
A QoS Registry for Adaptive Real-Time
Service-Oriented Applications

Gaetano F. Anastasi, Tommaso Cucinotta, Giuseppe Lipari
ReTiS Lab.

Scuola Superiore Sant’Anna
Pisa (Italy)

{g.anastasi, t.cucinotta, g.lipari}@sssup.it

Marisol Garcı́a-Valls,
Distributed Real-Time Systems Lab.

Universidad Carlos III de Madrid
Leganés, Madrid (Spain)

mvalls@it.uc3m.es

Abstract—Real-time service-oriented applications are charac-
terized by Quality of Service (QoS) requirements that cannot be
properly managed by using classical real-time systems method-
ologies. In dynamic environments the QoS management can
effectively leverage adaptive techniques, that provide flexibility
and do not require a complex offline analysis. In turn, such
techniques make a massive use of on-line collected data regarding
the application performance and the resource requirements.
Moreover, a common issue for adaptive systems is the one of
deciding the initial configuration of the application and/or the
run-time environment at the time of service instantiation.

In this paper, we propose a QoS registry for coping with these
issues and supporting the configuration of proper scheduling
parameters in real-time Service Oriented Architectures (SOAs).
The registry permits to gather QoS data related to different
functional behaviors of applications, to predict the future trend
based on data already collected and to permanently store such
data for an effective reuse at the time of future re-instantiations.
We have also built an implementation of such registry, computed
its overhead costs and performed some experiments for showing
the effectiveness in auto-tuning resource allocations for providing
QoS guarantees in a real-time SOA.

I. INTRODUCTION

Soft real-time applications are nowadays widely used in
many domains and typical examples can be image recog-
nition applications for finding defects in industrial products
or video processing for on-line conferencing systems. All
these domains have recognized the benefits coming from the
adoption of the service-oriented design paradigm, that permits
to achieve autonomicity and interoperability ranging from
the device perspective [1] to large-scale pervasive environ-
ments [2], up to reach the interactive Web [3]. Thus, soft
real-time applications are often made available as services and
are commonly executed in open systems, where they can be
activated and terminated in any moment, generating a time-
varying workload.

For these reasons, classical real-time systems design
methodologies are rarely used in this context. Instead, the
use of adaptive techniques is more suitable for managing
the Quality of Service (QoS) of service-oriented real-time
applications, given that such techniques have the advantage
of not requiring an offline analysis of the application work-
load and provide the flexibility needed in these cases. The
most common adaptive techniques can be classified in three

groups: application-level adaptation, in which the application
operating modes are adapted to the availability of resources;
resource-level adaptation, in which the resource shares granted
to the applications are adapted to the dynamic workload re-
quirements; and power-level adaptation, in which the resource
speed, and thus the corresponding power consumption, is
adapted to the requirements of the system.

Though adaptation techniques belonging to each group can
be reasonably used by themselves, a better approach for QoS
control counts to use these techniques in conjunction [4] and
as part of an integrated QoS framework that contains the set of
required mechanisms for QoS management [5]. Moreover, a
particular care must be done when providing QoS guarantees
for services, as concurrent activations can easily disrupt the
response time of a service [6].

Adaptive techniques for QoS management achieve self-
configuration capabilities by relying on previously collected
information about the application configuration, its achieved
performance and the corresponding resource requirements. For
example, data from previous executions may be used in a
control loop for adjusting the resource allocation for future ex-
ecutions. However, in Service Oriented Architectures (SOAs),
the application might be instantiated on a request-by-request
basis by a web server, and with potentially different parameters
or operating modes, making it difficult to build such an on-
line control loop. Also, in presence of a multitude of operation
modes and environmental conditions, it may be cumbersome
to build a historical data set which is comprehensive of all
the possible cases for future instantiations of the application.
For these reasons, we believe that the use of a well-structured
framework for handling QoS data is of paramount importance
in such a context.

In this paper we present a QoS registry, called QoSDB, for
supporting QoS management in SOAs. It can be exploited for
gathering persistently QoS data related to different functional
behaviors of the application (application operating modes)
and for predicting the future performance based on historical
data. Furthermore, a modular architecture allows for defining
various models for the prediction of the resource requirements
under a set of conditions which has not been observed yet.
This allows for achieving a nearly correct resource allocation
(self-configuration) for the application with a great reduction

of the needed observation/benchmarking points, especially in
those contexts in which the space of possible configuration
parameters is big (e.g., multimedia applications supporting
arbitrary resolutions). In order to show viability of the pro-
posed approach, we provide overhead measurements gathered
on an implementation of the QoSDB on Linux. Moreover,
through some experiments we highlight the benefits of using
such registry in a real SOA scenario with QoS provisioning
capabilities. By leveraging the QoSDB, the system is capable
of auto-tuning for a better exploitation of internal resources
while guaranteeing the QoS required by users.

In the remainder of the paper, related work is analyzed
in Section II, whilst Section III describes the architecture
of the proposed QoS registry. Section IV focuses on the
interface exposed to the application, and the typical usage
pattern. Section V shows experimental results gathered with an
implementation of the proposed registry. Finally, Section VI
draws conclusions.

