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Abstract: Human activity recognition is an important and active field of research having a wide range of applications in
numerous fields including ambient-assisted living (AL). Although most of the researches are focused on the single user, the
ability to recognise two-person interactions is perhaps more important for its social implications. This study presents a two-
person activity recognition system that uses skeleton data extracted from a depth camera. The human actions are encoded
using a set of a few basic postures obtained with an unsupervised clustering approach. Multiclass support vector machines are
used to build models on the training set, whereas the X-means algorithm is employed to dynamically find the optimal number of
clusters for each sample during the classification phase. The system is evaluated on the Institute of Systems and Robotics (ISR)
- University of Lincoln (UoL) and Stony Brook University (SBU) datasets, reaching overall accuracies of 0.87 and 0.88,
respectively. Although the results show that the performances of the system are comparable with the state of the art, recognition
improvements are obtained with the activities related to health-care environments, showing promise for applications in the AL
realm.

1 Introduction
In recent years, ambient-assisted-living (AAL) solutions have been
developed in an attempt to meet the needs of the older population
(and other relevant stakeholders) by enabling their independent
living and promoting their quality of life and well-being [1]. AAL
solutions integrate robots and other smart devices which are able to
assist, guide, and support senior citizens in their daily lives [2]. In
particular, these sophisticated agents need advanced human–
machine interaction capabilities to cooperate effectively with users
to perform specific tasks [3] such as to support the management of
daily activities [4], improve social relationships [5], commitments
and medicine reminding [6], and reveal potential dangerous
situations [7]. In this context, it is evident how the capability to
recognise human behaviours and the interaction between two (or
more) persons plays an important role. This feature can be used by
smart agents to understand a particular situation reacting properly.
In the literature, most of the researches in the field of activity
recognition are primarily focused on a single user performing daily
activities (walking, sitting, and sleeping) [8], using objects (eating
with a spoon and cooking) [9], and interacting with a robot [10].

On the other hand, the interaction between two or more persons
represents a fundamental aspect of human life. However, compared
to single-user activity recognition this issue is less popular among
researchers and requires further investigations. The identification
of this type of interactions involves the recognition of body
postures, gestures, and key poses, and can introduce also complex
social and psychological aspects, which depends on people's
feelings and thoughts, and is influenced by context, culture, and
personal attitude [11]. Consequently, the study of social activity is
an emerging field of research in various communities including
human–computer interaction, machine learning, speech processing,
and computer vision [12].

Certainly, a system which is able to detect and recognise two-
interacting people automatically can be applied in AAL contexts.
Common actions requiring assistance in the health-care
environment are walking, standing up, and drawing attention. Help
is also needed for aggressive behaviours such as fighting and
normal interactions such as handshake and conversation.

Over the past few years, technologies used to address these
human activities have varied. Certain solutions have employed
wearable sensors to obtain data based on body postures [13].

However, though these devices have some advantages, they can be
cumbersome and invasive. In specific situations such as with older
persons who have dementia, Alzheimer's, or other cognitive
disorders, wearable solutions are not a pragmatic solution for
activity recognition systems [14]. Other approaches employ the use
of video cameras to extract features based on human silhouettes
[15] or spatiotemporal scale-invariant properties [16]. In general,
these solutions suffer from problems related to computational
efficiency and robustness to illumination changes [17, 18]. An
alternative to two-dimensional (2D) images is presented by depth
cameras (also known as RGB-D cameras), which provide 3D data
at a reasonable frame rate. These particular devices make available
both colour and depth information simultaneously. Moreover,
specific software trackers that can extract human skeleton models
from depth maps have been implemented [19]. These skeleton
features can be used to develop technology and innovative services
[20] in AL applications [21].

This paper presents a human activity recognition system for
two-person interaction based on skeleton data extracted from a
depth camera. The use of skeleton data allows to have a system that
is robust to illumination changes and, at the same time, can provide
much more privacy compared with standard video cameras. These
features are extremely valuable in the AAL context. The developed
system is an adaptation of the algorithm presented in [22]. The
basic idea behind the implementation is to represent an activity
with a few and basic postures that can be used to generate multiple
and minimal activity features. The basic postures are obtained
employed an unsupervised clustering technique. The current
implementation differs from the previous mainly in two aspects.
First of all, it can handle two skeletons, modifying the early
preprocessing step. It considers an interaction made by an active
and a passive person, normalising the last with the first one.
Second, instead of using the same number of clusters for all the
activity samples, the system builds a set of classifier models trained
with activity features generated on a range of clusters. During the
classification, it calculates on-the-fly the optimal number of
clusters for the unseen input sequence and retrieves the pre-trained
model which corresponds to the value found.

