
Virtualised e-Learning with Real-Time Guarantees on the IRMOS Platform1

T. Cucinotta, F. Checconi
Scuola Superiore Sant'Anna

Pisa, Italy
{t.cucinotta,f.checconi}@sssup.it

G. Kousiouris, D. Kyriazis, T. Varvarigou
National Technical University of Athens

Athens, Greece
{gkousiou,dkyr,dora}@mail.ntua.gr

A. Mazzetti
GIUNTI Labs

Sestri Levante, Italy
a.mazzetti@giuntilabs.com

Z. Zlatev, J. Papay, M. Boniface
University of Southampton IT Innovation

Centre, Southampton, UK
{zdz,jp,mjb}

@it-innovation.soton.ac.uk

S. Berger, D. Lamp
University of Stuttgart

Stuttgart, Germany
{soren.berger,dominik.lamp}

@rus.uni-stuttgart.de

T. Voith, M. Stein
Alcatel Lucent

Stuttgart, Germany
{thomas.voith,manuel.stein}

@alcatel-lucent.de

Abstract—In this paper we focus on how Quality of Service
guarantees are provided to virtualised applications in the Cloud
Computing infrastructure that is being developed in the context
of the IRMOS1 European Project. Provisioning of proper
timeliness guarantees to distributed real-time applications
involves the careful use of real-time scheduling mechanisms at
the virtual-machine hypervisor level, of QoS-aware networking
protocols and of proper design methodologies and tools for
stochastic modelling of the application. The paper focuses on how
we applied these techniques to a case-study involving a real e-
Learning mobile content delivery application that has been
integrated into the IRMOS platform and its achieved
performance.

Keywords – Real-time scheduling; virtualised infrastructures;
stochastic modelling; e-Learning.

I. INTRODUCTION

Nowadays, with the advent of affordable high-speed Internet
connections, distributed computing is becoming a predominant
software development paradigm. Applications are developed
for, and made available within, distributed infrastructures,
where users can easily access remote services and exploit
remote resources from their local workstation, laptop, palmtop
device and/or mobile phone. In the Cloud Computing model,
distributed applications are developed by Software-as-a-
Service (SaaS) providers, by means of tools made available by
Platform-as-a-Service (PaaS) providers, for being deployed
over the resources made available by Infrastructure-as-a-
Service (IaaS) providers. The viability of IaaS is dependent
upon the use of virtualisation technologies. Virtualised
computing allows for deploying multiple virtual machines
(VMs), hosting multiple Operating Systems and services
therein, over the same physical hosts, thus achieving a better
server consolidation level. Also, thanks to network
virtualisation techniques, it is possible to migrate the VMs
from a physical host to another one, for maintenance or load-
balancing reasons, in a seamless manner.
In this evolving scenario, more and more distributed
applications with tight interactivity and timing requirements

1 The research leading to these results has received funding
from the European Community’s Seventh Framework
Programme FP7 under grant agreement n. 214777
“IRMOS—Interactive Realtime Multimedia Applications
on Service Oriented Infrastructures”.

are being deployed over virtualised IaaS infrastructures.
However, when multiple VMs are deployed over the same
physical resources (e.g., links and CPUs), the level of
performance experienced by each VM is not stable any more,
but it depends heavily on the overall workload imposed by the
other VMs competing for the shared resources. However,
using proper scheduling technologies, coupled with proper
performance modelling techniques, it is possible to deploy
virtualised distributed applications with a stable performance
level, as being experimented with the virtualised Cloud
Computing infrastructure for service-based computing that is
being developed in the context of the IRMOS2 European
Project. In this paper, we show how these concepts have been
practically applied to a real e-Learning application.

II. RELATED WORK

In this section, related works appeared in the research
literature are briefly summarised.

The work by Lin and Dinda in [4] presents various
similarities with the one presented in this paper. First, an EDF-
based scheduling algorithm for Linux is used on the host to
schedule Virtual Machines (VMs). Furthermore, an analysis is
conducted on the application performance, investigating the
effects of scheduling decisions and concurrent virtual
machines execution. The analysis is very thorough and
interesting, however the major limitation of the work resides
in the way low-level scheduling is achieved. In fact, the
authors make use of a scheduler built into a proper user-space
process (VSched), which exploits POSIX real-time priorities
in order to achieve an EDF-based scheduling of VMs, and
SIGSTOP/SIGCONT signals for realising optionally hard
resource reservations. Such an approach presents high
scheduling overheads due to the forcibly increased number of
context switches, whilst our scheduler [7] is directly built into
the kernel and does not introduce any additional context
switch; also, VSched cannot properly react to those situations
in which a VM blocks or unblocks, e.g., as due to I/O
operations, something that is needed in order to guarantee a
proper level of temporal isolation, like done instead in our
scheduler by exploiting the CBS algorithm [8]. Another very
interesting work by the same authors is [6], where the users of
a virtual machine are given the opportunity to adapt the