II. RELATED WORK

In SOA applications the importance of historical data and
statistics for supporting the QoS is commonly recognized and
leveraged [7], [8], [9]. However existing approaches rarely
deal with real-time services in dynamic environments, where
respecting time requirements imposes a particular care. For
example, the use of historical data for SOAs has been also
exploited by Yu and Lin [10], that propose a QoS-capable Web
service architecture by deploying a QoS broker between Web
service clients and providers. This broker uses QoS informa-
tion collected from each server for choosing the best provider
that can satisfy client requests. However, this information is
mainly static and it is not used to make application-level
or resource-level adaptation. Instead, our experimental work
focuses on adapting the resource shares for the enforcement
of certain QoS guarantees.

In the QoS management of adaptive SOAs, the use of
QoS prediction mechanisms is of paramount importance for
understanding the trend of QoS data and reacting to changes
in the application and/or in the execution environment. In our
work such aspects has been considered in the design phase
and analyzed in the experimental section, however proposing
novel prediction techniques is not in the scope of this paper.
For the sake of simplicity, a linear regression model has
been used in our experiments but, in principle, any QoS
prediction technique can be embedded in the proposed work,
like the approach proposed by Li et al. [11], based on forecast
combination.

As a note, the QoS registry proposed in this work has
been conceived for supporting service providers in the QoS
management and thus its information is not produced with
the intent to be published for discovery and/or integration
processes. Some work in this direction has been done by
Lee [12] for representing QoS information of services in UDDI
(Universal Description, Discovery and Integration) registries.

In the realm of real-time systems other well-structured
framework for management of historical data exist. Among

them, it is worth to mention the BACC [13] (Budget ACCoun-
tant) module inside the HOLA-QoS framework [14]. That
module provides the basic means for enforcing and accounting
for resource usage, by notifying task overruns and by keeping
statistical information on the used task budgets. It stands at
the Operating System (OS) level and the information provided
by it is directed to monitoring tasks for checking how a task
is behaving. Instead, our framework stands at a higher level
than the OS, supposing the existence of a real-time enhanced
OS for the QoS enforcement. In this way, it can be used for
adapting the application performance by exploiting high-level
information affecting the QoS, rather than for simply checking
a possible misbehavior.

For the QoS management of soft real-time applications, the
use of adaptive techniques is not new and some approaches
have been recognized as effective, especially for adaptive
scheduling. For example, in a work by Eile et al. [15],
feedback scheduling is used for the design and implementation
of a CPU Broker, that adjusts allocations over time to ensure
that high application-level QoS is maintained. Further, in the
context of feedback-based real-time scheduling, Cucinotta et
al. [16] introduced a clear separation between the prediction
algorithm, responsible for estimating the workload of the
subsequent task activation(s), and the control algorithm itself,
leveraging the output of the predictor and the knowledge about
the current task delay, for deciding the next allocation. Instead,
our work does not propose any new feedback strategy but
focuses on the collection and management of historical data
for adaptive systems. Moreover, our proposal can be used
for supporting feedback scheduling by clearly separating the
feedback algorithm from the data management.

The work proposed in this paper has been inspired by
the FQDB component [17], introduced in the FRESCOR1

Application-Level Contracts (FALC) architecture [4] with the
purpose of supporting feedback-based QoS control and admis-
sion policies for embedded real-time systems.

Instead, this work has been conceived for SOAs, as showed
by the proposed experiments that have been carried out
by integrating an implementation of QoSDB into a service-
oriented QoS architecture for industrial automation [6]. Other
software architectures based on modifications of the Linux
kernel for supporting distributed real-time applications exist
in the literature [18], [19].

III. QOSDB DESCRIPTION

This section describes QoSDB, a QoS registry for supporting
the QoS management in adaptive SOAs. In the most simple
case, QoSDB operates at the application level, shared between
all the tasks of an application. In more complex architectures,
a middleware acting as QoS manager could be interposed
between the applications and the OS. In that case the QoSDB
would stand in the middle layer and its functionalities would
be better exploited by the QoS manager.

The main features of QoSDB can be summarized as follows:

1More information is available at: http://www.frescor.org.

http://www.frescor.org

• it supports adaptation techniques by counting that each
application can be characterized by different modes and
can run at different resource speeds;

• it allows applications to predict QoS parameters for
operating modes that have not yet been experienced by
the application.

• it permits to store in memory, save in a database and
recover statistics related to QoS parameters;

The QoSDB has been designed pursuing the following goals.
Modularity: QoSDB is characterized by different plugins,

for permitting a rapid change of its functionalities. Moreover,
even the core has been designed by keeping in mind modu-
larity for a clean competence separation. This will eventually
allow programmers to modify even the internal data structures
and algorithms with a minimum effort.

Flexibility: QoSDB has been designed for exploiting the
three different levels of adaptation in conjunction. However,
it is flexible enough for being used in many contexts, even if
only a subset of the provided functionalities is required.

Efficiency: the overhead introduced by the QoSDB should
be negligible. For pursuing this goal, it has been developed
in the C language. This also widens the possibilities of usage
in the context of resource-constrained SOAs (e.g. SOAs for
industrial automation), without precluding the possibility to
build gateways towards different programming languages.