The system is tested on two public datasets: the Institute of
Systems and Robotics (ISR) - University of Lincoln (UoL) 3D
social activity dataset [23] and the SBU Kinect interaction dataset
[24], both containing skeleton data of two-interacting persons.
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Both datasets are composed of eight activities and three common
actions (i.e. shaking hands, pushing, and hugging). While the first
one contains longer and complex sequences, the second one has
more samples of few seconds.

The remainder of this paper is organised as follows. Section 2
focuses on the related works on this field. Section 3 describes the
developed system, detailing the generation of the skeleton, and
activity features. The experimental results, using three different
classification strategies, are presented in Section 4, whereas
Section 5 concludes this paper.

2 Related works
Activity recognition is an important and active area in computer
vision. Even though early studies in this field began in the 1980s,
the field still presents challenges. In the literature, various
technologies are used to address this issue, ranging from wearable
[25] to smartphones sensors (e.g. accelerometer, gyroscope, and
magnetometer) [26], and images from standard video cameras [17,
18].

Recently, researchers have evolved into the use of consumer
depth cameras [27], also known as RGB-D devices, which, with
inexpensive costs and smaller sizes, are able to provide both colour
and depth information simultaneously. Concerning this technology,
most research is focused on the recognition of activities performed
by a single person. Numerous datasets have been built, and, among
these, the most popular are the Cornell Activity Dataset (CAD)-60
[28], CAD-120 [29], RGB-D-HuDaAct [30], and
MSRDailyActivity3D [31]. Other works underline the importance
of the user's point of view, analysing the information gathered by a
first-person camera to recognise the interaction level of human
activities from a first-person viewpoint [32]. Comprehensive
surveys on human motion analysis with depth cameras can be
found in [27, 33].

Differently from the aforementioned works, this paper focuses
on the analysis of two-person interaction activities for AAL
applications. Over the last year, different research groups have
focused their efforts on different aspects of the interaction between
two or more persons. For instance, some authors investigate the
social aspects involved in the interactions. Rehg et al. [34]
investigate the interactions between children aged 1–2 years and an
adult. They fuse information acquired from different sensors
(RGB-D cameras, microphones, and physiological sensors) to
capture also the social aspects of the interaction performed over the
160 sessions. Kong et al. [35] present a method based on primitive
interactive phrases for recognising complex human interactions.
The idea is to describe a relationship through a set of primitives
which are common to different relationships. Another similar work
is presented by Raptis and Sigal [36], where they recognise the
most discriminative keyframes while also learning the local
temporal context between them. Huang and Kitani [37] aim to
build a system based on reinforced learning able to predict and to
simulate human behaviour in both space and time from partial
observations. When two people interact, they observe only the
actions of the initiator on the right-hand side and attempt to
forecast the reaction on the left-hand side. Blunsden and Fisher
[38] use the movement as a social feature to classify the interaction
in a group of people using a hidden Markov model. Another
important aspect related to the interaction between two persons is
the body orientation which could express a connection with the
person's perceived emotions. In this context, Lopez et al. [39], in a
recent study, analyse the body posture assumed by 26
undergraduate students and recognise six basic emotions.
Additionally, some researchers focused their efforts on what can be
defined as ‘group activity recognition’, in which activities are
performed by groups. For instance, Cheng et al. [40] consider a
group of people (more than two persons) and their spatiotemporal
relationships. Indeed they model the interaction considering three
different layers which are semantically interpretable and described
by a set of heterogeneous features. Their analysis starts at the
individual level, then each pair of users is considered, and at the
end the analysis moves to the group level.