2 More information at: http://www.irmosproject.eu/.

http://www.irmosproject.eu/

allocated CPU through a simple interface, based on their
experience with the application. The cost of the increase is
shown, so that the user may decide on the fly. While it is a
very promising approach and would eliminate a vast number
of issues with regard to application QoS levels, its main
drawback is in cases of workflows. Inside a workflow, a
degradation in performance may be due to a bottleneck on
various nodes executing a part of it. The user will most likely
be unaware of the location of the bottleneck, especially in
cases of non experts. Instead, the work by Nathuji et al. [17]
focuses on automatic on-line adaptation of the CPU allocation
in order to keep a stable performance of VMs. However, the
framework cannot see a VM as a “black-box”, but it needs an
application-specific metrics in order to run the necessary QoS
control loop, going beyond the common IaaS business model.

Gupta et al. investigated on the performance isolation of
virtual machines [16], focusing on the exploitation of various
scheduling policies available in the Xen hypervisor [18].
However, in this work we focus on the KVM3 hypervisor,
along the lines of other works of ours in which we showed
how to provide isolation of compute-intensive [19] and
network-intensive [20] VMs. Instead, here we also address the
modelling issues related to the deployment of an e-Learning
application with proper QoS guarantees.

Shirazi et al. [3] proposed DynBench, a benchmark for
infrastructures supporting distributed real time applications.
This creates dynamic conditions for the testing of the
infrastructures. While promising, this framework is mainly
oriented towards investigating the limits of the infrastructure
and not towards understanding the application behaviour in
relationship to different scheduler configurations.

In [5], Germain et al. present DIANE for Grid-based user
level scheduling. However, the focus is on controlling the
execution end time of long processing applications, and not on
real time interactive ones as done in this paper.

In terms of application performance modelling in
distributed infrastructures a number of interesting works exist.
A code analysing process that allows for the simulation of
system performance is described in [11]. It models the
application by a parameter-driven Conditional Data Flow
Graph (CDFG) and the hardware (HW) architecture by a
configurable HW graph. The execution cost of each task block
in the application CDFG is modelled by user-configurable
parameters, which allows for highly flexible performance
estimation. The simulator takes the application CDFG and
HW graph as the input and performs a low-level simulation to
catch the detailed HW activities. While very promising, it
needs the source code in order to provide the CDFG. In our
work, we deal with VMs as black boxes, what allows for the
deployment of applications where the source code is not
available for confidentiality purposes.

Another interesting work is presented by Lee et al. in [12].
The application, whose performance must be measured, is run

3 More information at: http://www.linux-kvm.org.

under a strict reservation of resources in order to determine if
the given set of reservation parameters satisfies the time
constraints for execution. If this is not the case, then these
parameters are altered accordingly. If there is a positive
surplus, the resources are decreased and if it is negative they
are increased until a satisfying security margin is reached.
While assuring high utilisation rates, the main disadvantage of
this methodology is that this must be performed for every
individual execution with the specific SLA parameters before
the actual deployment.

Bekner et al. introduce the Vienna Grid Environment
(VGE) [13], a framework for incorporating QoS in Grid
applications. It uses a performance model to estimate the
response time and a pricing model for determining the price of
a job execution. In order to determine whether the client’s
QoS constraints can be fulfilled, for each QoS parameter a
corresponding model has to be in place. However, VGE does
not prescribe the actual nature of performance models. It
specifies only an abstract interface for performance models,
taking as granted that these models will be provided from
analytical modelling or historical data. But analytical
modelling in general requires a thorough knowledge of the
application, in order to deduct the equations that depict its
performance. In this work we also use analytical models,
however they are coupled with a black box approach for the
parts of the application that are not visible to the external
world besides the developer. Other works exist that address
QoS assurance in GRID environments focusing on perform-
ance prediction [25] and control via service selection [26].

While numerous promising solutions exist to the problem of
performance analysis of VMs in presence of real-time
scheduling, these either are not focused on critical parameters
that are necessary for running real time applications on SOIs,
or they lack for a proper low-level real-time scheduling
infrastructure which is needed for supporting temporal
isolation among concurrently running VMs.