A. Model and Notation

In this paper we focus on a generic application, software
component or service α, which is capable of switching among
a set of operating modes M . The behavior of α is affected
by a set of parameters {inj : j = 1, 2, . . .}. For example,
for an image processing application, these can be the image
resolution and color depth in bits; for an interactive application
they can be represented by the current workload in terms
of connected users. However, for the sake of simplicity, we
assume that the set of parameters may be mapped to a
scalar quantity v = f({inj}), so that the actual impact on
the application behavior (in terms of resource requirements
and performance) depends only on v. For example, for an
application that operates on images, v could be computed as
the image size (width ∗ height ∗ depth). Thus, each operating
mode m ∈M is characterized by a scalar quantity vm.

Also, the historical behavior of α in each mode m is
characterized in terms of a vector of observed samples spm
with maximum dimension NS , which constitutes a moving
window over the past history of the system. Also, a vector of
statistics stm = (stm,1, . . . , stm,NT

) is associated with these
observations, where each element of stm is basically computed
by performing certain operations on the elements of spm (e.g.
moving average). The number of samples NS and the number
of statistic NT can be defined directly by α.

The resources used by α can be in a different power
consumption mode pm. Thus, each resource has associated
a set of power modes PM = {pm1, pm2, . . . , pmL}. For
example, considering the CPU, L could be equal to the
different CPU speed levels of the system. For the sake of

Clairvoyance

Plugin

 Power

Plugin

 Statistics

Plugin

QoSDB

Core

Saving

Memorization

API

Figure 1. The QoSDB Architecture

simplicity, we consider a relationship of orthogonality between
m and pm, i.e. data collected for a particular m can be reused
∀ pm ∈ PM . Thus, each element of spm is stored after an
operation of normalization with respect to the current power
mode pmset and is reused after an operation of unnormaliza-
tion with respect to the future power mode pmget.

B. Architecture

The QoSDB architecture has been designed with a particular
emphasis on modularity. Its main components, depicted in
Figure 1, are detailed below.

1) QoSDB Core: The core of QoSDB provides the main
functionalities of the framework. It can be divided into the
following subcomponents.

The API constitutes the glue between internal modules and
plugins, by coordinating operations and information flows.
Moreover, this module allows applications to interact with the
QoSDB as detailed in Section IV.

The Memorization module provides the functionalities for
storing/recalling data to/from the QoSDB data structure, that
contains sampling and statistic data for each operating mode.
The number of modes could be potentially high, as applica-
tions characterized by various input parameters must collapse
them in a unique value (see Section III-A). For this reason,
the used data structure is a Binary Search Tree (BST), with
each node label corresponding to an operating mode. From
a theoretical point of view, the BST would guarantee a good
performance in searching and inserting nodes in the tree, that
are the operations mostly performed in the QoSDB.

The Saving module has the task of saving in permanent
storage the statistics contained in the internal data structures.
This module is also responsible of restoring such statistics
when a new instance is started. Data are intended to be
managed by the QoSDB methods only and thus the use of
a relational database has been avoided: it would add overhead
and dependencies without adding much benefits. Instead, an
ad-hoc database has been used.

2) QoSDB Statistics Plugin: The QoSDB Statistics Plugin
allows applications to specify the statistics they are interested
into. Applications define the maximum number of statistics
NT to be stored and saved for each m ∈ M , and they
define the proper computation function for each statistic. The

index k used for the insertion in the vector stm represents the
statistic type. Denoting m̂ as the current operating mode, each
computation function gets as input the vector of samples spm̂
and returns the computed statistic stm̂,k. Actually the QoSDB
comes with the average and maximum computation functions
already built-in.

3) QoSDB Clairvoyance Plugin: The QoSDB Clairvoy-
ance Plugin permits to predict a QoS statistic related to a
given operating mode m̃ for which no statistic has been
observed so far. The plugin allows applications to define
the chosen algorithm according to the preferred model. Ac-
tually, the QoSDB comes with a linear regression predic-
tion algorithm based on the Ordinary Least Square (OLS)
method. A new algorithm can be inserted by simply redefining
the qosdb_clair_stat_prediction() function, that
can predict the value of a particular statistic whose type
is identified by the index k. Such function computes the
value stm̃,k by receiving as input the mode m̃ for which we
predict the statistic, the remaining set of modes in the QoSDB
X = M \ {m̃}, and the statistics of interest for the given
modes Y = {stm,k ∀m ∈ X, k = statistic of interest}.

4) QoSDB Power Plugin: This plugin allows for set-
ting the preferred model for correlating statistics and
samples to different resource speeds. It provides the
qosdb_power_normalize method, used for store samples
whose values are independent of the resource speed at which
they have been taken (denoted by the pmset value). It also
provides the qosdb_power_unnormalize method, used
for returning values related to the actual power mode pmget,
potentially different from pmset. These two methods are inter-
nally called in the QoSDB API (see Section IV), respectively
in the qosdb_set_sample and qosdb_get methods.