Another advantage of the depth cameras is the possibility to
obtain human skeleton data in real time. These software trackers
are able to provide the 3D joint coordinates of a human model. A
comprehensive survey on skeleton-based classification with a
single user can be found in [41]. In the literature, there are few
public datasets containing two (or more) interacting persons. In
[42], Ibrahim et al. propose a deep model based on long–short-term
memory models to classify actions on the collective activity dataset
[43]. The same dataset was used by Tran et al. [44], where a graph-
based clustering algorithm is used to discover interacting groups in
crowded scenes; a bag-of-words approach is employed to represent
group activity, and a support vector machine (SVM) classifier is
applied for activity recognition. Even if the collective activity
dataset is a popular dataset for ‘group activity recognition’, it is
clear that the classes (e.g. crossing, waiting, queuing, walking, and
talking) are activities performed by a single person in the context
of a group of people. Another interesting dataset is the Nanyang
Technological University (NTU) RGB + D [45], which contains
actions made by one and two people. To overcome the limitation of
other datasets related to the small number of subjects and very
narrow range of performers’ ages, and the highly restricted camera
views, the authors captured the actions performed by 40 subjects
from 80 different viewpoints.

Among the skeleton-based classification method of two-
interacting persons, Yun et al. [24] present the SBU Kinect dataset
[46] composed of eight activities (approaching, departing,
pushing, kicking, punching, exchanging objects, hugging, and
shaking hands), containing images and skeleton data of seven
participants and 21 pairs of two-actor sets. The authors use
relational body-pose features which describe geometric relations
between specific joints in a single pose or a short sequence of
poses such as joint distance, joint motion, velocity, and plane.
Regarding the classification, they employ linear SVMs and
multiple instance learning (MIL) with a bag of body poses.

Another interesting dataset is the ISR-UoL, introduced in [47],
which contains eight activities and ten sessions involving six
participants. The authors implement an activity recognition system
using a probabilistic ensemble of classifiers called dynamic
Bayesian mixture model (DBMM) adapted from [48]. The authors
merge spatiotemporal features from individual bodies and social
features from the relationship between two individuals to classify
the actions. Additionally, the authors aim to learn priority between
subjects applying proximity theories to feed the classifiers.

The aim of this paper is to present and evaluate a system for
two-person interactions using skeleton-based features for the AAL
context. The current system is adapted from a previous version
used for single-user activity classification [22]. Hence, we present
a system, which implements a simple technique to extract relevant
activity features suitable both for single-user and two-interacting
persons. Conversely, from other works that groups a sequence of
skeletons using a high number of clusters [49, 50], the developed
system models an activity using a few and basic informative
postures, ranging from 2 to 5 clusters. During the classification, it
calculates on-the-fly the optimal number of clusters for the unseen
input sequence, loading the pre-trained model correspondent to the
obtained value. The algorithm is tested on the ISR-UoL and SBU
Kinect datasets evaluating both a fusion at decision and at feature-
level scheme, providing the running time for the best configuration.

3 Two-person activity recognition system
The developed system implements a human activity recognition
method using 3D skeleton joint data extracted from a depth
camera. The choice of excluding the image information is driven
by the fact that the final system has to guarantee as much privacy
as possible for the final users. Furthermore, the use of skeleton data
gathered from depth maps is more robust to illumination variance
than standard images. The basic concept of the developed system is
to describe an activity using several sequences of a few basic
informative postures. The idea is to model an activity sequence
using simple and general features, extracting basic postures that are
common to the execution of a specific activity. First of all, the
skeleton data are normalised to be as independent and general as
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possible with respect to the current person. The key poses are
calculated employing an unsupervised clustering technique, to
obtain a few and basic informative postures. Then, suitable activity
features are calculated from the original sequence and a supervised
classifier is adopted for the training and classification. This system
is an improvement of the work already presented in [22]. The
current implementation differs from the previous one, mainly in
two aspects. First of all, the preprocessing step is adapted to handle
an activity frame composed of two skeletons. Second, instead of
using the same number of clusters for all the activities, now the
optimal number of basic skeleton poses can vary according to the
complexity of the activity that the system tries to describe.
Therefore, the classification phase clusters unseen data
dynamically, without forcing a priori the number of groups. For
this reason, the system adopts two different procedures regarding
the train and test phases (see Fig. 1). The first implementation
concerns the creation of the models, and the number of clusters is
varied for each activity. The latter procedure uses one of the
generated models to infer the class to which the input sequence
belongs. These two phases share most of the same software
structure, with the exception that the aim of the first phase is to
generate and save suitable activity models, whereas the second
phase uses these models to perform the classification. 

