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ABSTRACT
The hard deadline model is very popular in real-time research, but
is representative or applicable to a small number of systems. Many
applications, including control systems, are capable of tolerating
occasional deadline misses, but are seriously compromised by a
repeating pattern of late terminations. The weakly hard real-time
model tries to capture these requirements by analyzing the condi-
tions that guarantee that a maximum number of deadlines can be
possibly missed in any set of consecutive activations. We provide
a new weakly hard schedulability analysis method that applies to
constrained-deadline periodic real-time systems scheduled with
�xed priority and without knowledge of the task activation o�-
sets. The analysis is based on a Mixed Integer Linear Programming
(MILP) problem formulation; it is very general and can be adapted
to include the consideration of resource sharing and activation jitter.
A set of experiments conducted on an automotive engine control
application and randomly generated tasksets show the applicability
and accuracy of the proposed technique.

1 INTRODUCTION
The notion of a real-time task abstracts the execution of a program
(e.g., a thread) triggered repeatedly by a (periodic) clock or a generic
event, with a set of applied temporal constraints. Given a model of
execution for a set of tasks and a scheduler, hard real-time schedu-
lability analysis veri�es if a system, that is, all of its tasks, can be
safely guaranteed to complete at every activation before a deadline.
The hard schedulability problem has been thoroughly investigated
in the last decades and solved for many cases of interest.

However, many systems, including control systems, are tolerant
to individual deadline misses and treating them as hard real-time
would result in unnecessary pessimism and possibly overprovision-
ing of resources. Of course, uncontrolled response times are also
not desirable and even in case of deadline misses the designer may
require some guarantees on the timing behavior of the system.

Among the possible options, the weakly hard scheduling model
has been proposed by several authors (Hamdaoui et al. [24] and
Bernat et al. [6]) to check for a relaxed condition, that is, to analyze
the number of temporal constraints violations given a time window
or a sequence of task activations. This is also called m-K model,
since a typical formulation consists in checking that no more than
m deadlines are missed over a set of K activations. The rationale
behind this model is that each deadline miss will bring the system
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closer to a faulty condition or state, and each completion in time
will move the system back towards a safe working state.

The weakly hard model can be analyzed under several scheduling
options, but due to its simplicity and e�ectiveness, �xed-priority
scheduling is nowadays the de-facto standard for industrial real-
time systems. This paper focuses on real-time systems consisting
of periodic tasks scheduled with �xed priority.

The main problem with the existing analysis methods is that
for a weakly hard system, as for any system that can be (at least
temporarily) overloaded, the critical instant theorem does not hold
and the system becomes much more di�cult to analyze. In the
original work, this limitation has been overcome by restricting the
study to o�set-determined systems, that is, systems in which tasks
are scheduled with a known initial o�set.

This is a possibly serious limitation, not only because the de-
signer may not be able to enforce or determine the system initial
o�sets, but especially because the analysis of all o�set-determined
systems is very sensitive to time drifts and errors in the task activa-
tion times, which are extremely hard to avoid in real systems.

In this work, we provide a generalized framework for o�set-free
systems scheduled on uniprocessors. Our formulation is based on a
MILP encoding and the problem of the critical instant determination
is addressed by letting a variable represent the beginning of the
busy period. The MILP formulation can be easily reused to check
the system for a large set ofm and K values, allowing the designer
to explore a wide design range. The developed MILP model serves
as an over-approximate analysis, that is, if our weakly hard analysis
con�rms the m-K property, it is guaranteed that there will be no
more thanm deadline misses out of anyK successive job activations
(of the target task), however, if the m-K property is not con�rmed,
we cannot conclude the opposite.
Main contributions:

• We propose the �rst weakly hard schedulability analysis for
o�set-free periodic real-time tasks. The analysis method in-
cludes the consideration of resource sharing and activation
jitter.

• To solve the possible issues with the large number of inte-
ger variables counting the number of task interferences (as
used, for example, in [7, 19, 32]), we relaxed these variables
to real values, but we added binary variables expressing
the possibility of job interferences for reducing or possibly
eliminating the introduced pessimism.

• Surprisingly, there is no existing work that can cope with
the weakly hard analysis of general (o�set-free) periodic
tasks, and this prevents a fair comparison between our
solution and other relevant works. Thus, we evaluate our
analysis method through extensive experiments to show
its e�ciency (expected runtime) and precision. In the spe-
cial case in whichm = 1, the analysis is always accurate as



long as it validates them-K property. With respect to accu-
racy, despite the relaxation to real valued job interference
counters, the MILP analysis can still return exact results
for a very high percentage of the tests.

Paper Organization: Section 2 introduces background results and
possible applications that are related with the scheduling in over-
load conditions, the weakly hard real-time model and its analysis
techniques. Next, we formally de�ne the system model and the
weakly hard analysis problem in Section 3. Section 4 contains the
description of our proposed solution to the problem, which consists
of a Mixed Integer Linear Programing (MILP) formulation. As a
demonstration of the generality of the solution model, it is then
extended in Section 5 to systems having mutual exclusive shared
resources, and to tasks with jitter. The evaluation of the proposed
technique is conducted in Section 6, and at last, Section 7 contains
the conclusions and addresses future issues.

2 STATE OF THE ART
Since the seminal work of Liu and Layland [23], an overwhelming
e�ort in real-time scheduling research has been dedicated to the
question on whether there can be a possible deadline miss accord-
ing to the hard real-time model. It is hard to completely identify
the reasons for this disproportionate interest in hard analysis tech-
niques. It is probably because of the simplicity of the model, its
easier understandability and analyzability, the seemingly natural
�t to safety-critical systems and, quite possibly, some incorrect
judgement on the part of some researchers that believe most real-
world systems are of hard-type. The success of hard schedulability
analysis also bene�ts from the existence of the critical instant, an
activation scenario where all tasks are simultaneously activated,
that leads to the worst-case response time for every task in the
system. As a result, in a hard real-time system it is su�cient to
investigate the particular task activation pattern that originates
from the critical instant. More details on classic hard real-time
schedulability analysis can be found in textbooks and surveys like
[12] and [28].

A simplistic version of the periodic task model assumes that the
activation time of the �rst instance, or initial o�set, of a task is
known. For a system of periodic tasks with explicit initial o�sets,
Leung and Whitehead [22] proved that, starting from any job ac-
tivation, it is necessary and su�cient to simulate the worst-case
execution of the tasks in a bounded time interval to check if there
is any deadline miss in the system, as the schedule of periodic tasks
will repeat itself. However, as explained in [5], the result of this test
is very sensitive to task parameters, including the initial o�set.

While it is true that some safety-critical systems are vulnerable to
a single violation of the temporal constraints, there are many more
that can tolerate timing violations. In these cases, the hard schedula-
bility analysis is too strict. The weakly hard real-time schedulability
analysis targets the problem of bounding the maximum number of
deadline misses over a number of task activations. A dynamic pri-
ority assignment of priority for streams with m-k requirements is
proposed by Hamdaoui et al. [24] to reduce the probability ofm-K
violations in time-sensitive applications. Weakly hard real-time
schedulability analysis can be traced back to the work of Bernat et
al. [6] on them-K model, in which no more thanm deadline misses

shall occur for any K consecutive activations of a task. The analysis
in [6] and in other works assumes that there is an explicit initial
state of the system, in which the initial o�set of each task in the
system is known. By restricting the analysis to a periodic activation
pattern, the weakly hard analysis can be conducted by checking
task activations and interleavings within a large enough time span
from the system initialization, so as to verify them-K assumption.
Periodic tasksets are quite common in real applications, but the
requirement of knowing all activation o�sets may be too strict and
undermine the robustness of the analysis: given a periodic task
system with explicit initial o�sets that passes the (weakly) hard
test, a slightly change of the initial o�set of some task may result
in an unexpected time failure. The analysis is also very sensitive to
a drift of the task periods.

Recent developments in the study of overloaded systems allow
to relax the requirement of knowing the initial system state. The
approach consists in the worst-case analysis [25] of a system model
represented as the superposition of a typical behavior (e.g., of pe-
riodic task activations) that is assumed feasible, and a sporadic
overload (i.e., a rare event). Under such an assumption, [18] and
[33] proposed methods for weakly hard analysis that is composed
by two phases: 1) the system is veri�ed to be schedulable under the
typical scenario (by the classical hard analysis), and 2) when the
system is overloaded, it can be guaranteed that out of K successive
activations of a task, at most m of them will miss the deadline. The
sporadic behavior can be abstracted by observing and analyzing the
system at runtime, and is characterized as a rare event. A similar
approach is considered in [20], where real-time calculus is used to
analyze the worst-case busy period (in duration and lateness) that
results from a temporary overload because of an error in the timing
assumptions on the task worst-case execution times. Both methods
require the de�nition of a task model that may be arti�cial, since
it requires the identi�cation and separation of possible causes of
overload. Finally, at least in principle, probabilistic analysis of dead-
line misses, such as the analysis in [14] could be used to compute
the probability of missing m deadlines over k instances, but the
model in [14] also assumes known activation o�sets and is likely to
be computationally extremely expensive when applied to the m-k
analysis.