IV. QOSDB INTERFACE

In this section a description of the available Application
Program Interface (API) is given, in order to highlight the
capabilities of QoSDB.

The QoSDB library allows applications to exploit its feature
through a well-defined API, as described in Listing 1. The
definition of these methods follows the common C program-
ming practice of returning an exit status, represented by a
qosdb_rv type. The functionality of each method is detailed
below.
• qosdb_init This method initializes the QoSDB library.

It is responsible of creating internal data structures and
of loading historical statistics from permanent storage.

• qosdb_cleanup This method cleans-up the internal
data structures and resources (e.g. file streams, log han-
dler) associated to the QoSDB library.

• qosdb_lookup_app_mode This method looks-up an
operating mode identifier. Such identifier will be used for
subsequent calling exploiting the QoSDB features.

• qosdb_set_sample This method sets a sample for
a particular mode m. It operates on the internal data
structures and does not save data in permanent storage.
For each observed mode m, samples are stored in a vector

spm, implemented as a circular buffer whose dimension
NS can be set by the application.

• qosdb_get This method gets the vector stm for a par-
ticular mode m. It operates on the internal data structures
and does not get data from permanent storage. If a merge
has been performed, the result will keep in count fresh
values, otherwise it will return historical statistics.

• qosdb_merge This method merges new statistics with
historical ones, for a particular mode m. The historical
statistics are those stored in the vector stm when the
method is called; instead, the new statistics are computed
on-the-fly from fresh samples contained in spm. As an
outcome, the vector stm is updated with the merged
information (the importance of the fresh information with
respect to the historical one can be weighted). Note that
this method operates in the internal data structures only.

• qosdb_save This method saves in permanent storage
the statistical data contained in the internal data struc-
tures. In particular, it permanently stores the vector of
statistics stm for each m ∈M .

The structure of a task using the QoSDB can vary according
to the application purposes. An example of the typical usage
can be found in Algorithm 1, described in Section V-B,
where the proposed registry is leveraged for performing QoS
management in SOAs.

V. EXPERIMENTS

This section describes some experiments that have been
performed with the QoSDB described in the previous sections.
First, we show the overheads associated with the use of the
QoSDB highlighting their sustainability in a large class of
target applications. Subsequently, the functionalities of the
QoSDB are shown by reporting its performances in service
provisioning and the effectiveness in the adaptive prediction
of resource requirements.

A. Overhead Measurements

The QoSDB library has been developed pursuing efficiency,
as the overhead introduced should be negligible for a proper
integration in QoS architectures.

For this reason, the execution times of the QoSDB API
methods has been measured by using a test program that
reflects the typical usage. The test has been performed on a
64bit GNU/Linux system featured by an Intel CPU running
at 1.2 Ghz. The average execution times, as perceived by
the application, are reported in Table I as a function of the
operating mode number (the t10 row is related to a QoSDB
featured by 10 operating modes, whilst the t100 is related
to 100 operating modes). Each test case has been repeated
50 times and reported results in the first row have the 90%
confidence interval always below 6.3%, whilst 90% confidence
interval in the second row is always below 5.9%.

It can be seen that the overhead is almost always negligible
and in the order of microseconds. Only the qosdb_save
method has a significant value, as data have to be saved on the
hard disk. Other experiments show the same behavior when

qosdb rv q o s d b i n i t (q o s d b c o n t e x t ∗∗c , D a t a b a s e name) ;
qosdb rv qosdb cleanup (q o s d b c o n t e x t ∗c) ;
qosdb rv qosdb save (q o s d b c o n t e x t ∗c) ;
qosdb rv qosdb merge (q o s d b c o n t e x t ∗c , c o n s t qosdb app mode id app mode id) ;
qosdb rv qosdb lookup app mode (q o s d b c o n t e x t ∗c , c o n s t qosdb app mode app mode ,

qosdb app mode id ∗app mode id) ;
qosdb rv qosdb set sample (q o s d b c o n t e x t ∗c , c o n s t qosdb app mode id app mode id ,

c o n s t qosdb mode sample y , c o n s t q o s d b r s p e e d s) ;
qosdb rv qosdb get (c o n s t q o s d b c o n t e x t ∗c , c o n s t qosdb app mode id app mode id ,

qosdb mode s t a t ∗∗y , c o n s t q o s d b r s p e e d s) ;

Listing 1. QoSDB API

Table I
EXECUTION OVERHEAD OF QOSDB API

init lookup set sample get merge save

t10 (ms) 0.259 0.001 0.001 0.001 0.003 2.289
t100 (ms) 0.264 0.001 0.001 0.001 0.003 2.336

the qosdb_init method loads data from the database (in
the reported experiments the database is deleted before each
repetition).

As a further overhead measurement, the memory usage of a
program using the QoSDB library has been measured. We did
not use the information that can be gathered by the common
ps tool, as it reports only a coarse grain information (the total
amount of memory allocated for that process). Instead, we
made use of the smaps interface present in the procfs of
Linux since the 2.6.14 version. This interface permits to gather
information about the actual memory reserved to the process,
being also able to distinguish between the private memory and
the shared memory, as due to dynamically linked libraries.