The aim of this paper is to evaluate a system for two-person
interactions using skeleton-based features for the AAL context.
The developed system implements a simple technique to extract
relevant activity features using few and informative postures,
ranging from 2 to 5 clusters. Our aim is to evaluate the generality
of the current system, which is already tested for single-user
activity, also in the case of two-interacting persons. The algorithm
is evaluated on the ISR-UoL and SBU Kinect datasets. Since the
first dataset contains long and complex sequences, we also evaluate
the performances of the system considering a subset of the original
sequence, without changing the implementation. In Section 4, we
investigate the use of the developed system with features extracted
from each person independently. We then fuse the features at the

decision and feature levels. The remainder of this section focuses
on the implementation of the aforementioned phases.

3.1 Generation of the classification models

The generation of the classification models is composed of four
main steps. At the beginning, the skeleton software tracker [19]
detects the joints of the humans from the depth camera device.
Then, a clustering algorithm is used to retrieve the group of similar
postures, iterating on several numbers of clusters. Next, the activity
features are generated from the previous sequence, and finally,
several classifiers are trained for each set of obtained clusters. The
remainder of this section details further steps in the process.

3.1.1 Skeleton feature extraction: The input data of the system
is a sequence of two human skeletons extracted using a software
tracker [19]. Each sequence contains an active and passive user.
Each human skeleton is modelled with 15 joints that are
represented as 3D Cartesian coordinates with respect to the sensor.
Since these data depend on the distance between the users and the
sensor, they cannot be used directly and need to be normalised.
Therefore, the reference frame is moved from the camera to the
torso joint of the active person, while the passive person is
referenced to the active one. In addition, the joints are scaled with
respect to the distance between the neck and the torso joint. This
last step makes the data more independent to the specific subject
dimensions such as height and limb length [50, 51].

Formally, if we consider a skeleton with N joints, the skeleton
feature vectors of the first ( f A) and the second ( fB) person are
defined as

f A = ( jA1, jA2, …, jAN) fB = ( jB1, jB2, …, jBN) (1)

where each j is the vector containing the 3D normalised
coordinates of the joint J detected by the sensor. Therefore, jAi and
jBi are defined as

Fig. 1  Software architecture of the activity recognition system. It is composed of two phases: creation of the models (top) and online classification (bottom).
The first phase trains a set of SVM classifier that will be used during the second phase. These phases share some software blocks, i.e. extraction of the skeleton
features and generation of the feature activity
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jAi =
JAi − JA1

∥ JA2 − JA1 ∥ i = 1, 2, …, N (2)

and

jBi =
JBi − JA1

∥ JB2 − JB1 ∥ i = 1, 2, …, N (3)

where JA1 and JB1 are the coordinates of the first and second user
torsos, respectively, and JA2 and JB2 are the coordinates of the neck
of the first and second persons, respectively.

The number of attributes for each feature vector in (1) is equal
to 3N. During our experiments, we found that using a number of
joints of N = 11 (excluding the hip and shoulder joints) produce the
best performance for our system. Consequently, a posture feature is
made by 33 attributes per skeleton. The next section describes how
the most informative postures are selected from the entire activity
sequence.

3.1.2 Posture selection: The purpose of this phase is to group,
for each activity, the skeletons that share similar features to obtain
a few basic postures. Therefore, a clustering algorithm is applied to
find the centroids describing these groups. Nevertheless, some
activities can be more complex than others; thus, the optimal
number of clusters may vary according to this complexity. For this
reason, the input sequence is clustered multiple times, ranging from
2 to 5, using the K-means algorithm [52] and varying the number
of clusters (K) to generate multiple samples representing the same
activity. At the end of this phase, the set of posture features fXi

representing an activity sequence is replaced by the centroid to
which the posture feature belongs. Hence, the centroids can be seen
as the key poses of the activity.