III. PERFORMANCE ISOLATION – THE IRMOS/ISONI WAY

One of the core components which is being developed in
IRMOS is the Intelligent (virtualised) Service-Oriented
Networking Infrastructure (ISONI) [15]. It acts as a Cloud
Computing4 IaaS provider for the IRMOS framework and
manages a set of physical computing, networking and storage
resources available in form of multiple nodes/sites within a
provider domain (see Figure 1).
ISONI provides those visualised resources over which IRMOS
applications are deployed. One of the key innovations
introduced by ISONI is its capability to ensure guaranteed
levels of resource allocation for each individual application
instance hosted within the ISONI domain.
This is realised by allowing applications to be deployed in
form of a Virtual Service Network (VSN). This is a graph
whose vertices represent individual Service Components
(SCs) of an application which may be deployed in form of

4 More information at: http://www.cloudcomputing.org/.

http://www.cloudcomputing.org/
http://www.linux-kvm.org/

Virtual Machine Units (VMUs), and whose edges represent
communications – the virtual links (VLs) – among them.
In order for the system represented by a VSN to comply with
real-time constraints as a whole, QoS needs to be supported
for all the involved resources, particularly for network links,
computing elements (CPUs) and storage resources. To this
purpose, VSN elements are associated with precise resource
requirements, e.g., in terms of the required computing power
for each node and the required networking performance (i.e.,
bandwidth, latency, jitter, etc.) for each link. These
requirements are fulfilled thanks to the allocation and
admission control logic pursued by ISONI for instantiating
VMs within the managed set of available physical resources,
and to the low-level mechanisms shortly described in what
follows (a comprehensive ISONI overview is out of the scope
of this paper and can be found in [15]).

A. Isolation of Computing

In order to provide scheduling guarantees to individual VMs
scheduled on the same system, processor and core, IRMOS
incorporates a hybrid deadline/priority (HDP) real-time
scheduler [7] developed within the IRMOS consortium for the
Linux kernel. This scheduler provides temporal isolation
among multiple possibly complex software components, such
as entire VMs (with the KVM hypervisor3, a VM is seen as a
process). It uses a variation of the Constant Bandwidth Server
(CBS) algorithm [8], based on Earliest Deadline First (EDF),
for ensuring that each group of processes/threads is scheduled
for Q time units (the budget) every interval of P time units (the
period). The CBS algorithm has been extended for supporting
multi-core (and multi-processor) platforms, achieving a
partitioned scheduler where the set of tasks belonging to each
group may migrate across the associated CBS scheduler
instances running on different CPUs, according to the usual
multi-processor real-time priority-based scheduling in Linux.
The scheduler exhibits an interface towards user-space
applications based on the cgroups [14] framework, which
allows for configuration of kernel-level parameters by means
of a filesystem-based interface. This interface has been
wrapped within a Python API, in order to make the real-time

scheduling services accessible from within the IRMOS
platform. The parameters that are exposed by the scheduler are
the budget Q and the period P, as explained above.

B. Isolation of Networking

Isolation of the traffic of independent VMs within ISONI is
achieved by a VSN-individual virtual address space and by
policing the network traffic of each deployed VSN. The two-
layer address approach avoids unwanted crosstalk between
services sharing physical network links. The traffic policing
avoids that the network traffic going through the same
network elements causes any overload leading to an unduly
uncontrolled growth of loss rate, delay and jitter for the
network connections of other VSNs. A gap-less policing
ensures that the network multiplex stages always get a
controlled load of traffic. Therefore, bandwidth policing is an
essential building block to ensure QoS for the individual
virtual links. It is important to highlight that ISONI allows for
the specification of the networking requirements in terms of
common and technology-neutral traffic characterisation
parameters, such as the needed guaranteed average and peak
bandwidth, latency and jitter. An ISONI transport network
adaptation layer abstracts from transport network technology-
individual QoS mechanism like Diffserv [21], Intserv [22][23]
and MPLS [24]. Depending on the specified networking
requirements, an adequate transport network is chosen in order
to meet the applications requirements, which could be
transport networks without any QoS like the Internet, transport
networks with QoS mechanisms with or without reservations
or leased lines (see Figure 1).
Then, the networking protocols and technologies which are
most appropriate for the underlying hardware are used in order
to meet the applications requirements.