Our experiment consists in monitoring for 20 seconds (with
a grain of 1 second) the output of the smaps interface while
our program was running. The only shared libraries used by
our program were libc-2.7.so and ld-2.7.so. The
memory reserved for such libraries was always between 572
and 600 KiB.

Table II reports instead the amount of private memory used
by the program as a function of the operating modes number
(the m10 row is related to a QoSDB featured by 10 operating
modes, whilst the m100 is related to 100 modes). In the first
column of such table is reported the memory usage for the
code section, equal to 20 KiB in the two cases. The second
and the third columns correspondingly report the average and
the maximum usage related to the data section. This value is
variable because it also counts the heap usage, that could vary
during the program execution as a consequence, for example,
of malloc calls. The 90% confidence intervals are 1.4% in
the case of 10 operating modes and 5.8% in the other case.

In our opinion, such values are acceptable and adequate
for a wide range of applications working on Linux-capable
platforms.

Table II
MEMORY OVERHEAD OF QOSDB

Code Data
avg max

m10 (KiB) 20 159.4 172
m100 (KiB) 20 340.6 448

B. Service Provisioning Scenario

Some experiments have been performed in order to show the
effectiveness of QoSDB in tuning the resource allocation for
providing QoS guarantees in SOAs. In particular, the QoSDB
has been plugged into a real-time QoS architecture [6] featured
by the mod_reserve2, a resource reservation module for
the Apache2 web server. The mod_reserve is capable of
guaranteeing the QoS required by clients in the provision-
ing of CPU-intensive services. For the QoS enforcement,
it uses the user-space library made available through the
AQuoSA framework [20], that enhances the Linux kernel
with a real-time scheduling policy based on earliest deadline
first (EDF). In particular, mod_reserve exploits the uni-
processor3 AQuoSA scheduler for allocating CPU “shares”
managed through the Resource Reservation (RR) [22] ap-
proach. In the RR framework, a resource allocation is specified
in terms of a budget Q and a period P , with the meaning that
the resource is granted for a minimum of Q time units every
time-frame of duration. The ratio B = Q/P represents the
share of the resource that has been reserved.

The RR approach provides the fundamental property of
temporal isolation [23] in allocating a shared resource to a
set of tasks that need to concurrently use it. This means that
each task is reserved a fraction of the resource utilization, so
that its ability to meet timing constraints is not influenced by
the presence of other tasks in the system. Focusing on the
CPU, this property ensures that each task can be thought of
as running on a virtual CPU, whose speed is a fraction B of
the real CPU speed.

The experiments have been performed on a system with a
1.2 Ghz Intel CPU, 3GiB RAM, running a 64bit GNU/Linux

2More information on the mod_reserve, former known as RtModule,
is available at the URL: http://freecode.com/projects/mod reserve.

3The AQuoSA framework has been recently extended to use the IRMOS
real-time multi-processor scheduler, even though this version was not used in
this paper. The interested reader can find additional details in [21].

http://freecode.com/projects/mod_reserve

OS with a 2.6.28 kernel patched with AQuoSA. In the
proposed scenario, the service provider makes available an
image rotation service, whose QoS parameters can be specified
through a contract negotiation scheme, for example by using
Service Level Agreements (SLAs). The service consumer must
specify the image width w, the image height h and the desired
response time D.

In particular, for satisfying the latter QoS requirement, the
mod_reserve challenge consists in “guessing” the proper
pair B and P for scheduling the serving task. In this context,
a good choice for the time granularity of the reserve is P =
100ms (as the period is also representative of the maximum
activation delay, lower values could be more appropriate in
different contexts, like virtualization [24]). In this case the
period P is automatically set for each request by the service
provider, based on the information provided by the service
engineer. However, our QoS architecture also allows for the
negotiation of such parameter with the service consumer.

Instead, the bandwidth B is computed request-by-request
by leveraging the capabilities provided by the QoSDB library.
In this way, it is possible to allocate only the resource
share needed for guaranteeing the required QoS, permitting
to use resources for completing other tasks or eventually use
strategies for energy saving (e.g. switching off a core processor
or lowering the resource speed).

The operations performed by mod_reserve for providing
the service with QoS capabilities can be described by Algo-
rithm 1, which follows the notation introduced in Section III-A
and reports the QoSDB methods without any C artifact. In
particular, such operations can be detailed as follows:

1) Retrieving the operating mode id vm with the
qosdb_lookup (line 1). In the service considered in
this scenario, each mode m is represented by the product
w ∗ h of the image to rotate.

2) Getting the average statistic for the corresponding mode
with the qosdb_get (lines 2-4).

3) Computing the value B as the ratio between the average
statistic and the service deadline d (lines 5-9). In case
the statistic is null, an arbitrary initial bandwidth value
B0 is assigned. The deadline d is assigned by the
system, based on the response time D specified by the
service consumer. It could be set equal to D, however a
safer practice consists in setting d equal to a bit lower
target value D̂, for considering the various source of
indeterminism e.g., cache and software interrupts, that
can still affect the real-time behavior of AQuoSA in
implementing the RR mechanism on Linux.