3.1.3 Activity feature generation: The activity feature generation
step is the core of the system. The same implementation is used for
both the model generation and the classification phase. The aim of
this step is to properly represent an activity by means of suitable
features. The output of the posture selection module (see Section
3.1.2) contains a temporally ordered sequence of the centroids
representing the most important postures of the original input. In
this phase, all the equal centroids that are temporally consecutive
are discarded. This means that the temporal sequence is simplified
to include only the transitions between clusters. The obtained

representation is more compact, lowering the overall complexity.
In addition, it is speed invariant, which is an important property,
considering that people perform activities at different speeds. At
this point, the obtained sequence is still dependent to the current
input sample in terms of the posture transitions. The idea is to
exploit all the information contained in this sequence to represent a
specific action in a way that is as general as possible using only a
few basic postures. Therefore, we generate n-tuple from the current
sequence by means of a sliding window, creating a set of new
instances to represent the specific activity. Consequently, the new
instances are composed of a set of features with a size of 3LN,
where L is the length of the sliding window and N is the number of
selected skeleton joints. For instance, if an activity has three
clusters, a possible compressed sequence can be

A = [C1, C3, C2, C3, C2, C3, C2, C3, C2] (4)

A sliding window with a size of L = 5 elements produces three
activity feature instances as depicted in Fig. 2. Each instance has a
weight that is increased if there is a duplicate. 

Fig. 3 shows a feature example of the handshake activity using
a window length of 5 elements and skeletons with 11 joints
(shoulders and hips omitted). The cardinality of the instances is
related to the number of different transitions between the different
key poses. This means that actions which are repetitive during the
time will have fewer feature instances than the ones with more
variability between key poses. The output of this module is a new
dataset containing the activity features whose instances have a
weight that is increased if the same sub-sequence is already
present. At the end of this step, each input activity is represented
with several new activity features generated from the different sets
of basic clusters. 

3.1.4 Training: In this last step, several multiclass SVMs [53] are
trained using the activity features obtained in the previous step (see
Section 3.1.3). Specifically, SVMs are supervised learning models
used for binary classification to calculate the optimal hyperplane
that separates two classes in the feature space. SVMs can perform a
non-linear classification efficiently using what is called the kernel
trick, which implicitly maps their inputs into high-dimensional
feature spaces. In our case, we employ the SVM with the radial
basis function kernel that yields better performances compared
with other kernel types. The multiclass version is implemented
using a one-versus-one strategy. The output of this phase is the
creation of different models related to the number, K, of clusters.

3.2 Online classification

The activity recognition system is tested by providing the input
sequence piece-by-piece in a serial fashion. In other words, the
input is fed to the algorithm without having the entire input
available from the beginning. This is more realistic and is similar
to an actual application. We refer to this approach as online
classification. The general architecture of the classification phase is
depicted in Fig. 1 (bottom). The skeleton feature extraction and the
activity feature generation modules are shared with the model
generation phase. The online classification primarily differs in the
clustering step, which is dynamic, and, of course, does not generate
the models (i.e. it does not perform any training).Fig. 2  Example of activity feature instances using a sliding window of L = 

5 elements. Duplicates increase the instance weight
 

Fig. 3  Instance example of an activity feature using a window length equal to 5 and a skeleton of 11 joints
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3.2.1 Dynamic clustering: The core of this phase is to
dynamically cluster the input sequence to use a different number of
centroids to describe the activity, considering the heterogeneity of
the action types. The aim of this step is to find the optimal number
of clusters for the current data sequence that will be used to
retrieve the relative pre-trained model. In this phase, the system
cannot use the K-means, because it does not know a priori the
number of clusters for the actual sequence. Hence, the optimal
number of clusters is obtained using the X-means algorithm [54],
which is an optimised version of the K-means that does not need to
know a priori the number of classes. It attempts to split the centres
into regions and to select the number of clusters using a
probabilistic scheme called Bayes information criterion. The X-
means is much faster rather than repeatedly running K-means using
different numbers of clusters. Thus, X-means has proved to be less
prone to local minima than its counterpart [55]. For each activity,
the X-means is applied using the Euclidean distance function as a
metric. In detail, given an activity composed of M posture features
( f1, f2, …, fM), the X-means gives k clusters (C1, C2, …, Ck), so
as to minimise the intra-cluster sum of squares

arg min
C

∑
j = 1

k

∑
f i ∈ C j

∥ f i − μj ∥2 (5)

where μj is the mean value of the cluster C j.