The analysis of overload conditions is also closely related to
the co-design of control and CPU-time scheduling [4]. The in�u-
ence of the response times on the performance of control tasks has
been studied in several works such as [34] and [35]. [3] proposed
an integrated approach for controller synthesis, selecting the task
parameters that meet the expected control performance and guar-
antee the stability. [2] extended the idea in [3] from uniprocessors
to distributed cyber physical systems, and in [17] FlexRay is consid-
ered as the communication medium. Them-K model has also been
investigated in the co-design of controls (with respect to their per-
formance) and scheduling [16, 26], and is used in [10, 11, 30, 31] to
de�ne the maximum number of samples (jobs) that can be dropped
over any number of consecutive samples (density of dropped sam-
ples), to guarantee a minimum level of quality to the controls. How-
ever, [11] and [10] do not provide methods for the schedulability
analysis of a system and the density of dropped samples needs to
be enforced by the operating system or smart sensors.



3 THE SYSTEM MODEL
A periodic real-time task is characterized by a tuple τi = (Ci ,Di ,Ti )
with Ci ≤ Di ≤ Ti such that Ci is its Worst-Case Execution Time
(WCET), Di is the relative deadline and Ti is the period for the
activation of τi . A task utilization is de�ned as Ui = Ci

Ti .
Each activation (instance) of τi is denoted by a job Ji,k with

k = 1, 2, . . . representing the job index (of its activations in time).
A job Ji,k can be further represented by its activation (or arrival)
time ai,k , its absolute deadline di,k = ai,k + Di , and its �nish time
fi,k .

A job is schedulable if it can �nish its execution before its dead-
line, i.e., fi,k ≤ di,k ; and a task τi is schedulable if all its jobs are
schedulable. The elapsed time between a job �nish time and its
activation time (i.e., fi,k − ai,k ) is its response time. By de�nition, a
task τi is schedulable if and only if the Worst-Case Response Time
(WCRT) Ri = max

k
{ fi,k − ai,k } among all its jobs is not larger than

its relative deadline Di . A task Best-Case Response Time (BCRT)
ri = min

k
{ fi,k −ai,k } is the minimum time that it takes to complete

the execution of the task.
In the periodic activation pattern ak+1 − ak = Ti for any two

successive jobs of a task. As we do not require a speci�c initial
o�set for a task, the �rst job activation time ai,1 of τi is unknown.
A job (and the corresponding task) is said to be active if it has been
activated but has not completed its execution.

The periodic tasksetT = {τ1, . . . ,τn } executes upon a uniproces-
sor platform. Each task in T is assigned a unique and static priority,
and tasks are scheduled by a �xed priority preemptive scheduler.
Tasks are ordered in T from higher to lower priority. That is, τj has
a higher priority than τi , if j < i . If a task does not always �nish
before its deadline, it can have multiple active jobs at the same time.
In such cases, these jobs are served in FIFO order.

A level-i busy period is de�ned as a time interval during which the
processor is always occupied by the execution of tasks with priority
higher than or equal to τi . For example, in Figure 1, [s0, f2) and
[a3, f3) are level-3 busy periods: Because the focus of this paper is
not computing the task WCRT, but analyzing all possible windows
with missed deadlines, the de�nition of busy period extends the
maximal level-i busy period as de�ned in [21].

The execution of any job of τi can only be a�ected by the work-
load of interfering tasks (including τi itself) within the same level-i
busy period. According to [21], the WCRT Ri of a task τi is found
within the longest level-i busy period, which starts at the critical
instant (i.e., when all tasks are activated at the same time). In case
a task always completes before its next activation, the task schedu-
lability can be easily checked by computing the response time of
the �rst task instance inside it.

However, this condition does not hold for weakly hard real-time
systems when deadlines can be missed and multiple instances can
be active at the same time. In this case, the WCRT of a task τi
does not necessarily happen for the �rst job in a level-i busy period.
However, the BCRT is still occurring for the last job in a level-i busy
period. Algorithms to compute the BCRT can be found in [9, 27].
In this work, we trivially assume that the BCRT of a task does not
exceed its period: ri ≤ Ti . Otherwise, the task simply misses all its
deadlines. Also, we assume that the BCRT ri and the WCRT Ri of

each task are computed in advance using established techniques
such as in [9, 21, 27]. Once computed, these values can be used as
parameters in the MILP formulation.

We assume the system utilization U =
∑
1≤i≤n Ui is lower than

1, meaning that each job is guaranteed to complete its requested
execution at some point in time, whether it misses its deadline
or not. In addition, we use the result in [5] that shows that �xed
priority scheduling analysis is sustainable, that is, if a job is not
schedulable, then it will not become schedulable by increasing its
execution time. From the analysis point of view, we simply assume
that a task requests its WCET every time it is activated.

3.1 The weakly hard model
This subsection formalizes the problem of weakly hard schedulabil-
ity analysis. The analysis applies to an arbitrary task τi ∈ T , also
de�ned as target task. An arbitrary sequence of K successive acti-
vations of τi is considered, with the objective of checking whether
there are more thanm deadline misses for τi in this sequence.

For simplicity, the jobs of τi in the activation sequence are de-
noted by J1, . . . , Jk , . . . , JK (without the task index). Given a job
Jk , its activation time and �nish time are de�ned as ak and fk , re-
spectively. The time interval [ak ,ak+1[ is called the kth job window
of τi , and the problem window for the analysis is [s0, fK [, where s0
(also considered as the time reference s0 = 0) is the earliest time
instant such that the processor is fully occupied by the execution
of higher priority tasks from s0 to a1.

As an example, consider a system of 3 tasks: (C1 = 1,D1 =
3,T1 = 3), (C2 = 3,D2 = 5,T2 = 15) and (C3 = 2,D3 = 6,T3 = 6),
with K = 3 and τ3 is the target task. Figure 1 shows a scenario
where 2 (J1 and J3) out of 3 jobs in the problem window [s0, f3[
miss the deadline. In this case, s0 = 0 and a1 = 0.5. If the problem
window starts at the critical instant, that is, when all tasks are
synchronously activated in s0, only J1 misses its deadline.

· · ·

· · ·

· · ·

τ1

τ2

τ3 J1 J2 J3

f1 f2 f3s0
a1 a2 a3 a4

Figure 1: A problem window with 3 job windows

4 THE SOLUTION MODEL
In this section we introduce the Mixed Integer Linear Program-
ming (MILP) formulation for the weakly hard analysis of a set of
o�set-free periodic tasks under �xed priority scheduling. Two ob-
servations allow to reduce the problem space by considering only
the problem windows that maximize the number of deadline misses
for τi .

(O1) The worst-case number of deadline misses occurs for prob-
lem windows such that the last job of τi before the beginning of
the problem window (indicated as J0) is schedulable.

If J0 is not schedulable, any problem window of k instances
starting with J0 has at least as many misses as the window starting
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Figure 2: Notation for the de�nition of a problem window

with the �rst job J1. The two windows have all the jobs from J1 to
Jk−1 in common, but J0 misses its deadline, therefore, in the best
case the two windows have the same number of misses if also Jk
is a deadline miss. In Figure 1, consider the problem window with
J2, J3 and the following instance (not shown) J4. Depending on
the schedulability of J4, there will be 1 or 2 deadline misses in this
window. However, since J1 is non-schedulable, there are 2 deadline
misses for the problem window including J1, J2 and J3.

(O2) The worst-case number of deadline misses occurs for prob-
lem windows such that the the �rst job is non-schedulable.

Consider a window ofK instances that starts with a set of schedu-
lable jobs of arbitrary length J1, . . . Jn (with n < K ; if n = K the
proof is trivial) and the window that starts with Jn+1; the latter has
at least as many deadlines misses as the window starting with J1
(the proof is similar to the previous case).

4.1 Variables and basic constraints
In this subsection, we introduce the (real and boolean) variables
de�ned in our MILP model, together with some basic constraints on
them. Real valued variables are labeled by R and boolean variables
by B. M is a big enough constant value used to encode conditional
constraints (a standard technique known as big-M). A brief sum-
mary of all the optimization variables is in Table 1.

Busy periods. Each job of τi inside the problem window can be
interfered with pending executions of higher priority tasks that are
requested before its activation but have not completed. The real
valued Lk (as in Figure 2) indicates the portion of the level-i busy
period for job Jk that extends to the earliest such activation, when
fk−1 ≤ ak . That is, if Jk−1 �nishes execution not later than ak (that
is, Jk−1 does not interfere with the execution of Jk ), ak − Lk is the
earliest time instant such that the processor in [ak −Lk ,ak ) is fully
occupied by higher priority tasks.