4) Serving the request by assigning a fraction B of CPU
to the serving task (lines 10-12). The metafunction
allocate CPU share wraps the AQuoSA calls necessary
for performing the resource allocation, whilst the ex-
ecute service wraps operations performed by the web
server. We also assume the availability of a system call
for getting the service execution time.

5) Storing in memory the service execution time with the
qosdb_set_sample and updating the statistics with

Algorithm 1 QOS PROVISIONING(m, d)

1: vm ← qosdb lookup app mode(m)
2: pmget ← get current CPU speed()
3: stm ← qosdb get(vm, pmget)
4: avg ← stm[AV G]
5: if avg = NULL then
6: B ← B0

7: else
8: B ← avg/d
9: end if

10: allocate CPU share(B, getpid())
11: execute service()
12: t← get service execution time()
13: pmset ← pmget ∗B
14: qosdb set sample(vm, t, pmset);
15: qosdb merge(vm);
16: return

the qosdb_merge (lines 13-15).

Please note that Algorithm 1 is general and does not rely
on the particular service used in this scenario. Of course, it re-
quires that a mapping function exist for each different service,
in order to determine the operating mode m from the service
parameters inj (see Section III-A). We also stress the fact that
Algorithm 1 is performed by the mod_reserve component,
that does not execute itself the services. It “intercepts” request
calls performed to the web server and enhances its normal
behavior by providing requested QoS guarantees. For the sake
of simplicity, operations performed in different phases of the
web server loop have been presented in a sequential manner.

A first experiment, called Experiment I, has been con-
ducted for showing the auto-tuning capability the system
acquires by leveraging the proposed QoS registry. Service
consumers perform 50 subsequent requests with parameters
w = 1000pixel, h = 1000pixel,D = 660ms. The desired
response time D is not considered as the target deadline of
the system; instead we consider, as discussed, a lower internal
target D̂ = 640ms. Denoting r̄full as the average service
response time when requests are processed by using the CPU
at full speed, an off-line analysis on such service reveals that
r̄full is equal to 50.18ms (the 90% confidence interval is about
0.1% of the average value). Thus, an optimal assignment B∗ in
the sense of minimizing the resource allocation for sustaining
the desired deadline would be B∗ = r̄full/D̂ ' 0.0784. This
measure is used for benchmarking the performance of the
system. Instead, for highlighting the auto-tuning capabilities
of our architecture, an arbitrary value B0 = 0.09 has been
chosen for the initial CPU bandwidth assignment.

At the beginning, requests are performed by 1 service
consumer. For each request the assigned bandwidth B and the
response time r have been measured and results are plotted
in Figure 2. In Figure 2(a), it can be seen that the first
computations of B are clearly overestimated but the system
rapidly evolves thanks to the use of QoSDB, assigning for

 0.076

 0.078

 0.08

 0.082

 0.084

 0.086

 0.088

 0.09

 0 10 20 30 40 50

c
p

u
 s

h
a

re

request

1000x1000

 550

 600

 650

 700

 0 10 20 30 40 50

re
s
p

o
n

s
e

 t
im

e
 (

m
s
)

request

1000x1000

 550

 600

 650

 700

 0 10 20 30 40 50

re
s
p

o
n

s
e

 t
im

e
 (

m
s
)

request

1000x1000
D

Figure 2. Adaptive Resource Allocation in Service Provisioning

Table III
PERFORMANCES OF ADAPTIVE RESOURCE ALLOCATION BASED ON THE

AVERAGE QOS STATISTIC

MAPE (%) DMR (%)

1 client 0.71 0
5 clients 1.76 2.0

10 clients 1.85 5.8

most of the requests a bandwidth equal to B∗. Figure 2(b)
reports the actual response times and shows how the serving
task scheduled with the computed bandwidth reservation is
capable of guaranteeing the required QoS (values are always
under the dotted line denoting the desired response time D).

Then, the experiment has been repeated when requests
are performed by a different number of concurrent service
consumers c and the same behavior of Figure 2 has been
observed. For doing a comparison of the collected results we
introduce two different metrics. By denoting rc,i and Bc,i

respectively the response time and the bandwidth allocated
for the i-th requests performed by client c, such metrics can
be defined as follows:

• the Deadline Miss Ratio DMR = dmn
N , where the number

of deadline misses dmn is the cardinality of the set
{rc,i|rc,i > D} and N is the total number of requests
received by the provider;

• the Mean Absolute Percentage Error defined as
MAPE = 1

N

∑
i,c
|B∗−Bc,i|

B∗

Table III reports the value obtained for the introduced
metrics when requests are performed by 1, 5 and 10 concurrent
clients. The results reported for the MAPE metric are very low
and show that the system performs very well in allocating the
right resource share. Instead, values for the DMR metric grows
proportionally with the number of concurrent clients, reaching
a quite significant value in the case of 10 clients. However,
the average service response times, calculated throughout the
whole experiment, are quite similar in all the three cases
(respectively equal to 639.02ms, 639.22ms and 641.79ms

Table IV
PERFORMANCES OF ADAPTIVE RESOURCE ALLOCATION BASED ON THE

MAX QOS STATISTIC

MAPE (%) DMR (%)

1 client 1.17 0
5 clients 2.89 0.8
10 clients 8.22 0.4

with the 90% confidence intervals lower than 0.2%) and do
not present the same proportional difference with respect to
the DMR values. This can suggest that when strong guarantees
must be provided in terms of respecting deadlines for real-time
service-oriented applications, QoS management techniques
based on the analysis of the maximum values could be more
appropriate, rather than referring to the average QoS statistics,
as done in this experiment.

