2012) The omlp family of optimal multiproces-

sor real-time locking protocols. Design Automation for Embedded Systems pp

1–66, DOI 10.1007/s10617-012-9090-1, URL http://dx.doi.org/10.

1007/s10617-012-9090-1

10. Caccamo M, Sha L (2001) Aperiodic servers with resource constraints. In: Pro-

ceedings of the 22nd IEEE Real-Time Systems Symposium, (RTSS 2001), pp

161 – 170, DOI 10.1109/REAL.2001.990607

11. Chen CM, Tripathi SK (1994) Multiprocessor priority ceiling based protocols.

In: tech. rep., College Park, MD, USA

12. Cho H, Ravindran B, Jensen ED (2007) Space-optimal, wait-free real-time syn-

chronization. IEEE Trans Computers 56(3):373–384

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 35

13. Cucinotta T, Checconi F, Abeni L, Palopoli L (2010) Self-tuning schedulers for

legacy real-time applications. In: Proceedings of the 5th European Conference

on Computer Systems (Eurosys 2010), European chapter of the ACM SIGOPS,

Paris, France

14. Davis RI, Burns A (2006) Resource sharing in hierarchical fixed priority pre-

emptive systems. In: Proceedings of the IEEE Real-time Systems Symposium

15. Devi UC, Leontyev H, Anderson JH (2006) Efficient synchronization under

global edf scheduling on multiprocessors. In: Proceedings of the 18th Euromicro

Conference on Real-Time Systems, pp 75–84

16. Easwaran A, Andersson B (2009) Resource sharing in global fixed-priority pre-

emptive multiprocessor scheduling. In: Proceedings of IEEE Real-Time Systems

Symposium

17. Emberson P, Stafford R, Davis R (2010) Techniques for the synthesis of mul-

tiprocessor task sets. In: First International Workshop on Analysis Tools and

Methodologies for Embedded and Real-Time

18. Faggioli D, Lipari G, Cucinotta T (2008) An efficient implementation of the

bandwidth inheritance protocol for handling hard and soft real-time applications

in the linux kernel. In: Proceedings of the 4th International Workshop on Operat-

ing Systems Platforms for Embedded Real-Time Applications (OSPERT 2008),

Prague, Czech Republic

19. Faggioli D, Lipari G, Cucinotta T (2010) The multiprocessor bandwidth inheri-

tance protocol. In: Proc. of the 22nd Euromicro Conference on Real-Time Sys-

tems (ECRTS 2010), pp 90–99

20. Feng X, Mok AK (2002) A model of hierarchical real-time virtual resources. In:

Proc. 23rd IEEE Real-Time Systems Symposium, pp 26–35

21. Fisher N, Bertogna M, Baruah S (2007) The design of an EDF-scheduled

resource-sharing open environment. In: Proceedings of the 28th IEEE Real-Time

System Symposium

22. Gai P, Lipari G, di Natale M (2001) Minimizing memory utilization of real-time

task sets in single and multi-processor systems-on-a-chip. In: Proceedings of the

IEEE Real-Time Systems Symposium

23. Guan N, Ekberg P, Stigge M, Yi W (2011) Resource sharing protocols for real-

time task graph systems. In: Proc. of the 23rd Euromicro Conference on Real-

Time Systems (ECRTS 2011), Porto, Portugal

24. Herlihy MP, Wing JM (1990) Linearizability: a correctness condition for con-

current objects. ACM Trans Program Lang Syst 12:463–492, DOI http://doi.

acm.org/10.1145/78969.78972, URL http://doi.acm.org/10.1145/

78969.78972

25. van den Heuvel MM, Bril RJ, Lukkien JJ (2011) Dependable Resource Sharing

for Compositional Real-Time Systems. In: 2011 IEEE 17th International Confer-

ence on Embedded and Real-Time Computing Systems and Applications, IEEE,

pp 153–163, DOI 10.1109/RTCSA.2011.29

26. Holman P, Anderson JH (2006) Locking under pfair scheduling. ACM Trans

Comput Syst 24(2):140–174, DOI 10.1145/1132026.1132028, URL http://

doi.acm.org/10.1145/1132026.1132028

36 Dario Faggioli(∗) et al.

27. Jansen PG, Mullender SJ, Havinga PJ, Scholten H (2003) Lightweight edf

scheduling with deadline inheritance. Tech. Rep. 2003-23, University of Twente,

URL http://doc.utwente.nl/41399/

28. Lakshmanan K, de Niz D, Rajkumar R (2009) Coordinated task scheduling, al-

location and synchronization on multiprocessors. In: Proceedings of IEEE Real-

Time Systems Symposium

29. Lamastra G, Lipari G, Abeni L (2001) A bandwidth inheritance algorithm for

real-time task synchronization in open systems. In: Proc. 22nd IEEE Real-Time

Systems Symposium

30. Lelli J, Lipari G, Faggioli D, Cucinotta T (2011) An efficient and scalable imple-

mentation of global edf in linux. In: Proceedings of the International Workshop

on Operating Systems Platforms for Embedded Real-Time Applications (OS-

PERT)