The start time s0 = 0 of our problem window is a1 − L1, and
the arrival time ak of the kth job of τi in the problem window is
ak = L1 + (k − 1) ·Ti . A trivial constraint that applies to all Lk is

∀k 0 ≤ Lk ≤ Ti − ri (1)

Throughout our analysis, we only use the value ofLk , when
fk−1 ≤ ak . If Lk is larger than Ti − ri then fk−1 > ak (any job of
τi needs at least ri to complete). In Figrue 1, L1 = 0.5 and L3 = 0.
Because J1 interferes with the execution of J2, L2 is not relevant to
our analysis.

O�sets. The o�set of a higher priority task within the problem
window refers to its �rst job activation time with respect to the
start time s0. The �rst job activation that happens no earlier than
s0 for each higher priority task τj is denoted by α j ∈ R

∀j < i 0 ≤ α j ≤ Tj − r j (2)

Type Variables Annotations

R

Lk

Segment of busy execution of higher pri-
ority tasks in front of (before) a job win-
dow, when fk−1 ≤ ak .

α j

Activation time of the 1st job of each
higher priority task τi with respect to
the start time s0 of the analysis.

fk Finish time of Jk .

ιk
Processor idle time inside the job win-
dow.

I fj,k
#jobs of τj within the time interval
[0, fk [.

ILj,k #job of τj inside [0,ak − Lk [.

B

bk

bk = 0 if Jk is schedulable; bk = 1 if
Jk misses its deadline. The number of
deadline misses is

∑
k bk .

βk

βk = 0 if Jk completes before ak+1; oth-
erwise βk = 1 and Jk interferes with
Jk+1.

Γ fj,k,p

∑
p Γ fj,k,p is #jobs of τj inside: 1) [ak −

Lk , fk [ when k = 1 or βk−1 = 0; 2)
[fk−1, fk [ when k > 1 and βk−1 = 1.

ΓLj,k,p′

∑
p′ ΓLj,k,p′ is #jobs of τj inside
[fk−1,ak − Lk [, if it exists.

Table 1: A summary of variables de�ned

Assume that the �rst job Jj,1 of τj in the window arrives at time
s0 +Tj − r j + ϵ with ϵ > 0. This implies that the previous job Jj,0
is activated at time s0 − r j + ϵ . Because any job of τj needs at least
r j time to �nish, Jj,0 will be still active at time instant s0, which
contradicts the hypothesis that s0 is the earliest time instant such
that from s0 to a1 the processor is fully occupied by higher priority
tasks. Hence, the upper bound for α j is Tj − r j .

Finish times. For each job Jk of τi , its �nish time is denoted by
fk ∈ R

∀k ri ≤ fk − ak ≤ Ri

Because jobs from the same task are executed sequentially, for any
two consecutive jobs of τi , this precedence constraint is encoded as

∀k Ci ≤ fk+1 − fk ≤ Ri + (Ti − ri ) (3)

Level-i idle time inside a job window. The level-i processor idle
time refers to the time when the processor is not occupied for
execution by τi or any other higher priority task (in a given time
interval). Given an arbitrary job window [ak ,ak+1[ of Jk , we de�ne
ιk ∈ R as the amount of processor idle time inside this kth job
window

∀k 0 ≤ ιk ≤ ak+1 − ak − ri
Schedulability of each job of τi . For each job Jk of τi inside the

problem window, a boolean variable bk ∈ B indicates whether the
job misses its deadline:



• bk = 0 if Jk �nishes its execution no later than its deadline;
• bk = 1 otherwise.

The value ofbk is de�ned by the comparison between the �nish time
fk of Jk and its absolute deadline ak +Di : bk = 0⇔ fk ≤ ak +Di ,
which is encoded by the following linear constraint.

∀k −M · bk ≤ ak + Di − fk < M · (1 − bk ) (4)
Being M a very large value, the conditional constraint in (4) forces
bk = 0 if the job Jk meets its deadline (i.e., fk ≤ ak + Di ) and
bk = 1 otherwise. As in observation O2 at the beginning of Section
4, we require that J1 misses its deadline, that is, b1 = 1 (schedulable
tasks can be ruled out by simply performing a traditional hard
schedulability test in advance).

The total number of deadline misses of τi inside the problem
window is denoted by

∑
k bk .

Interference from the previous jobs of the same task. A job Jk of τi
interferes with the execution of the next job Jk+1 in case fk > ak+1.
The boolean variable βk encodes this condition.

• βk = 0 if Jk �nishes its execution within its own job win-
dow;

• βk = 1 if Jk completes after ak+1.
Similarly as in (4), the constraint βk = 0⇔ fk ≤ ak+1 over βk , fk
and ak+1 can be formulated as

∀k −M · βk ≤ ak+1 − fk < M · (1 − βk ) (5)

If there is idle processor time inside the job window [ak ,ak+1[ of
Jk , then Jk must terminate within its window and does not interfere
with Jk+1 (i.e., βk = 1⇒ ιk = 0).

∀k ιk ≤ M · (1 − βk )

Number of interfering jobs from higher priority tasks. When mod-
eling a schedulability problem in MILP, the major complexity comes
from computing the interference from higher priority tasks. A com-
mon approach (as in [7, 19, 32]) is to count the number of jobs from
each higher priority task that interfere with the execution of the
task under analysis. Di�erent from previous works, we explore the
relaxation of this integer count to a real value. Table 2 summarizes
the variables de�ned for counting the higher priority interferences
for the example system in Figure 1

Given a job Jk of τi and a higher priority task τj , I fj,k is the
number of job instances of τj within the time interval [0, fk [. By
de�nition, I fj,k = d

fk−α j
Tj e is an integer number. However, we relax

the de�nition of I fj,k allowing it to be a real value and we linearize
the constraint on I fj,k as (by the de�nition in [21])

∀j < i 0 ≤ I fj,k −
fk − α j
Tj

< 1 (6)

Moreover, we de�ne ILj,k ∈ R as the number of jobs of τj (∀j < i)
within the time interval [0,ak − Lk [, when βk−1 = 0. In this case, If
Jk is not interfered with its predecessor Jk−1, then the number of
jobs from τj that interfere with the execution of Jk is I fj,k − ILj,k .
We remind that we only use the value of Lk , and thus the interval
[0,ak − Lk [, when βk−1 = 0.

Formally, if Jk−1 completes before the activation of Jk (i.e., βk−1 =
0), then ILj,k = d

ak−Lk−α j
Tj e. That is, βk−1 = 0 ⇒ 0 ≤ ILj,k −

ak−Lk−α j
Tj < 1. In other words, ∀j < i

−M · βk−1 ≤ ILj,k −
ak − Lk − α j

Tj
< 1 +M · βk−1 (7)

In case k = 1, by the de�nition of the starting time instant s0 = 0,
it must be ∀j < i : ILj,1 = 0.
For simplicity, when βk−1 = 1, we force ILj,k = I fj,k−1:

∀j < i −M · (1 − βk−1) ≤ ILj,k − I fj,k−1 ≤ M · (1 − βk−1) (8)

j = 1 j = 2
k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

I fj,k 3 4 7 1 1 2
ILj,k 0 3 4 0 1 1
∆j,k 3 1 3 1 0 1
Γj,k 0 0 0 0 0 0

Table 2: The counting of higher priority jobs

Re�ning the interferences from higher priority tasks. Both I fj,k
and ILj,k are real variables. This is e�cient but inaccurate. To
restore a correct formulation, we de�ne two classes of boolean
variables to constrain the values of I fj,k and ILj,k .

Given a job Jk of τi and a higher priority task τj , an array of
boolean variables Γ fj,k [p] ∈ B counts the number of jobs (i.e., job
releases) of τj inside the time interval (p indexes these jobs).

• [ak − Lk , fk [ if Jk−1 does not interfere with Jk , i.e., βk−1 =
0;

• [fk−1, fk [ if Jk−1 does interfere with Jk , i.e., βk−1 = 1.
A rough bound for the size of Γ fj,k [·] (the number of instances

of τj in the interval) is

dRi+Ti−riTj e (9)

Γ fj,k [p] = 1 indicates that the pth job activation of τj in the
speci�ed time interval can interfere with the execution of Jk (the
pth job is activated before Jk completes, otherwise, Γ fj,k [p] = 0).
The total number of activations of jobs of τj , interfering with the
execution of Jk in the speci�ed time interval is

∆j,k :=
∑
p

Γ fj,k [p]

As shown in Table 2, for the example in Figure 1, when j = 1 and
k = 3 it is L3 = 0 and ∆1,3 jobs from τ1 within the time interval
[a3 − L3, f3[. As β1 = 1, from f1 to f2, ∆1,2 = 1.