Following this reasoning, the Experiment II has been per-
formed with the same setup of Experiment I, except for
considering the max statistic instead of the average in line 4
of Algorithm 1. In the results, reported in Table IV, it could
be seen that DMR values has been drastically reduced with
respect to values of Table III, meaning that a minor number of
deadline misses occur (both in the case of 5 and 10 concurrent
clients, only 2 deadline are missed). Of course, this is achieved
at the cost of overestimating the resource allocation for service
execution, as reflected by MAPE values that are increased with
respect to those of Table III.

Finally, an experiment is performed in which the server
receives 50 subsequent requests by 1 client but the image
resolution changes every 10 requests, forcing a change of
the operating mode. This experiment has been conceived for
highlighting the advantage of using the Prediction Plugin for
guessing the behavior of the application when changing from
one mode to another. Thus, for each operating mode the error
in computing the bandwidth B has been measured and plotted
in Figure 3. It can be seen that the allocation error for the mode
2000x2000 is significant, as the database is not populated yet
and a B0 = 0.15 allocation value is given. Subsequently,
the system evolves towards a plateau, similarly to the first
experiment reported in Figure 2(a). At request number 11,
when the operating mode changes to 1500x1500, the database
is not populated for that operating mode but the QoSDB
exploits the statistics already collected for performing a guess
that is very close to the plateau value. The same behavior
can be observed for the other mode changes, that happen at
requests number 21, 31 and 41. The prediction algorithm used
in this experiment is based on the OLS method and is already
built in the QoSDB, as described in Section III-B.

In traditional feedback-based scheduling, an application
continuously running adapts dynamically the scheduler pa-
rameters based on recently observed resource requirements.
Instead, in the presented experiment, the individual requests
are served by independent activations of the cgi-bin service,
which can occur at great or small distances in time. The
service is thus instantiated each time along with the creation

-0.04

-0.02

 0

 0.02

 0.04

 0 5 10 15 20 25 30 35 40 45 50

c
p
u
 s

h
a
re

 a
llo

c
a
ti
o
n
 e

rr
o
r

(%
)

request

2000x2000
1500x1500
1000x1000

750x750
500x500

Figure 3. QoS Prediction on Mode Changes

of the associated resource reservation into the scheduler (as
handled by mod_reserve). Thus, in the proposed work, the
“feedback control loop” is closed in an off-line fashion, by
recurring to the registry.

VI. CONCLUSION

In this paper a QoS registry (QoSDB) has been presented
for adaptive real-time service-oriented applications. It has been
conceived for supporting QoS management by permitting to
predict, store and save QoS data and statistics related to
different functional behaviors of an application. It is charac-
terized by a modular architecture that permits the insertion
of new algorithms for an easy customization. The proposed
registry has also been developed and integrated into a real-time
SOA and some experiments conducted in this context have
shown the efficiency of the proposed solution, along with its
effectiveness in supporting adaptive techniques for providing
services with QoS guarantees.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme under grant agreements n.214777 and n.248465, in
the context of the IRMOS and S(o)OS Projects.

REFERENCES

[1] F. Jammes and H. Smit, “Service-oriented paradigms in industrial
automation,” Industrial Informatics, IEEE Transactions on, vol. 1, no. 1,
pp. 62–70, Feb. 2005.

[2] R. Zender, U. Lucke, and D. Tavangarian, “SOA Interoperability for
Large-Scale Pervasive Environments,” Proceeding of the 5th Inter-
national Workshop on Service Oriented Architectures in Converging
Networked Environments, vol. 0, pp. 545–550, 2010.

[3] T. Cucinotta, F. Checconi, Z. Zlatev, J. Papay, M. J. Boniface,
G. Kousiouris, D. Kyriazis, T. A. Varvarigou, S. Berger, D. Lamp,
A. Mazzetti, T. Voith, and M. Stein, “Virtualised e-learning with real-
time guarantees on the irmos platform,” in IEEE International Con-
ference on Service-Oriented Computing and Applications, SOCA 2010,
December 2010, pp. 1–8.

[4] T. Cucinotta, L. Palopoli, L. Abeni, D. Faggioli, and G. Lipari, “On the
integration of application level and resource level qos control for real-
time applications,” Industrial Informatics, IEEE Transactions on, vol. 6,
no. 4, pp. 479–491, Nov. 2010.

[5] M. Garcı́a-Valls, I. Estévez-Ayres, and P. Basanta-Val, “Dynamic priority
assignment scheme for contract-based resource management,” in Com-
puter and Information Technology (CIT), 2010 IEEE 10th International
Conference on, 7 2010, pp. 1987 –1994.