3.2.2 Classification: The classification step takes as input the
activity features generated from the clustered data (see Section
3.1.3) and the trained model relative to the number of clusters k
obtained from the dynamic clustering step (see Section 3.2.1). Each
generated activity instance is classified with the same classifier as
the training phase (Section 3.1.4), and each observed class is
summed. Hence, the final result is the class that has the greater
value; therefore, it incorporates all the classification results for
each feature instance.

4 Experimental results
The system is implemented in Java using the Weka library [56],
which is an open-source software containing a collection of
machine learning algorithms for data mining tasks. The system is
tested on the ISR-UoL 3D social activity dataset [23], and on the
SBU Kinect interaction dataset, both containing skeleton data of
two-interacting persons. The activity recognition system is
evaluated following the procedure described in the paper [47] for
the first dataset and in [24] for the second dataset. During the
generation of the models, the input skeleton data are mirrored on
the sagittal plane to increase the generality of the samples. The
tests are conducted using different subsets of skeleton joints, and
varying the length of the sliding window during the activity feature
generation process, ranging from 5 to 12 elements. Furthermore,

we compare the results obtained with three different classification
strategies according to the feature used: independent, fusion at
decision level, and fusion at the feature level.

4.1 Datasets

The adopted datasets contain eight actions of two-interacting
persons. The ISR-UoL dataset contains longer sequences, from 40
to 60 s, whereas the SBU has short segmented actions of ∼4 s.
Some of these actions are present in both of them: handshake, hug,
and push. The SBU dataset has punching and kicking actions,
whereas the ISR has a general fight interaction. The actions
contained in the ISR datasets are more complex and realistic.
Furthermore, it also includes call attention, help walk, and help
stand-up particularly suitable for AAL applications.

4.1.1 ISR-UoL 3D social activity dataset: The ISR-UoL 3D
social activity dataset [23] incorporates interaction between two
subjects. This dataset consists of RGB and depth images, and
tracked skeleton data acquired by an RGB-D sensor. It includes
eight social activities: handshake, greeting hug, help walk, help
stand-up, fight, push, conversation, and call attention (see Fig. 4).
Each activity is recorded in a period of ∼40–60 s of repetitions
within the same session, at a frame rate of 30 fps. The only
exceptions are help walk (at a short distance) and help stand-up,
which is recorded four times as the same session, regardless of the
time spent on it. The activities are selected to address the AL
scenario (e.g. happening in a health-care environment: help walk,
help stand-up, and call attention), with potentially harmful
situations such as aggression (e.g. fight, push), and casual activities
of social interactions (e.g. handshake, greeting hug, and
conversation). The activities are performed by six persons, four
males, and two females, with an average age of 29.7 ± 4.2, from
different nationalities. A total of ten different combinations of
individuals (or sessions) is presented, with variation of the roles
(active or passive person) between the subjects. Each subject has
participated in at least three combinations, acting each role at least
once to increase the generalisation of the study regarding
individual behaviour. The dataset is evaluated using the leave-one-
out cross-validation method, given ten sessions and eight activities
[47]. The dataset contains approximately more than 120,000 data
frames. 

4.1.2 SBU Kinect interaction dataset: The SBU Kinect
interaction dataset consists of RGB, depth images, and tracked
skeleton data acquired by an RGB-D sensor. It includes eight
activities: approaching, departing, pushing, kicking, punching,
exchanging objects, hugging, and shaking hands (see Fig. 5). The
dataset is composed of 21 sets, where each set contains data of
different persons (7 participants) performing the actions with a
frame rate of 15 frames per second. The dataset is composed of
manually segmented videos for each interaction (∼4 s), but each

Fig. 4  Samples of the ISR-UoL 3D social activity dataset
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video roughly starts from a standing pose before acting and ends
with a standing pose after acting. The evaluation is done by five-
fold cross-validation, i.e. four folds are used for training and 1 for
testing. The partitioning of the datasets into folds is performed, so
that each two-actor set is guaranteed to appear only in training or
only in testing [24]. The dataset contains ∼10,000 data frames. 