31. Lipari G, Bini E (2004) A methodology for designing hierarchical scheduling

systems. Journal of Embedded Computing 1(2)

32. Lipari G, Lamastra G, Abeni L (2004) Task synchronization in reservation-based

real-time systems. IEEE Trans Computers 53(12):1591–1601

33. Lopez JM, Diaz JL, Garcia DF (2004) Utilization bounds for EDF scheduling

on real-time multiprocessor systems. In: Real-Time Systems: The International

Journal of Time-Critical Computing, vol 28, pp 39–68

34. Macariu G (2011) Limited blocking resource sharing for global multiprocessor

scheduling. In: Proc. of the 23rd Euromicro Conference on Real-Time Systems

(ECRTS 2011), Porto, Portugal

35. Mancina A, Faggioli D, Lipari G, Herder JN, Gras B, Tanenbaum AS (2009)

Enhancing a dependable multiserver operating system with temporal protection

via resource reservations. Real-Time Systems 43(2):177–210

36. Nemati F, Behnam M, Nolte T (2009) An investigation of synchronization un-

der multiprocessors hierarchical scheduling. In: Proceedings of the Work-In-

Progress (WIP) session of the 21st Euromicro Conference on Real-Time Systems

(ECRTS’09), pp 49–52

37. Nemati F, Behnam M, Nolte T (2009) Multiprocessor synchronization and hi-

erarchical scheduling. In: Proceedings of the First International Workshop on

Real-time Systems on Multicore Platforms: Theory and Practice (XRTS-2009)

in conjunction with ICPP’09

38. Nemati F, Behnam M, Nolte T (2011) Independently-developed real-time sys-

tems on multi-cores with shared resources. In: Proc. of the 23rd Euromicro Con-

ference on Real-Time Systems (ECRTS 2011), Porto, Portugal

39. Nemati F, Behnam M, Nolte T (2011) Sharing resources among independently-

developed systems on multi-cores. ACM SIGBED Review 8(1)

40. Niz DD, Abeni L, Saewong S, Rajkumar RR (2001) Resource sharing in

reservation-based systems. In: In Proceedings of the 22nd IEEE Real-time Sys-

tems Symposium, pp 171–180

41. Palopoli L, Abeni L, Cucinotta T, Lipari G, Baruah SK (2008) Weighted feed-

back reclaiming for multimedia applications. In: Proceedings of the 6th IEEE

Workshop on Embedded Systems for Real-Time Multimedia (ESTIMedia 2008),

Atlanta, Georgia, United States, pp 121–126, DOI 10.1109/ESTMED.2008.

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 37

4697009

42. Rajkumar R (1990) Real-time synchronization protocols for shared memory

multiprocessors. In: Proceedings of the International Conference on Distributed

Computing Systems, pp 116–123

43. Rajkumar R, Sha L, Lehoczky J (1988) Real-time synchronization protocols for

multiprocessors. In: Proceedings of the Ninth IEEE Real-Time Systems Sympo-

sium, pp 259–269

44. Rajkumar R, Juvva K, Molano A, Oikawa S (1998) Resource Kernels: A

Resource-Centric Approach to Real-Time and Multimedia Systems. In: Proc.

Conf. on Multimedia Computing and Networking

45. Santos R, Lipari G, Santos J (2008) Improving the schedulability of soft real-time

open dynamic systems: The inheritor is actually a debtor. Journal of Systems and

Software 81(7):1093–1104, DOI 10.1016/j.jss.2007.07.004

46. Sha L, Rajkumar R, Lehoczky JP (1990) Priority inheritance protocols: An ap-

proach to real-time synchronization. IEEE Transactions on Computers 39(9)

47. Shih I, Lee I (2003) Periodic resource model for compositional real-time guar-

antees. In: Proc. 24th Real-Time Systems Symposium, pp 2–13

48. Sprunt B, Sha L, Lehoczky J (1989) Aperiodic task scheduling for hard-real-time

systems. Journal of Real-Time Systems 1(1):27–60

49. Ward B, Anderson J (2012) Nested multiprocessor real-time locking with im-

proved blocking. In: Proceedings of the 24th Euromicro Conference on Real-

Time Systems