C. Modelling and Benchmarking

One of the key steps in deploying applications with precise
real-time or generally QoS guarantees within IRMOS is the
one of building a performance model of the application
behavior. This means that, given application-specific
configurable parameters (e.g., number of users, resolution of
multimedia contents, etc.), and given possible performance
levels that one may want to achieve, it should be possible to
determine what allocation is needed on the physical resources
in order to accomplish that. This is a core information needed
by the SaaS provider in order to establish an accurate pricing
policy for the customer(s).
Application performance in the cloud depends on many
complex factors such as application workload, conditions of
the network paths between the user(s) and the server(s) and
the computing workload of the physical host(s). Computing
workload factors are especially significant in multi-tenant
clouds where single hosts are used to service multiple
applications. However, the ISONI support for temporal
isolation of VMs with guaranteed QoS means the interference
due to shared resources becomes negligible. The immediate
advantage of this is that the performance of an individual
application to be instantiated within the platform may be
easily benchmarked and modelled as a pure function of its

Figure 1: Deployment of Service Components (SCs) within Virtual
Machine Units (VMUs) over IRMOS/ISONI.

application-specific parameters and the amount of allocated
resources, and it turns out to be independent of whatever else
is (and/or will be) instantiated in the domain by the provider.

IV. THE E-LEARNING APPLICATION

We focus on an e-Learning mobile instant content delivery
application, developed taking advantage of a service-oriented
architecture paradigm, in which real-time requirements play
an important role. In this scenario a user can receive on
his/her mobile phone some e-Learning contents relevant to the
position where he/she is (e.g., walking near to historical
monuments). It consists of a Tomcat based e-Learning server
that exploits a MySQL database for content management (see
Figure 3). The application is able to receive queries with GPS
data from multiple clients, search the database and respond
with e-Learning contents corresponding to the provided GPS
coordinates (see Figure 2). The application server is provided
as a Web Application Archive (war) file, installed in Tomcat,
and made available as a Virtual Machine image within the
IRMOS infrastructure. Using ISONI, each instance of the
application can be assigned precise computing and networking
resources that ensure the high-level requirements defined
within an application provider's Service-Level Agreement
(SLA) can be met with an agreed level of reliability.

Figure 2. Components of the e-Learning application.

The timing requirements of the application are mainly related
to the response times of the individual requests submitted by
the multitude of users. As discussed in Section III.C., thanks
to the deployment within IRMOS, these response times
depend merely on application-specific parameters, i.e., on the
number of concurrent users querying the same e-Learning
instance and the size of the downloaded contents.

A. Application Client Simulation Description

In order to investigate application performance, we developed
a multi-user client simulator. This is capable of simulating the
random movements of a certain number of users walking
around given GPS coordinates. Then, the simulator mimics the
behaviour of the real mobile client associated with the
application: whenever the monitored GPS coordinates move
sufficiently away from the position of the last queried content,
a new request is submitted to the server with the new user
position. The number of users and a few parameters governing
how each emulated user exactly moves (e.g., the user speed)
determine the exact pattern of requests submitted to the server,
thus strongly impacting on the imposed server load.

Figure 3: Software architecture of the e-Learning application.

V. PERFORMANCE ESTIMATION

In order to estimate what QoS level can be achieved using
different resource configurations, we use performance
modelling techniques. Many times, the application internal
software structure may be too complex to be modelled. Or, it
may be unknown because developers are reluctant to share
detailed information about their application internals, for
confidentiality purposes. In other cases, the use of external
libraries or components whose internals are unknown makes it

impossible to build an exact model. So, from a modelling
point of view, it is critical to be able to identify the expected
QoS output using a black-box approach.
Therefore, we use a combination of a stochastic model for
predicting statistics over the expected run-time networking
performance, and an Artificial Neural Network (ANN) for
identifying the dependency of a component QoS from factors

like application-level parameters (e.g., number of clients) or
scheduling parameters (e.g., allocated budget and period).
These two models, put together, allow for a precise estimate of
the overall end-to-end QoS experienced by end-users.

A. Stochastic Performance Model

We built a Matlab model for simulating, by means of Monte-
Carlo type discrete event simulation, a system composed of

Figure 4: Modelled elements of the e-Learning application.

Figure 5: Stochastic performance model: t_wan_in and t_wan_out are
modelled as exponential distributions, the other delays as Erlang ones.