4.2 Classification results

According to the skeleton features used in the first module of the
system, we adopt three classification strategies. The first strategy is
person independent, the second employs a fusion of the features at
decision level, and the last uses the two-person skeletons from the
beginning of the entire process. In details:

Independent: The skeletons of the active and passive persons are
processed and classified separately. This means that the system
takes as inputs f A and fB in (1) independently.
Fusion at decision level: The decision-level fusion [57] combines
the models of the independent classification. The results are used to
train a supervised classifier, i.e. the k-nearest neighbours (k-NNs)
[58] algorithm, yielding the final classification (see Fig. 6).
Fusion at feature level: The feature-level strategy combines the
features at the early stage of the process [8]. It uses a skeleton
feature that is the combination of the two feature vectors of the
input sample ( f A and fB at the beginning).

All the three classification strategies are evaluated varying two
parameters, the skeleton joints and the length of the sliding window
applied to the generated activity features. In particular, to find the
most informative joints for the actions, the system is tested using
all joints (N = 15), removing shoulder and hip (N = 11), and
removing also elbow and knee joints (N = 7). For each
configuration, different lengths for the sliding window are adopted,
ranging from 5 to 12 elements. Since both datasets have
unbalanced classes, the performances are evaluated in terms of
accuracy, calculated taking into account the number of class
instances. The average accuracy of the evaluation sessions are
reported in Table 1 for the ISR dataset and in Table 2 for the SBU
dataset. Looking at these results, it is possible to note how the
worst classification performances are obtained in the independent
use case. This consideration is somewhat expected since the data of
the active and passive skeletons alone are not enough to classify
the activities. It is interesting to note, how the performances of the
independent classification of the ISR dataset is far better than the
SBU dataset. This can be explained by the fact that the samples of
the first dataset are longer than the second, producing more activity
features. The fusion at decision-level scheme, which combines the
results of the independent classifiers, slightly improves the
accuracy of the ISR dataset. Conversely, the performances are
worst using the SBU dataset. In this case, in fact, the results of the

independent case are too low and the fusion at decision level does
not produce any advantages. On the contrary, the fusion at feature-
level scheme proves to be the best approach for both datasets. The
accuracy greatly improves in all the test configurations, achieving
comparable results on all the different joint and sliding window
settings. The best performances are obtained using 11 skeleton
joints and a sliding window with six elements. In this
configuration, the running time for the ISR samples are ∼100 ms
for the shortest sequences and ∼300 ms for the longest on an Intel
i7 with 2.4 GHz quad-core processors, whereas the SBU samples
take <100 ms to be classified. 

4.3 Discussion

Tables 3 and 4 report the confusion matrices of the best
configuration (N = 11, L = 6) for the ISR and SBU datasets,
respectively. The values are normalised between 0 and 1, while the
rightest column reports the total number of test samples according
to the cross-validation method used for the dataset. Considering the
first dataset, the developed system reaches 0.80, 0.80, and 0.87
values of average precision, recall, and accuracy. The classification
system implemented in [47], which implements the activity
recognition using a probabilistic ensemble of classifiers called
DBMM and proximity priors, reaches a slightly better value of
precision and recall (0.85). However, the average accuracy of our
system, calculated considering the total number of activity
instances, has good performances (0.87). Comparing the results of
the two methods, we can note that our system obtains better
performances on activities related to AL context, i.e. help stand-up
(0.95 versus 0.82), help walk (1 versus 0.98), hug (1 versus 0.78),
and draw attention (1 versus 0.97). In addition, the push activity is
often misclassified as fight, because of their similarity. The worst
case is represented by the conversation activity, which is the most
static of the dataset. 

Regarding the SBU dataset, the classification system
implemented in [24], which trains a MILBoost classifier using
specific joint features, reaches an average accuracy of 0.87 on the
same dataset, comparable with our system. A deeper comparison is
not possible because precision and recall values and confusion
matrices are not provided. In general, all the activities have a high
true positive rate, while punching is misclassified with pushing,
and shaking hands with exchanging, or punching.

In general, the developed activity recognition system has good
classification performances comparable with the state of the art,
even if the developed system is much simpler. Static actions are the
most difficult to classify because they generate less informative
activity features. On the other hand, the system reaches optimal
results with interactions of AL context such as help stand-up, help
walk, and draw attention.