In case Jk−1 does not delay the execution of Jk , it is ILj,k+∆j,k =
I fj,k . In the other case (i.e., when βk−1 = 1) I fj,k−1 + ∆j,k = I fj,k
and (8) enforces ILj,k = I fj,k−1. Consequently,

∀j < i ILj,k + ∆j,k = I fj,k (10)

If a higher priority job Jj,p does not interfere with the job Jk of the
target task (i.e., Γ fj,k [p] = 0), this implies that Jk completes before
Jj,p , then no later job Jj,p′ (p′ > p) can interfere with Jk . This
results in the precedence constraint between elements in Γ fj,k .

∀j < i Γ fj,k [p + 1] ≤ Γ fj,k [p]



Similarly, given a job Jk and a higher priority task τj , we de�ne
an array of boolean variables ΓLj,k [·] to count the number of job
instances of τj inside the time interval [fk−1,ak − Lk ). The size of
ΓLj,k [·] can also be bounded (e.g., by dTi−riTj e), and the total number
can be computed as

Λj,k :=
∑
p

ΓLj,k [p]

Λj,k counts the number of jobs from a higher priority taskτj that are
guaranteed not to interfere with Jk−1 or Jk since they are activated
after Jk−1 �nishes and are not in the same busy period with Jk . For
instance, during the interval [f2,a3 − L3[ in Figure 1, no higher
priority jobs are released: Γ1,3 = Γ2,3 = 0.

When βk−1 = 0, it is I fj,k−1 + Λj,k = ILj,k :

∀j < i −M · βk−1 ≤ ILj,k − Λj,k − I fj,k−1 ≤ M · βk−1 (11)

In case βk−1 = 1, the interval [fk−1,ak − Lk [ is not relevant to our
analysis and we force Λj,k = 0. Using the big-M formulation.

∀j < i −M · (1 − βk−1) ≤ ΓLj,k [p] ≤ M · (1 − βk−1) (12)

The constraint between variables in ΓLj,k [·] resulting from the
execution in FIFO order of the jobs from the same task can be
encoded as

∀j < i ΓLj,k [p + 1] ≤ ΓLj,k [p]

4.2 Constraints on the idle time and workload
In this subsection, we present the constraints that bound the pro-
cessor idle times and the time spent executing by the tasks (i.e.,
workload) inside the problem window and its sub parts (e.g., one
or multiple job windows). For short, we �rst de�ne several terms:
ρk = fk − ak , λk = fk − (ak − Lk ) and λ′k = fk − fk−1. As an
example, in Figure 1, ρ1 = 7.5, λ1 = 7 and λ′2 = 3.

Minimum level-i idle time. To analyze the target task τi under
�xed priority scheduling, it is su�cient to consider the taskset
composed by τi and its higher priority tasks: Ti = {τ1, . . . ,τi }.
Given an arbitrary time interval of length X , we use minIdle(Ti ,X )
to denote the minimum amount of (level-i) processor idle time that
is available within it (left unused by the tasks in Ti ).

Then, for any number x of consecutive job windows inside the
problem window (of length x ·Ti ), the total amount of idle time is
lower bounded by minIdle(Ti ,x ·Ti ). That is, ∀1 ≤ x ≤ K , 1 ≤ y ≤
K − x + 1 :

minIdle(Ti ,x ·Ti ) ≤
∑

y≤k≤y+x−1
ιk (C1)

To compute minIdle(Ti ,X ), we de�ne a virtual task τ∗ = (−,X ,X )
that has relative deadline and period equal to the interval length
X and lowest priority. minIdle(Ti ,X ) is estimated as the maximum
execution time C of τ∗ that still guarantees its schedulability: if
C is not the minimum level-i idle time, then there should exist a
combination of job activations for tasks in Ti that leads to a deadline
miss for τ∗ (easily demonstrated by contradiction; slack stealing
algorithms [13] provide methods to estimate the processor idle
time).

Idle time inside a job window. Consider the job window [ak ,ak+1[
of Jk , if βk = 0, ιk is in fact the idle time the interval [fk ,ak+1 −
Lk+1[, as exempli�ed by the 2nd job window in Figure 1. The total
amount of higher priority workload in [fk ,ak+1 − Lk+1[ can be
represented as

Θk :=
∑
j<i
(ILj,k+1 − I fj,k ) ·Cj

As a result, the idle time in the kth job window is ιk = (ak+1−ak )−
ρk −Lk+1−Θk . This equivalence only applies when βk = 0 and can
be encoded in a MILP formulation with the following constraint
(trivially true for βk = 1).

∀k −M · βk ≤ ιk +Θk − (ak+1 − ak − ρk − Lk+1) ≤ M · βk (C2)

Formulation of the busy period [ak − Lk , fk ) when βk−1 = 0. If
βk−1 = 0, Jk−1 does not interfere with the execution of Jk , and
[ak − Lk , fk [ is a busy period with length λk . The total amount of
workload from higher priority tasks inside [ak − Lk , fk [ is

Φk :=
∑
j<i
(I fj,k − ILj,k ) ·Cj

For the �rst instance k = 1, it is

Φ1 +Ci − λ1 = 0 (C3)

Otherwise, βk−1 = 0 implies that Φk + Ci = λk . To apply the
constraint only to the case βk−1 = 0, the formulation is

∀k −M · βk−1 ≤ Φk +Ci − λk ≤ M · βk−1 (C4)

Formulation of the busy period [fk−1, fk [ when βk−1 = 1. If
βk−1 = 1, the interval between fk−1 and fk is a busy period with
length λ′k . The total amount of workload from higher priority tasks
inside [fk−1, fk [ is

Φ′k :=
∑
j<i
(I fj,k − I fj,k−1) ·Cj

Thus, the length λ′k of busy period [fk−1, fk [ can be represented as
Φ′k +Ci and the MILP constraint becomes

∀k −M · (1 − βk−1) ≤ Φ′k +Ci − λ
′
k ≤ M · (1 − βk−1) (C5)

Formulation of fk by accumulating the idle time and workload. If
we consider each job Jk , from s0 = 0 to its �nish time fk , the time
interval [0, fk [ consists of multiple busy periods and processor idle
times, which can be summed up as in

∀k
∑
j<i

I fj,k ·Cj + k ·Ci +
∑
k ′<k

ιk ′ = fk (C6)



Re�ning the arrival time of a higher priority job before the begin-
ning or the end of a busy period. At the beginning or the end of a
level-i busy period, a higher priority task must have completed any
previously requested execution time. As a result, it must be

∀k, j < i α j + (ILj,k − 1) ·Tj + r j −M · βk−1 < ak − Lk (C7)

The latest activation time of a higher priority job (from τj ) before
the beginning of a busy period starting inak−Lk isα j+(ILj,k−1)·Tj .
This job must complete before the start of the busy period in ak −Lk
after at least r j time units. The term −M · βk−1 is used in the
constraint (C7) because Lk is only relevant when βk−1 = 0.

Likewise, at the end of a busy period

∀k, j < i α j + (I fj,k − 1) ·Tj + r j < fk (C8)

Length of a busy period. We useBP to denote the length of longest
level-i busy period, and Ni = dBPTi e is the number of jobs of τi
within that busy period. As long as there is a busy period that spans
Ni jobs of τi , the total task execution within it cannot exceed BP .
Therefore, ∀1 ≤ x ≤ K − Ni + 1 :
Lx + (ax+1 − ax ) −M · (1 − βx )+∑

x<k<x+Ni−1
(ak+1 − ak −M · (1 − βk )) + ρx+Ni−1 ≤ BP (C9)

For arbitrarily Ni successive jobs inide an arbitrary problem win-
dow, we do not know if they are inside the same busy period,
however, βk = 1 is a su�cient condition for two jobs Jk and Jk+1 to
be in the same busy period (the same for βx = 1) and this explains
the big-M terms in (C9). For the scenario in Figure 1 where BP = 11
and N3 = 2, there is a busy period [s0, f2) that spans two jobs J1
and J2: L1 + (a2 − a1) + ρ2 = 11.5 ≤ BP .

4.3 Weakly hard schedulability analysis
Given an arbitrary sequence of K successive jobs of τi inside the
problem window, the weakly hard property speci�es that the maxi-
mum number of deadline misses (among these K jobs) should be
bounded bym (< K). The total number of deadline misses can be
computed as

nDmiss :=
∑
k

bk (C10)

The number of deadline misses of τi within the problem window
is bounded bym, if the addition of the constraint

m + 1 ≤ nDmiss (C11)

makes the formulation non feasible.
Another option is to use the formulation of the number of dead-

line misses in (C10) as an optimization (maximization) function, and
check what is the maximum number of misses for a given number
of activations, or even the other way around, to �nd what is the
minimum value of K given a number of deadline misses.

5 EXTENSIONS OF THE SOLUTION MODEL
The weakly-hard analysis framework proposed in Section 4 can be
easily adapted to a more general task model. In particular, to shared
resources and tasks with jitter.