[6] T. Cucinotta, A. Mancina, G. Anastasi, G. Lipari, L. Mangeruca,
R. Checcozzo, and F. Rusina, “A real-time service-oriented architecture
for industrial automation,” Industrial Informatics, IEEE Transactions on,
vol. 5, no. 3, pp. 267–277, Aug. 2009.

[7] A. Sheth, J. Cardoso, J. Miller, and K. Kochut, “Qos for service-
oriented middleware,” in The 6th World Multiconference on Systemics,
Cybernetics and Informatics, Proceedings Vol. 8, Orlando, FL, 7 2002,
pp. 528 – 534.

[8] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “Qos-aware middleware for web services composition,”
Software Engineering, IEEE Transactions on, vol. 30, no. 5, pp. 311
– 327, may 2004.

[9] I.-L. Yen, H. Ma, F. Bastani, and H. Mei, “Qos-reconfigurable web ser-
vices and compositions for high-assurance systems,” Computer, vol. 41,
no. 8, pp. 48 –55, aug. 2008.

[10] T. Yu and K.-J. Lin, “Qcws: an implementation of qos-capable mul-
timedia web services,” Multimedia Tools Appl., vol. 30, pp. 165–187,
August 2006.

[11] J. Li, Y. Zhao, J. Ren, and D. Ma, “Towards adaptive web services qos
prediction,” in Service-Oriented Computing and Applications (SOCA),
2010 IEEE International Conference on, dec. 2010, pp. 1 –8.

[12] Y. Lee, “Quality-context based soa registry classification for quality of
services,” in Advanced Communication Technology, 2009. ICACT 2009.
11th International Conference on, vol. 03, feb. 2009, pp. 2251 –2255.

[13] A. Alonso, E. Salazar, and J. López, “Resource management for en-
hancing predictability in systems with limited processing capabilities,”
in Emerging Technologies and Factory Automation (ETFA), 2010 IEEE
Conference on, 9 2010, pp. 1–7.

[14] M. Garcı́a-Valls, A. Alonso, J. Ruiz, and A. Groba, “An architecture of
a quality of service resource manager middleware for flexible embedded
multimedia systems,” in Software Engineering and Middleware, ser.
Lecture Notes in Computer Science, A. Coen-Porisini and A. van der
Hoek, Eds. Springer Berlin / Heidelberg, 2003, vol. 2596, pp. 36–55.

[15] E. Hide, T. Stack, J. Regehr, and J. Lepreau, “Dynamic cpu management
for real-time, middleware-based systems,” in Real-Time and Embedded
Technology and Applications Symposium, 2004. Proceedings. RTAS
2004. 10th IEEE, May 2004, pp. 286 – 295.

[16] L. Abeni, T. Cucinotta, G. Lipari, L. Marzario, and L. Palopoli,
“Qos management through adaptive reservations,” Real-Time Systems,
vol. 29, pp. 131–155, 2005, 10.1007/s11241-005-6882-0. [Online].
Available: http://dx.doi.org/10.1007/s11241-005-6882-0

[17] A. Donadoni, “Progetto e realizzazione di un’architettura software
modulare ed estendibile per il monitoraggio e la gestione dei parametri
di esecuzione di applicazioni soft real-time,” 10 2008. [Online].
Available: http://etd.adm.unipi.it/theses/available/etd-09012008-160756/

[18] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource kernels:
A resource-centric approach to real-time and multimedia systems,” in
In Proceedings of the SPIE/ACM Conference on Multimedia Computing
and Networking, 1998, pp. 150–164.

[19] K. Lakshmanan and R. Rajkumar, “Distributed resource kernels: Os
support for end-to-end resource isolation,” in Real-Time and Embedded
Technology and Applications Symposium, 2008. RTAS ’08. IEEE, april
2008, pp. 195 –204.

[20] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari, “Aquosa—adaptive
quality of service architecture,” Software: Practice and Experience,
vol. 39, no. 1, pp. 1–31, 2009. [Online]. Available: http://dx.doi.org/10.
1002/spe.883

[21] F. Checconi, T. Cucinotta, D. Faggioli, and G. Lipari, “Hierarchical
multiprocessor CPU reservations for the linux kernel,” in Proceedings
of the 5th International Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT 2009), Dublin, Ireland,
June 2009.

[22] C. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves:
operating system support for multimedia applications,” in Multimedia
Computing and Systems, 1994., Proceedings of the International Con-
ference on, May 1994, pp. 90 –99.

[23] G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo, Soft Real-Time
Systems: Predictability vs. Efficiency (Series in Computer Science).
Plenum Publishing Co., 2005.

[24] T. Cucinotta, G. Anastasi, and L. Abeni, “Respecting temporal con-
straints in virtualised services,” in Computer Software and Applications
Conference, 2009. COMPSAC ’09. 33rd Annual IEEE International,
vol. 2, July 2009, pp. 73–78.

http://dx.doi.org/10.1007/s11241-005-6882-0
http://etd.adm.unipi.it/theses/available/etd-09012008-160756/
http://dx.doi.org/10.1002/spe.883
http://dx.doi.org/10.1002/spe.883