Fig. 5  Samples of the SBU Kinect interaction dataset
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5 Conclusion
This paper describes an activity recognition system for two-
interacting persons using skeleton data extracted from a depth
camera. The activity sequence is encoded using a few basic
informative postures, which are computed using a clustering
approach. Differently from state-of-the-art methods, the system
uses few number of clusters to calculate the features, ranging from
2 to 5 classes. During the training phase, the system creates several
classification models according to a different number of clusters,
whereas in the classification process the relative pre-trained model

is retrieved by dynamically calculating the optimal number of
clusters for current unseen data. In this way, the activities can be
modelled precisely.

The system is tested on two public datasets. The ISR dataset
contains long and complex activity sequences, whereas the SBU
has shorter samples. Best results are obtained employing a fusion at
feature-level approach, producing an overall accuracy of 0.87 for
the first dataset and 0.88 for the second one. The running time of
the classification process takes from 100 to 300 ms according to
the length of the input sequence. Results are comparable with the
state of the art, even if the developed system employs a simpler

Fig. 6  Fusion at decision level combines the models of the independent classification by training a k-NN classifier
 

Table 1 Average accuracy for each configuration of the different classification strategies for the ISR dataset
Window\joints Active user Passive user Decision level Feature level

7 11 15 7 11 15 7 11 15 7 11 15
5 0.68 0.69 0.72 0.70 0.71 0.72 0.74 0.73 0.73 0.84 0.85 0.85
6 0.67 0.70 0.71 0.70 0.72 0.73 0.74 0.74 0.74 0.85 0.87 0.85
7 0.66 0.67 0.71 0.67 0.74 0.74 0.72 0.75 0.74 0.85 0.86 0.86
8 0.66 0.66 0.71 0.67 0.72 0.72 0.74 0.74 0.72 0.83 0.86 0.84
9 0.68 0.64 0.69 0.67 0.71 0.70 0.76 0.74 0.71 0.86 0.86 0.86
10 0.65 0.63 0.70 0.68 0.70 0.70 0.75 0.74 0.70 0.85 0.86 0.86
11 0.68 0.65 0.70 0.68 0.71 0.69 0.78 0.73 0.70 0.85 0.86 0.86
12 0.68 0.63 0.68 0.65 0.72 0.69 0.78 0.75 0.68 0.85 0.86 0.85

Bold values represent the best accuracy obtained with the configuration
 

Table 2 Average accuracy for each configuration of the different classification strategies for the SBU dataset
Window\Joints Active user Passive user Decision level Feature level

7 11 15 7 11 15 7 11 15 7 11 15
5 0.58 0.56 0.60 0.37 0.36 0.37 0.50 0.54 0.31 0.87 0.86 0.87
6 0.57 0.57 0.58 0.40 0.38 0.35 0.50 0.52 0.42 0.88 0.88 0.88
7 0.57 0.58 0.61 0.43 0.39 0.36 0.44 0.47 0.48 0.87 0.86 0.84
8 0.55 0.56 0.60 0.43 0.39 0.40 0.47 0.45 0.41 0.88 0.87 0.86
9 0.56 0.57 0.59 0.41 0.37 0.37 0.50 0.50 0.36 0.88 0.87 0.86
10 0.56 0.56 0.60 0.40 0.38 0.36 0.45 0.50 0.33 0.87 0.87 0.84
11 0.55 0.56 0.60 0.42 0.38 0.37 0.44 0.50 0.47 0.88 0.87 0.85
12 0.56 0.54 0.57 0.43 0.37 0.37 0.48 0.52 0.41 0.88 0.86 0.85

Bold values represent the best accuracy obtained with the configuration
 

IET Comput. Vis.
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

7



approach. In particular, significant improvements involve the
activities related to the health-care environments, making feasible
the possible application in AL scenarios. It is worth to note that the
use of human skeletons acquired from depth cameras is not
affected by environmental light variations, ensuring at the same
time a higher level of user privacy compared with standard video
cameras. Furthermore, the system is more general, and not tailored
to the two-person interactions, since it has been previously tested
on single action datasets [22]. The current implementation of the
system needs to know the role of the persons, i.e. the active and
passive users. For this reason, future works will investigate suitable
and robust methodologies to solve this issue. In addition, it can be
observed that the samples of the SBU dataset are very short,
whereas the ISR dataset contains longer actions with more
variability. Therefore, future works will focus on the development
of a proper action segmentation procedure to be used as
preprocessing step that can enhance the classification
performances.
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