WAN
In

WAN
In

ISONI
In

ISONI
In ASCASC WAN

Out

WAN
Out

ISONI
Out

ISONI
Out

t_wan_in t_link_in t_asc t_link_out t_wan_out

p_loss
wan_in

p_loss
link_in

p_loss
link_out

p_loss
wan_out

(see Figure 4): a request generator (modelling the end users), a
Public Wide Area Network (WAN), a Private Network
internal to an ISONI domain and the VMU hosting the actual
Application Service Component (ASC). In order to account
for interactivity, we modelled both paths from the user to the
ASC and the other way round. The model uses a mix of
exponential and Erlang probability distributions (see Figure 5)
for modelling the latencies of application requests while
traversing the involved networks, and it may also simulate
packet loss due to buffer saturation in the various networks
(particularly useful for UDP-based communications).
The individual parameters of the model need to be tuned by
resorting to proper benchmarking techniques. The behaviour
of the latencies inside the ISONI internal network may be
accurately estimated thanks to the ISONI networking
isolation, and they depend merely on the requested network-
level QoS parameters specified in the VSN, and the requests
pattern. On the other hand, parameters relative to the QoS-
unaware WAN must be estimated based on available statistics
on the overall network workload foreseen at the time of usage
of the application. However, a widespread usage of ISONI
would reduce the need for traversing QoS-unaware networks.
The behaviour of the ASC was also estimated as an Erlang
distribution. However, due to the non-trivial dependency of
the performance from application-level parameters, in addition
to the resource allocation ones, the Erlang parameters were
tuned by resorting to an ANN model (see below).
The described simulator is capable of providing, for each
configuration, the full probability distribution of the end-to-
end response-times, as well as simpler statistics that may be
easily leveraged at design-time, such as the average or a given
percentile of the distribution. For example, this allows for
finding the configuration parameters granting a given end-to-
end response-time with a given probability.

B. Artificial Neural Networks in the Model

An ANN model is used for modelling the time the server
needs in order to retrieve the results from the internal
database. The factors that are taken under consideration are
mainly the number of connected clients and the scheduling
decisions (Q and P parameters). Following the black-box
approach, the use of ANNs allows for an easy addition of
further inputs (or outputs) as needed (e.g., hardware-specific
parameters like the reserved memory or processor speed),
once the necessary training data sets are collected.
The investigation of the effect of parameters like the allocated
CPU time Q over a period P is critical due to its influence in
the QoS output. The choice of P is mainly driven by the time
granularity for the allocation needed by the application. For
example, for interactive applications, with fast response times
and relatively light computations, the granularity must be kept
small (in the order of 10–100 ms). For scientific applications
performing long and heavy computations, large periods will
result in lower overheads (500 ms and beyond).
The outputs of the ANN have been chosen to represent the
average and the standard deviation of the expected response
times, as due to the configuration represented at the ANN

inputs. These outputs are easily mapped to the Erlang
parameters needed for modelling the ASC temporal behaviour
in the general model in Figure 5. The ANN model structure is
described in V.C., while the data gathered as training set is
presented in VI.B.

C. ANN Structure and Design

In order to implement the ANN, a standard form of network
was selected. The type of operation that was desired was
function approximation, in order to determine the effect of the
input parameters (number of clients, Q, P) on the predicted
output (mean value of inner server response time and standard
deviation). The collection of the data set was performed with
the process described in [1]. Two more inputs were included,
CPU speed and VM memory size, but the main focus was on
the initial 3 parameters. The resulting network for the mean
time prediction was a 3-layer, feed-forward, back propagation
network, created through the GNU Octave tool5. It was trained
with the Octave trainlm function, using the Levenberg-
Marquardt algorithm [2]. The structure of the network is
shown in Table 1. All the inputs and outputs are normalized in
the (-1,1) interval. A standard form of function approximation
network was used, with one hidden layer and Tansig transfer
functions for the input and hidden layer and linear transfer
function for the output layer.
For the standard deviation, a similar process was followed (but
with the Logsig transfer function) and the resulting network
appears in Table 2.

Layer Transfer
Function

Size
(Neurons)

Mean
Absolute
Error

Input Layer Tansig 5 2.51%
Hidden
Layer

Tansig 2

Output
layer

Linear
(Purelin)

1

Table 1: Structure of Mean Response Time Prediction ANN.

Layer Transfer
Function

Size
(Neurons)

Mean
Absolute
Error

Input Layer Logsig 5 2.75%
Hidden
Layer

Logsig 2

Output
layer

Linear
(Purelin)

1

Table 2: Structure of Standard Deviation Prediction ANN.

VI. EXPERIMENTAL RESULTS

In this section we report experimental results validating the
presented approach to the provisioning of performance
guarantees to the e-Learning application by means of proper
real-time scheduling and modelling techniques.
First, the assumptions of temporal isolation over which the
modelling technique relies are validated. Then, some

5 More information is available at: http://www.gnu.org/software/octave/.

http://www.gnu.org/software/octave/

experimental data used for training the ANN models is
described, and finally the accuracy of the ANN-based
estimations is discussed.