5.1 Shared resources
In this part, we show an extension to the case of resource sharing
using the Immediate Priority Ceiling Protocol (PCP) [29] as used in
the OSEK and AUTOSAR operating system standards.

A set of shared resources R1, . . . ,RG are accessed by tasks in
mutual exclusive mode. For any task τi and for any resource Rд ,
Si,д = {csi,д,1, csi, j,2, . . . } is a �nite multiset (a set that allows
multiple instances of its elements) of worst case execution times
for the critical sections executed by τi on Rд .

The priority ceiling pc(Rд) := min{i : Si,д , ∅} of Rд is de�ned
as the highest priority of any task that accesses it. Every time a
task accesses Rд , its priority is boosted to the priority ceiling of
Rд . In this way, any job of τi can be blocked at most once by one
lower priority job executing a critical section on a resource with
priority ceiling pc(Rд) ≤ i . This guarantees a predictable worst-
case blocking time.

For simplicity, in the following, we will assume the Rate Mono-
tonic (RM) system such that τi has a higher priority than τj if
Ti < Tj and for any τi , Di = Ti .

An arbitrary sequence of x consecutive job activations of τi ,
can be (directly or indirectly) blocked by at most x critical section
executions on resources with ceiling higher than or equal to the
priority of the job.

Sxi :=
⋃

pc(Rд )≤i

⋃
i≤j

d BP+x ·TiTj
e times︷               ︸︸               ︷

Sj,д ∪ · · · ∪ Sj,д

Hence, for any x consecutive job windows of τi , the maximum
blocking time is de�ned as the sum of the x largest elements in the
multiset Sxi :

Bxi :=
∑

the x largest
Sxi

To apply these blocking times to the MILP model in Section 4, we
follow the common approach that adds the blocking time to the
execution time when considering the possible interference.

For any 1 ≤ k ≤ K , the real variable ci,k indicates the execution
time which includes the blocking time that the kth job of τi , within
the problem window, can su�er.

Ci ≤ ci,k ≤ Ci + B1
i (13)

For any number of consecutive job windows, we can bound the sum
of all these execution variables: ∀1 < x ≤ K ∀1 ≤ y ≤ K − x + 1∑

y≤k≤y+x−1
ci,k − x ·Ci ≤ Bxi (C12)

To extend the original problem formulation to the case of resource
sharing, all instances of Ci in constraints (C3)∼(C6) should be re-
placed by the corresponding variable ci,k Also the de�nition of
the minimum processor idle time needs to be modi�ed and the
constraint (C1) is then updated as follows

minIdle(Ti ,x ·Ti ) − Bxi ≤
∑

y≤k≤y+x−1
ιk (C1∗)



5.2 Jitter
The jitter [9] of a periodic task represents the maximum possible
delay of the task actual activation times with respect to the ideal
periodic activations. Given a periodic task τl = (Cl ,Dl ,Tl ), we
denote its jitter as Jl with Jl +Cl ≤ Dl .

Because of jitter, the distance between the activation times of
two jobs Jk and Jk+1 of the target task τi inside the problem window
is not a �xed value Ti , but can be any value within the range [Ti −
Ji ,Ti + Ji ]. More generally, there is ∀1 ≤ k < K , 1 ≤ N ≤ K − k ,

N ·Ti − Ji ≤ ak+N − ak ≤ N ·Ti + Ji
The jitter of a higher priority task τj also a�ects its interference

upon the task under analysis. For example, the number of jobs
of τj that arrive before the �nish time of the kth job of τi within
the problem window becomes: d fk−α j−JjTj e ≤ I fj,k ≤ d

fk−α j+Jj
Tj e.

This is encoded by the constraint below, as a replacement of (6).

∀j < i
fk − α j − Jj

Tj
≤ I fj,k <

fk − α j + Jj
Tj

+ 1 (3∗)

For ILj,k , when βk = 0, it is now dak−Lk−α j−JjTj e ≤ ILj,k ≤

dak−Lk−α j+JjTj e, and the big-M constraint in (7) is updated to ∀j < i

ak − Lk − α j − Jj
Tj

−M · βk−1 ≤ ILj,k (4.a∗)

ILj,k <
ak − Lk − α j + Jj

Tj
+ 1 +M · βk−1 (4.b∗)

To take into account jitter, several equations in the MILP formu-
lation also need to be updated (the jitter mostly result in a modi�er
applied to periods). Summarizing (the full justi�cation is omitted
for space reasons), Equations (1), (2), (3), (4), (4.1), (C1) (C7), (C8)
are replaced with the following

∀k 0 ≤ Lk ≤ Ti − ri + Ji (17)
∀j < i 0 ≤ α j ≤ Tj − r j + Jj (18)

∀k Ci ≤ fk+1 − fk ≤ Ri + (Ti − ri ) + Ji (19)
∀k −M · bk ≤ ak + Di − fk − Ji < M · (1 − bk ) (20)

d
Ri +Ti − ri + Jj

Tj
e (21)

minIdle(Ti ,x ·Ti − Ji ) ≤
∑

y≤k≤y+x−1
ιk (22)

∀k, j < i α j + (ILj,k − 1) ·Tj + r j −M · βk−1 − Jj < ak − Lk (23)
∀k, j < i α j + (I fj,k − 1) ·Tj + r j − Jj < fk (24)

6 EXPERIMENTS
In the section, we apply the proposed weakly hard schedulability
analysis to an automotive engine control application and a set of
randomly generated system con�gurations. All experiments are
conducted on a machine with 8 GB memory and 8 cores: Intel(R)
Xeon(R) CPU X3460 @ 2.80GHz, using CPLEX 12.6.3 as the MILP
solver. The MILP formulation is encoded in C++ using the CPLEX
library and is available for download1.
1https://github.com/m-k-wsa/

6.1 The fuel injection case study
At �rst, we apply the MILP weakly hard schedulability analysis
with the shared resource extension (Section 5), to the fuel injection
application described in [8].

According to the AUTOSAR standard, an automotive applica-
tion is composed by a set of functions called runnables, which are
executed by tasks scheduled by �xed priority. The runnable-to-
task mapping and the task scheduling are de�ned at the system
integration phase.

For the fuel injection application in [8], a heuristic strategy is
applied to allocate approximately 1000 runnables to tasks with
280 critical sections. The resulting taskset has 15 tasks with prior-
ities assigned according to the Rate Monotonic rule (all times in
microseconds)

Task Ci Ti Task Ci Ti
τ1 1015.83 2 · 104 τ8 5296.84 1 · 105
τ2 2309.5 2 · 104 τ9 325.64 2 · 105
τ3 1148.64 2.5 · 104 τ10 3285.24 2 · 105
τ4 2419.6 3 · 104 τ11 208.67 5 · 105
τ5 287.5 5 · 104 τ12 539.5 5 · 105
τ6 51.072 6 · 104 τ13 47616.3 1 · 106
τ7 2318.42 1 · 105 τ14 799006 2 · 106

τ15 1.0005 · 106 1 · 107
Table 3: An automotive case study

Due to the blocking from τ15, τ14 is not (hard real-time) schedu-
lable.

To verify the weakly hard schedulability property, we tested a se-
ries of m-K parameters: {(1, 5), (2, 5), (2, 10), (3, 10), (3, 15), (4, 15)}.
According to our weakly hard schedulability analysis, it is guaran-
teed that there will be at mostm = 2 (resp. 3 and 4) deadline misses
out of any K = 5 (resp. 10 and 15) consecutive jobs of τ14.

Regarding the runtime cost, except for the casem = 3 andK = 15,
all tests complete within 2 minutes. It takes the CPLEX solver almost
30 minutes to make a decision whenm = 3 and K = 15.

6.2 Runtime performance
In this subsection, we apply the weakly hard real-time analysis in
Section 4 to a set of randomly generated tasksets for an empirical
evaluation of the runtime performance, with a large variety of
con�gurations: n ∈ {10 ∼ 15, 20, 30, 50}, U ∈ {0.8, 0.85, 0.9, 0.95},
m ∈ {1, 2, 3} and K ∈ {5, 10 ∼ 15, 20}. Each con�guration in
the experiment is speci�ed by a tuple (n,U ,m,K), where n is the
taskset size,U is the taskset utilization, andm-K is the weakly hard
property to be checked.

Overall, 6253 task systems are tested. For each taskset with a
pair n and U : 1) the utilization Ui of tasks is generated using the
Rand�xedsum algorithm in [15]; 2) the task period Ti is uniformly
sampled in the range [10, 1000]; each task has an implicit deadline,
i.e., Di = Ti ; 3) and each task WCET is computed as Ci = Ti ·Ui .

Tasks are assigned priorities according to the Rate Monotonic
rule. If the lowest priority task τn in the taskset is schedulable, the
taskset is abandoned; otherwise, we proceed with the weakly hard



real-time analysis on τn . This con�guration is designed to stress
the weakly hard analysis, since even if the lowest priority task τn
is schedulable there may exist other non-schedulable tasks with
a smaller number of interfering higher priority tasks for them-K
analysis.