A. Temporal Isolation by Real-Time Scheduling

We ran an experiment for the purpose of validating our
approach to the temporal isolation of VMs concurrently
running on the same CPU based on real-time scheduling. To
this purpose, we considered two instances of the e-Learning
application deployed on the same host and physical core. We
launched two instances of the e-Learning multi-user simulator
submitting requests coming from 10 emulated users to the two
servers, from a second machine in an isolated networking
context. We collected the response-times experienced by the
two multi-user simulator instances under various conditions in
terms of the scheduling parameters configured for the two
VMs on the server host.
In Figure 6 we report the average response-time of the first
VM as a function of the CPU share (on the x-axis) assigned to

it, at varying CPU shares assigned to the second competing
VM (corresponding to the various curves). Under the ideal
conditions of perfect temporal isolation, we would like the
second competing VM workload, ranging from completely
idle (continuous curve) to having a 50% of load on the system
(dashed curve tagged with little triangles), to have no impact
at all on the performance of the first VM. This would
correspond to having all the curves perfectly superimposed.
As it can be seen from the experimental results, the real-time
scheduler achieves a nearly good approximation of such a
condition, realising a set of curves which are quite close to
each other, where the increase of computing resources granted
to the second VM corresponds to a slight decrease of the
performance of the first VM. This may be mainly attributed to
an increased contention on the cache, and constitutes a
minimum of interference which cannot be removed. Other
factors of interference which are not trivial to keep under
control are due to shared resources on the host OS, like the
networking stack and interrupts. For example, see [20] for a

discussion of the interference due to network-intensive VMs,
and the extent to which it can be controlled by real-time
scheduling of the CPU.

B. Experimental Performance of the e-Learning Application

In this section, experimental performance data gathered for
various configurations of both application-level and resource
allocation parameters is presented. The range of values that
were altered for the configuration parameters are:

• Number of Users: 30-150
• Q/P (CPU share) : 20-100% with a step of 20
• P: 10000–560000 (μsec) with a step of 50000

For each configuration, about 800 response times were
collected, and the corresponding average and standard
deviation figures computed. An indicative set of these
measurements is discussed below.

The effect of changing granularity on the deviation of the
response time values can be observed in Figure 7. This is
expected since with high values of P, the service has long
active and inactive periods. If the requests fall in the active
interval, they will be satisfied quickly but if they fall in the
inactive one then they will have to wait until the next active
period begins. This effect decreases at increasing allocated
CPU shares, since in these cases the CPU is almost dedicated
to the application and whenever a request arrives it is served.
The mean response time, as shown in Figure 8, seems not to
be affected greatly given that the percentage of CPU assigned
is the same.

In Figure 9, the comparison between the collected values of
response times is shown for two different numbers of users.
The difference especially in the maximum values of the

Figure 7: Standard Deviation with regard to changing P for 90 users.

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

1 0 0 0 0

6 0 0 0 0

1 1 0 0 0 0

1 6 0 0 0 0

2 1 0 0 0 0

2 6 0 0 0 0

3 1 0 0 0 0

3 6 0 0 0 0

4 1 0 0 0 0

4 6 0 0 0 0

5 1 0 0 0 0

5 6 0 0 0 0

P V a l u e

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

2 0 % C P U S h a r e

4 0 % C P U S h a r e

6 0 % C P U S h a r e

8 0 % C P U S h a r e

1 0 0 % C P U S h a r e

Figure 8: Mean value with regard to changing P for 70 users and 40%
CPU share.

4 0 % C P U S h a r e

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

1 0 0 0 0

6 0 0 0 0

1 1 0 0 0 0

1 6 0 0 0 0

2 1 0 0 0 0

2 6 0 0 0 0

3 1 0 0 0 0

3 6 0 0 0 0

4 1 0 0 0 0

4 6 0 0 0 0

5 1 0 0 0 0

5 6 0 0 0 0

P V a l u e

M
ea

n
 R

es
p

o
n

se
 T

im
e

4 0 % C P U S h a r e

Figure 6: Average response-time of the first VM as a function of the CPU
share (on the x-axis) assigned to it, at varying CPU shares assigned to the
second competing VM (corresponding to the various curves).

distributions depicts the effect of the application workload in
the response times.

In Figure 10 all the different configurations are shown for
two different numbers of users. In this case, each group of
columns (the first high one followed by 4 lower ones)
represents one P configuration for different percentages. The
upper line is for low utilization. While the utilization increases
the response time decreases. In the horizontal axis the
different P configurations represent increasing P values.

From these measurements it seems interesting that the best
granularity (P) should depend also on the percentage of the
CPU assigned to the application. In this occasion, for low
percentages of utilization it is best to assign values near the
middle of the investigated interval (10000-560000 us), as is
depicted in Figure 10. For higher percentages of utilisation,
lower values of P are more beneficial for the response times of
the application. Furthermore, Figure 10 highlights the effect of
the increased CPU share allocation to the response time.

C. Prediction accuracy of the ANN Model

For the estimation of the ANN accuracy, about 30% (87 test
executions) of the data set was used only for validation. After
the training of the model with the 70% of the test cases, we
applied the according inputs of the validation cases and
compared the estimated output with the observed one. The
overall accuracy was around 2.5% and the error of the network
for each individual test case appears in Figure 11. For each
validation case, the network error appears in Figure 12.

The accuracy of the ANN models is evident from these
measurements, giving sufficient reliability for this part of the
overall model. The maximum deviation from the validation
cases is very satisfying and so is the mean error for all the
experiments. Furthermore, the predictions are not biased, a
factor that is critical for the merging of different modelling
approaches like in this paper.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we discussed how a real e-Learning distributed
application has been deployed with predictable and stable QoS
levels within the IRMOS platform.
We showed how we flanked the temporal isolation
mechanisms available within the platform with proper

performance analysis, modelling and benchmarking
techniques, in order to investigate the performance levels
achievable by the application under the various possible
configurations.
In the future, we plan to leverage the black-box approach for
performance estimation, so as to apply the described technique
to other applications that are already being adapted for
deployment within IRMOS, such as distributed editing of
professional-quality video and a virtual reality application.
Also, we plan to extend the used performance models by
accounting for possibly heterogeneous hardware within an
ISONI domain. Finally, we plan to extensively compare the
predicted performance and the actually realised one, in

Figure 9: Comparison of various number of users (blue 30, green 50)
for the same CPU share (40%) and P.

Figure 10: Different P’s and CPU shares for 110 users.

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

1 0 0 0 0

6 0 0 0 0

1 1 0 0 0 0

1 6 0 0 0 0

2 1 0 0 0 0

2 6 0 0 0 0

3 1 0 0 0 0

3 6 0 0 0 0

4 1 0 0 0 0

4 6 0 0 0 0

5 1 0 0 0 0

5 6 0 0 0 0

P V a l u e

M
ea

n
 R

es
p

o
n

se
 T

im
e

2 0 % C P U s h a r e

4 0 % C P U s h a r e

6 0 % C P U s h a r e

8 0 % C P U s h a r e

1 0 0 % C P U s h a r e

Figure 11: Accuracy of the ANN for Mean Response Time Prediction.

Figure 12: Accuracy of the ANN for Standard Deviation Prediction.

presence of a variety of other deployed workload types, from
compute-intensive to network-intensive ones.

REFERENCES

[1] G. Kousiouris, F. Checconi, A. Mazzetti, Z. Zlatev, J. Papay, T.
Voith, D. Kyriazis: Distributed Interactive Real-time
Multimedia Applications: A Sampling and Analysis Framework,
in 1st International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems
(WATERS 2010), Brussels, Belgium, July 2010.

[2] J.J. Moré: The Levenberg-Marquardt algorithm: implementation
and theory. In: Watson, G.A. (ed.) Numerical Analysis, Dundee
1977. Lecture Notes in Mathematics, vol. 630, pp. 105–116.
Springer, Berlin.

[3] B. Shirazi, L. Welch, B. Ravindran, C. Cavanaugh, B.
Yanamula, R. Brucks, E. Huh: DynBench: A Dynamic
Benchmark Suite for Distributed Real-Time Systems. IPDPS
Workshop on Embedded HPC Systems and Applications. S.
Juan, Puerto Rico, 1999.

[4] B. Lin, P. Dinda: Vsched: Mixing batch and interactive virtual
machines using periodic real-time scheduling. In: Proc. of the
IEEE/ACM Conf. on Supercomputing, p. 8, Nov. 2005

[5] C. Germain, C. Loomis, J.T. Mòscicki, R. Texier: Scheduling
for responsive Grids. J. Grid Computing 6(1), 15–27, 2008.

[6] B. Lin, P. Dinda: Towards Scheduling Virtual Machines Based
On Direct User Input. In Proceedings of the 2nd International
Workshop on Virtualization Technology in Distributed
Computing (November 2006). Virtualization Technology in
Distributed Computing. IEEE Computer Society, Washington,
DC, 2006.

[7] F. Checconi, T. Cucinotta, D. Faggioli, G. Lipari: Hierarchical
Multiprocessor CPU Reservations for the Linux Kernel, in
Proceedings of the 5th International Workshop on Operating
Systems Platforms for Embedded Real-Time Applications
(OSPERT 2009), Dublin, Ireland, June 2009.

[8] L. Abeni and G. Buttazzo: Integrating Multimedia Applications
in Hard Real-Time Systems, in Proc. IEEE Real-Time Systems
Symposium, Madrid, Spain, 1998.