In the analysis of each taskset we de�ned a runtime limit of
1800 seconds: if the analysis takes more than 1800 seconds without
terminating, we stop and report a failure of them-K analysis.

Deadline misses in a row. Them-K model discussed so far con-
cerns the upper bound on the number of deadline misses (m) out
of any K consecutive task activations. Another popular pattern for
weakly hard schedulability analysis is to check if there are more
thanm deadline misses in a row, which is equivalent to analyze
them-K model with K =m + 1.

In the following, we evaluate the number of cases in which
there are K = 2 and K = 3 consecutive deadline misses, when
U = 0.95 and n ∈ {10, 20, 30, 50}. Results are shown in Table 4
and for every test case, the MILP solver returns its decision in less
than a minute. Consecutive deadline misses seldom happen even
when the total utilization is as high as 0.95. Another observation is
that the fraction of cases with consecutive deadline misses is not
sensitive with respect to the number of tasks in the set.

K = 2 K = 3 K = 2 K = 3
n = 10 80.3% 98.6% n = 30 85.1% 99.9%
n = 20 84.8% 99.6% n = 50 84.9% 99.9%

Table 4: Percentage of sets with K consecutive deadline misses

Varying the taskset size. Table 5 and Figure 3 show the exper-
imental results with a variable taskset size, when U = 0.85. The
weakly hard analysis con�rms that a large portion of these non-
schedulable tasks will never miss more than 1 deadline out of any
5 its consecutive activations. For example, when the taskset size is
20 or 30, the percentage of 1-5 feasible sets is around 50%. Whenm
is increased to 2, more than 90% of the tested tasksets satisfy the
speci�edm-K property in all cases.

On the other side, when the taskset size is very large (n = 50), for
m = 1 a signi�cant amount of tests exceed the runtime limit of 1800
seconds, which implies that a longer runtime is needed for such
cases. Figure 3 depicts the time spent on the weakly hard analysis
of each taskset: Yes labels that the correspondingm-K property is
veri�ed (No in the other case). The majority of analyses return the
decision within 10 minutes.

m = 1,K = 5 m = 2,K = 5
con�rmed n/a con�rmed n/a

n = 10 42.8% 0% 90.6% 0%
n = 20 49.0% 0% 91.9% 0%
n = 30 54.4% 6.5% 92.9% 1.2%
n = 50 42.7% 41.9% 94.0% 6.0%

Table 5: Experiments that con�rm them-K property and run out
of time limit (n/a) with variable n
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Figure 3: Runtime results for K = 5

m = 2 m = 3 m = 2 m = 3
K = 11 54.4% 84.8% K = 14 47.0% 73.6%
K = 12 51.3% 81.5% K = 15 45.8% 66.4%
K = 13 49.2% 76.5% K = 20 33.6% 56.1%

Table 6: Percentage of validm-K property with variable K

Varying the problemwindow size. Table 6 contains the experiment
results when varying the problem window size K , with n = 10
and U = 0.85. The problem window size K is a dominant factor
with respect to the complexity of the analysis. Still, the results are
promising and for more than one third of the tasksets, the number
of deadline misses is bounded by at mostm = 2.

m = 2,K = 10 m = 3,K = 10
U = 0.80 90.8% 99.1%
U = 0.85 60.8% 86.1%
U = 0.90 30.2% 50.6%
U = 0.95 6.8% 17.6%

Table 7: Percentage of validm-K property with variable U



Varying taskset utilization. Table 7 shows the percentage of
tasksets that satisfy the m-K property with variable taskset uti-
lization levels and a �xed taskset size n = 10.

Even when the taskset utilization is very high (U = 0.90), more
than 30% of the non-schedulable tasks will not miss more than
m = 2 deadlines within any sequence of K = 10 successive task
activations. If we further increasem to 3, the tasksets satisfying the
weakly hard property become half of the generated sets.

7 CONCLUSIONS
In this work, we propose a weakly hard schedulability analysis
technique for �xed priority preemptive scheduling of a set of pe-
riodic tasks. Our approach applies to o�set-free systems and is
more general than previous works. The analysis is formulated as an
MILP encoding, and its performance (regarding both the analysis
precision and runtime e�ciency) have been con�rmed by extensive
experiments.

A possible extension of the approach proposed in this paper could
target multiprocessor systems with partitioned scheduling and
shared resources as applicable to several automotive applications
[1, 32].
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A RESPONSES TO THE REVIEWERS
A.1 Reviewer 1
1 Reviewer’s comment:

Due to many assumptions made in such an approach
(e.g. schedulability overhead is assumed to be min-
imal or zero, and even just assuming that one can
give reasonable worst case execution times is not
clear), the applicability in industry is not immedi-
ately clear. Also, it might be worth comparing to
probabilistic methods for schedulability analysis.

We added a reference stating that probabilistic methods culd in princi-
ple be used for checking the probability of m-k misses. However, to our
knowledge probabilistic methods typically assume knowledge of the
activation o�sets and are even less scalable than our proposed method.
In addition, while it is true that overheads are not included, this is
true for most papers in which these overheads are simply assumed ot
be negligible with respect to the task execution times.

2 Reviewer’s comment:
Despite the many equations and formalisms, it is not
di�cult to follow the analysis described in the work.
The paper also includes a well-written summary
of schedulability analysis methods proposed in the
past.

I could not verify the experiments since the web-
site was anonymized. With blind reviews, the au-
thors might consider hosting the code in a tempo-
rary location (e.g. a github repository) that cannot
be traced back to the authors, to allow reviewers
access.

A repository has been made available for the code

3 Reviewer’s comment:
Some formulations could be improved. For instance,
the following is incomplete: “if jk is not interfered by
its predecessor”. To be correct, it should read "if jk is
not interfered with by its predecessor”. However, the
use of the active voice might improve readability.

Fixed.

4 Reviewer’s comment:
Minor issues: “inidicates”→ “indicates” “elemnts”
→ “elements”

Fixed.

A.2 Reviewer 2
5 Reviewer’s comment:

The paper is not easy to read, in particular the
MILP formulation description could be improved
with some examples and a more simpli�ed expres-
sion (no use of big-M constant for instance). The
experiments are nice.

An example system, as in Figrue 1, is added to the paper for help-
ing readers understand the MILP formulation. As suggested, big-M
constraints are now annotated with high level operators.

6 Reviewer’s comment:
Remarks:

The considered model is (m,k)-�rm model, why
not referring to the seminal work [HR95]?

[HR95] A dynamic priority assignment technique
for streams with (m, k)-�rm deadlines. M Hamdaoui,
P Ramanathan - IEEE transactions on Computers
1995

Added.

7 Reviewer’s comment:
job window = [ak ,ak+1[; what are a busy period? a
problem window [0, fk [?

We clari�ed these concepts in the revision, and concrete examples are
given.

In Section 3 (The System Model): "A level-i busy period is de�ned
as a time interval during which the processor is always occupied
by the execution of tasks with priority higher than or equal to τi .
For example, in Figure 1, [s0, f2) and [a3, f3) are two level-3 busy
periods: Because the focus of this paper is not the single task WCRT,
our de�nition of a busy period does not strictly follow its original
meaning in [21], where a busy period corresponds to the maximal
level-i busy period in this paper."

In Section 3.1 (The weakly hardmodel): "The time interval [ak ,ak+1)
is called the kth job window of τi , and the problem window for the
analysis starts from a time instant s0 (let us say s0 = 0), which is
the earliest time instant such that from s0 to a1 the processor is fully
occupied by the execution of higher priority tasks, till the �nish of the
Kth job, i.e., [s0, fK )."

8 Reviewer’s comment:
The problemminimizes the number of deadlinemisses
of τi for all α j ≤ Tj − r j . Why not α j < Tj?

In the weakly hard analysis, "An arbitrary sequence of K successive
activations of τi is considered, with the objective of checking whether
there are more thanm deadline misses for τi in this sequence." Alter-
natively, "Another option is to use the formulation of the number of
deadline misses in (C10) as an optimization (maximization) function,
and check what is the maximum number of misses for a given number
of activations"

Regarding α j ≤ Tj − r j , "Assume that the �rst job Jj,1 of τj in the
window arrives at time s0 +Tj − r j + ϵ with ϵ > 0. This implies the
precedent job (let us say) Jj,0 is activated at time s0 − r j + ϵ . Because
any job of τj needs at least r j time to �nish, Jj,0 will be still active at
time instant s0, which contradicts the fact that s0 is the earliest time
instant that from s0 to a1 the processor is fully occupied by higher
priority task execution. This small proof explains why the upper bound
for α j is Tj − r j . "

9 Reviewer’s comment:
big-M method is classic to encode high level oper-
ators such as =⇒ . But for the sake of readability,
it is better to give the constraints with high level
operators. e.g. (1) bk = 0 <=> fk <= ak + Di (2)
βk = 0 <=> fk <= ak+1 (3) lk > 0 => βk = 0

Added.

10 Reviewer’s comment:



Again, for the sake of readability: �rst explaining
the interfering constraint with integer and then with
real would help. Indeed, these are two distinct ques-
tions: 1. how to model the schedulability problem; 2.
how to implement it e�ciently with e�cient solver
(for instance by using real).

There are two integer to real conversions in the paper. As suggested
by the reviewer, we added the "high level operator" to improve the
readability. In the end, they are rather straightforward.

• I fj,k = d
fk−α j
Tj e is linearized as 0 ≤ I fj,k −

fk−α j
Tj < 1.

• βk−1 = 0 ⇒ ILj,k = d
ak−Lk−α j

Tj e is linearized as βk−1 =

0⇒ 0 ≤ ILj,k −
ak−Lk−α j

Tj < 1 The reason for βk−1 = 0 is
that "that we only use the value of Lk , and thus the interval
[0,ak − Lk ), when βk−1 = 0."

11 Reviewer’s comment:
An example also would greatly help.

An example system with 3 tasks is added as in Figure 1 and Table 2.
This simple 3-task system is also used for the illustration of linear
constraints at each necessary step of the paper.

12 Reviewer’s comment:
If τ = (C,T , P), P being the priority and D=T (in
this case βk = bk ). τ1 = (4, 80, 2), τ2 = (5, 20, 3),
τ3 = (15, 40, 1) If all α = 0 and if we analyze τ2:
problem window [0, 40], b0 = 1 and b1 = 1; L1 = 4;
I f1,0 = 1, I f1,1 = 1, IL1,0 = 1, IL1,1 = 0.

Then I don’t understand "For simplicity, when
βk−1 = 1, we enforce ILj,k = I fj,k−1" because in
my example above, IL1,1 would be set to 1.

"Throughout our analysis, we will only use the value of
Lk , when fk−1 ≤ ak ."

"We remind that we only use the value ofLk , and thus the interval
[0,ak − Lk ), when βk−1 = 0."

"For the particular scenario in Figrue 1, L1 = 0.5 and L3 = 0.
Because J1 does interfere the execution of J2, L2 is not relevant to
our analysis and its value can be any number constrained."

As a result, in your example, b0 = 1. In this case the value of L1
is not even used in our analysis and of course it has no e�ect on the
value of IL1,1. In other words, the L1 and IL1,1 can be any value in
this case. "For simplicity, when βk−1 = 1, we force ILj,k = I fj,k−1"

Table 2 summarizes all these counting values based on the ex-
ample system.
13 Reviewer’s comment:

Continuing with the example above, if now α1 = 19,
α3 = 19, the behaviour will be very similar but
for J2 (with -1 because 19 and not 20) What do we
gain be exploring all o�sets? compared to the critical
instant? an example would be good. Does the solver
provide the optimal o�sets of tasks to minimize the
deadline misses?

Figure 1 shows a problem window, where 2 out of its 3 jobs miss the
deadline. However, if we consider all tasks simultaneously activated
(i.e., the critical instant), only 1 out of 3 jobs miss the deadline.

The solver checks if there will be more thanm deadline misses out
of K job activations. If there is, the solver will provide tasks’ o�sets
(w.r.t. s0) that lead to the situation such that more thanm deadline
misses happen in the problem window.

A.3 Reviewer 3
14 Reviewer’s comment:

Points in favor: • Weakly-hard schedulability anal-
ysis is an interesting topic and it needs more e�orts
to be more mature. • The schedulability analysis of
o�set-free periodic tasks in weakly-hard real-time
system is not addressed in existing work. • The paper
carefully addressed all related work to their contri-
bution. • Successfully, the schedulability problem
of weakly-hard real-time systems was formulated
as MILP. • The paper is provided with an empirical
evaluation with a variety of con�gurations: number
of tasks, utilization, m and K.

15 Reviewer’s comment:
Points against • The paper is hard to follow.

In the revision, we focus on improving the readability of the paper.
Especially,

• we formalize key concepts in Section 3 (The System Model)
and Section 3.1 (The weakly hard model)

• an example system, as in Figure 1, is added
– to demonstrate that the critical instant does not lead to

maximum deadline misses in the problem window
– to illustrate key concepts on weakly hard analysis
– to help explain linear constraints at each necessary step

• high level operators are used to annotate these big-M con-
straints

16 Reviewer’s comment:
• No formal de�nitions.

We formalize relevant de�nitions in Section 3, where Section 3.1
speci�izes concepts for the weakly hard analysis.

17 Reviewer’s comment:
• A short section to explain the proposed approach
to compute m is missing. The proposed approach is
shown implicitly through the MILP.

In the weakly hard analysis, "An arbitrary sequence of K successive
activations of τi is considered, with the objective of checking whether
there are more thanm deadline misses for τi in this sequence." Alter-
natively, "Another option is to use the formulation of the number of
deadline misses in (C10) as an optimization (maximization) function,
and check what is the maximum number of misses for a given number
of activations"

Each linear constraint in this paper corresponds to an inherent
property for jobs (of τi or higher priority tasks) within the problem
window. Some of our constraints even relax such properties, for exam-
ple, we use real-valued variables to count the number of interfering
higher priority jobs. This means our linear constraints model accepts
more behaviours than what can indeed happen inside the problem
window and thus as long as there is a particular scenario such that
more than m deadline misses happen in the problem window, this



scenario must also exist inside the developed linear constraints model.
In other words,

"The developed MILP model serves as an over-approximate analysis,
that is, if our weakly hard analysis con�rms them-K property, it is
guaranteed that there will be no more thanm deadline misses out of
any K successive job activations (of the target task), however, if the
m-K property is not con�rmed, we cannot conclude the opposite."

18 Reviewer’s comment:
• The complexity is high. The proposed analysis is
applicable for relatively smallK <= 20. Large K ap-
pears more interesting (K=1000) for applications like
image processing but, there the proposed analysis is
not applicable.

Image processing applications are outside the scope of this paper, which
mostly refers to control (such as engine control) applications. The
number of tasks in engine control applications (see the ECRTSWATERS
challenge, for example) is easily within the applicability range of our
method. However, the method may be still applied indirectly (with
some degree of pessimism) to large K. If we �rst conduct the weakly
hard analysis with a smaller window (let us sayK ′ = 20) and �nd that
at most (let us say)m′ jobs miss their deadline. Then, for a window
of K = 1000 jobs, the number of deadline misses will be bounded by
50 ·m′.
19 Reviewer’s comment:

Other points to be covered: • In the abstract, authors
claim that their analysis is “very general”, but in the
system model we see that the analysis is restricted
to periodic tasks (no jitter, no sporadic), constrained
deadlines and independent tasks.

Our solution focuses on o�set-free periodic task systems, and it can
be applied to the shared resource problem and tasks with jitter (as
added in this revised version). Regarding existing works on periodic
task systems, tasks’ initial o�sets must be known and our solution is
thus more general.

For the weakly hard analysis of the sporadic case, as we state
mention in Section 2 (State of the Art), it is addressed by the line of
works based on typical worst-case analysis. Meanwhile, "This line of
works and the method in this paper are orthogonal and the two extend
the weakly hard real-time system analysis at di�erent directions.
Combined use of the two (in the future) can make the safety analysis
and system design more comprehensive."

20 Reviewer’s comment:
•Response time is not considered to be a variable,
how do you compute it? Ri is used to bound the
�nish time fi (which is a continuous variable).

We added a paragraph to clarify this point. We assume standard
worst case response time analysis (as in Lehoczky’s paper [21]) is
performed in advance to determine the WCRT Ri of each task τi .

Once this is done, Ri becomes a parameter (a known value)

21 Reviewer’s comment:
• The problemwindow is presented to be [s0,aK+Ti ).
But JK will not �nish before fK , the problemwindow

should be then [s0, fK ). The problem window should
be formally de�ned.

We added a formal de�nition in Section 3.1: "the problem window for
the analysis starts from a time instant s0 (let us say s0 = 0), which is
the earliest time instant such that from s0 to a1 the processor is fully
occupied by the execution of higher priority tasks, till the �nish of the
Kth job, i.e., [s0, fK )." An example is also given afterwards.

22 Reviewer’s comment:
O1, O2 are not clear. How do you know in advance
that a job is schedulable or not?

We added concrete examples to help understand.
O1 and O2 aim to show that, in order to maximize the number of

deadline misses in the window, we should start the analysis from a
non-schedulable job J , but the job J ′ just before J must be schedulable.
Given any task activation pattern (let us say Scenario A) that does
respect O1 or O2, we can always �nd a Scenario B that satis�es O1
and O2, and the number of deadline misses in Scenario B does not
decrease (w.r.t Scenario A).