[9] C.L. Liu, J. W. Layland: Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. J. ACM
20, 1, pp. 46-61, Jan. 1973.

[10] M. Addis, Z. Zlatev, B. Mitchell, M. Boniface: Modelling
Interactive Real-time Applications on Service Oriented
Infrastructures, Proceedings of 2009 NEM Summit, ISBN 978-
3-00-028953-8.

[11] Z. He, C. Peng, A. Mok: A Performance Estimation Tool for
Video Applications, Proc. 12th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS'06), pp. 267-
276, 2006.

[12] J.W. Lee, K. Asanovic: METERG: Measurement-Based End-to-
End Performance Estimation Technique in QoS-Capable
Multiprocessors, 12th IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS'06), pp. 135-
147, 2006.

[13] S. Benkner, G. Engelbrecht, A Generic QoS Infrastructure for
Grid Web Services, Proceedings of the Advanced International
Conference on Telecommunications and International
Conference on Internet and Web Applications and Services
(AICT-ICIW'06), p. 141, 2006

[14] P. Menage: CGROUPS, October 2008. Available on-line at:
http://www.mjmwired.net/kernel/Documentation/cgroups.txt.

[15] T. Voith, M. Kessler, K. Oberle, D. Lamp, A. Cuevas, P.
Mandic, A. Reifert: ISONI Whitepaper, September 2008.

[16] D. Gupta, L. Cherkasova, R. Gardner, A. Vahdat: Enforcing
Performance Isolation Across Virtual Machines in Xen.
Proceedings of the 7th International Middleware Conference
(Middleware 2006), Lecture Notes in Computer Science, Vol.
4290/2006, pp.342-362, Melbourne, Australia, November 2006.

[17] R. Nathuji, A. Kansal, A. Ghaffarkhah: Q-Clouds: Managing
Performance Interference Effects for QoS-Aware Clouds, Proc.
of the 5th European conference on Computer systems (EuroSys
2010), Paris, France, April 2010.

[18] L. Cherkasova, D. Gupta, A. Vahdat: Comparison of the Three
CPU Schedulers in Xen, Performance Evaluation Review. Vol.
35, No.2, 30 June 2010.

[19] T. Cucinotta, G. Anastasi, L. Abeni: Respecting temporal
constraints in virtualised services, Proceedings of the 2nd IEEE
International Workshop on Real-Time Service-Oriented
Architecture and Applications (RTSOAA 2009), Seattle,
Washington, July 2009.

[20] T. Cucinotta, D. Giani, D. Faggioli, F. Checconi: Providing
Performance Guarantees to Virtual Machines using Real-Time
Scheduling, to appear in Proc. of the 5th Workshop on
Virtualization and High-Performance Cloud Computing (VHPC
2010), Ischia (Naples), Italy, August 2010.

[21] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss:
RFC2475, An Architecture for Differentiated Service. IETF,
Dec. 1998.

[22] J. Wroclawski: RFC2211, Specification of the Controlled Load
Quality of Service. IETF, September 1997.

[23] J. Wroclawski: RFC 2210, The Use of RSVP with IETF
Integrated Services. IETF, September 1997.

[24] E. Rosen, A. Viswanathan, R. Callon: RFC3031, Multiprotocol
Label Switching Architecture, IETF, January 2001.

[25] G. Kousiouris, D. Kyriazis, K. Konstanteli, S. Gogouvitis, G.
Katsaros, T. A. Varvarigou, A Service-Oriented Framework for
GNU Octave-Based Performance Prediction, Proceedings of the
2010 IEEE International Conference on Services Computing
(SCC), pp. 114 – 121, Miami, FL, August 2010.

[26] D. Kyriazis, K. Tserpes, A. Menychtas, I. Sarantidis, T. A.
Varvarigou, Service selection and workflow mapping for Grids:
an approach exploiting quality-of-service information.
Concurrency and Computation: Practice and Experience, Vol.
21(6): 739-766 , 2009.

http://www.mjmwired.net/kernel/Documentation/cgroups.txt

	I. Introduction
	II. Related Work
	III. Performance Isolation – The IRMOS/ISONI Way
	A. Isolation of Computing
	B. Isolation of Networking
	C. Modelling and Benchmarking

	IV. The e-Learning Application
	A. Application Client Simulation Description

	V. Performance Estimation
	A. Stochastic Performance Model
	B. Artificial Neural Networks in the Model
	C. ANN Structure and Design

	VI. Experimental Results
	A. Temporal Isolation by Real-Time Scheduling
	B. Experimental Performance of the e-Learning Application
	C. Prediction accuracy of the ANN Model

	VII. Conclusions and Future Work