23 Reviewer’s comment:
• C9 seems to be true only for non schedulable tasks
(Ni > 1).

No. (C9) always holds. Ni = 1 means that even the longest level-i
busy period only contains one job of τi . Thus, every job inside the
problem window will �nish before the next job release, which implies
that βx = 0 in (C9), and the big-M term −M · (1− βx ) will guarantee
the right side of (C9) to be a small enough value.

As a matter of fact, an implicit pre-condition for the weakly hard
analysis is that a task is not schedulable, otherwise, there will be no
deadline miss in any case. As stated in the paper "schedulable tasks can
be ruled out by simply performing a traditional hard schedulability
test in advance".

24 Reviewer’s comment:
I think in C9: −M .(βx − 1) is not needed. For �xed
priority preemptive with Di <= Ti it is simple to
prove that βx = 0 is true only for x = Ni where
x ∈ 1, ...,Ni , which means that β1 = 1 and the third
term is not needed. Furthermore, the counter in the
fourth term already excludes the last activation in
the busy period and its response time is added in the
�fth term in C9.

"For arbitrarilyNi successive jobs inside an arbitrary problem window,
we do not know if they are inside the same busy period, however,
βk = 1 is a su�cient condition for two jobs Jk and Jk+1 to be in the
same busy period (the same for βx = 1) and this explains these big-M
terms in (C9)."

25 Reviewer’s comment:
As far as I understood the analysis, K (problem win-
dow) is the bottleneck of the proposed analysis which
means the largest the K the highest the complexity.
It is better to state that clearly in the paper.

Added. "The problem window size K is a dominant factor with respect
to the complexity of the analysis."

26 Reviewer’s comment:



Every higher priority task will be represented in
the MILP with 3 variables. Increasing the number
of tasks in the system will increase the complexity
exponentially. It is better to state that clearly in the
paper.

The increase is not exponential, but depends on many factors, such
as the ratio between the maximum and minimum period (which
determines the lenght of the time interval and the number of jobs to
be considered). All variables in the MILP are summarized in Table 1.
there are at most variables with 3 indexes (for which their number
increases in the worst case with the third power with respect to the
number of entities on each index). Then, it is of course well known
that each and every MILP is in essence of exponential complexity wrt
the number of binary variables.

27 Reviewer’s comment:
In section 4.3: “should bounded by m(< K)”. It is
incorrect, it should be “<= K”. The authors, however,
did not prove that in the paper.

In the weakly hard analysis, "An arbitrary sequence of K successive
activations of τi is considered, with the objective of checking whether
there are more (note strictly more) thanm deadline misses for τi in
this sequence."

In casem = K , the answer is surely no.
Alternatively, "Another option is to use the formulation of the

number of deadline misses in (C10) as an optimization (maximization)
function, and check what is the maximum number of misses for a
given number of activations"

Each linear constraint in this paper corresponds to an inherent
property for jobs (of τi or higher priority tasks) within the problem
window. Some of our constraints even relax such properties, for exam-
ple, we use real-valued variables to count the number of interfering
higher priority jobs. This means our linear constraints model accepts
more behaviours than what can indeed happen inside the problem
window and thus as long as there is a particular scenario such that
more than m deadline misses happen in the problem window, this
scenario must also exist inside the developed linear constraints model.
In other words,

"The developed MILP model serves as an over-approximate analysis,
that is, if our weakly hard analysis con�rms them-K property, it is
guaranteed that there will be no more thanm deadline misses out of
any K successive job activations (of the target task), however, if the
m-K property is not con�rmed, we cannot conclude the opposite."

28 Reviewer’s comment:
The MILP is not illustrated in the experiments, I
think the synthetic task set in section 6.2 should be
shown as an illustrative example.

We added the example system as in Figure 1 to illustrate constraints
at each necessary step.

29 Reviewer’s comment:
What do you mean by “is very general and it can be
easily adapted to a more general task model.”? Does
it mean that the proposed analysis can be adapted

easily to periodic tasks with jitter, sporadic tasks
and/or dependent tasks?

Our solution focuses on o�set-free periodic task systems, and it can be
applied to the shared resource problem and the task model with jitters.
Regarding existing works on periodic task systems, tasks’ initial o�sets
must be known and our solution is thus more general.

For the weakly hard analysis of the sporadic case, as we state in
Section 2 (State of the Art), it is addressed by the line of works based on
typical worst-case analysis. Meanwhile, "This line of works and the
method in this paper are orthogonal and the two extend the weakly
hard real-time system analysis at di�erent directions. Combined use
of the two (in the future) can make the safety analysis and system
design more comprehensive."

30 Reviewer’s comment:
How many task sets have been generated? Did you
repeat the experiments to guarantee that the results
are con�dent. That should be clari�ed.

Added. "Overall, 6253 task systems are tested."

31 Reviewer’s comment:
Which motivations are behind the experiments?
Why are you interested in the “Deadline misses in a
raw”?

From the authors’ perspective, we want to demonstrate that even the
proposed analysis is an over-appxorimation, it can return "con�rmed"
results in many (if not most) cases within reasonable time, which is
1800 seconds.

"The developed MILP model serves as an over-approximate analysis,
that is, if our weakly hard analysis con�rms them-K property, it is
guaranteed that there will be no more thanm deadline misses out of
any K successive job activations (of the target task), however, if the
m-K proeprty is not con�rmed, we cannot conclude the opposite."

"Deadline misses in a raw" is a special case ofm-K model such that
m = K − 1, that is, are there more than K − 1 deadline misses out of
the K jobs?

32 Reviewer’s comment:
In the experiment of “Deadline misses in a raw”, for
K=2 , n=10 the 19.7% are schedulable orm > 1?

As stated above, "Deadline misses in a raw" is a special case ofm-K
model such thatm = K −1, that is, are there more than K −1 deadline
misses out of the K jobs? Thus, when K = 2, there ism = 1.

Table 4 reports the statistics of "No K deadline misses in a row".
Thus, 19.7% is percentage of the tested tasksets that there exist 2
deadline misses in a row. "These results reveal the fact that several
deadline misses in a row rarely happen"

33 Reviewer’s comment:
Figure 3 is more interesting than the tables 4,5,6,7,
it tells the reader about the scalability.

Implicitly, we set up the runtime threshold of the solver to 1800 seconds
and they apply to all experiments in the paper. This threshold is
already very realistic for many (if not most) temporal safety analysis
senarios in avionics and automobiles.

34 Reviewer’s comment:



Showing the “n/a” in Table 5 is more interesting than
showing the “con�rmed”.

In my opinion, the majority of the experiments
shown in 6.3 are not interesting, they do not test the
proposed analysis.

From the authors’ perspective, we want to demonstrate that even the
proposed analysis is an over-appxorimation, it can return "con�rmed"
results in many (if not most) cases within reasonable time, which is
1800 seconds.

"The developed MILP model serves as an over-approximate analysis,
that is, if our weakly hard analysis con�rms them-K property, it is
guaranteed that there will be no more thanm deadline misses out of
any K successive job activations (of the target task), however, if the
m-K proeprty is not con�rmed, we cannot conclude the opposite."

35 Reviewer’s comment:
In the experiments, it is interesting to: compute the
“cut-o�” values of utilization, task set size and K
where the run time limit will be exceeded. show
how much the computed m is overestimated.

It is extremely hard to conclude such "cut-o�" values for each individ-
ual parameter. There are systems with very high utilization that can
be anlyzed easily, and a bigger K does not necessarily lead to higher
runtime. As a result, the emphasis of experiments is to demonstrate
the applicability of the proposed method through a variety of combi-
nations of n, U ,m and K (subject to the runtime upper bound 1800
seconds).

Regarding the overestimation of m, due to the lack of (exact or
over-approximate) solutions in literaute for weakly hard analysis of
o�set-free periodic task systems, and it makes unclear how we can
evaluate the overestimation.

A.4 Reviewer 4
36 Reviewer’s comment:

The paper proposes a schedulability analysis for
weakly hard real-time systems (systems for which
a bounded number of deadline misses out of a se-
quence of task activations can be tolerated). The
authors consider uniprocessor systems running peri-
odic task sets with implicit deadlines according to a
�xed priority preemptive policy. The speci�city of
the model they address is that task o�sets are un-
known. The schedulability problem is formulated as
a mixed integer linear programming (MILP) prob-
lem which constitutes the main part of the paper. An
implementation of the solution, for which the source
code is available, is evaluated on a case study and a
set of randomly generated task sets.

37 Reviewer’s comment:
The problem addressed in this paper appears to be
relevant and it is well motivated by the authors. Un-
fortunately the paper does not address the question
of whether the MILP formulation is sound or exact,
in the sense that it cannot provide false positives or
false negatives.

In the revision, we added explicitly that, "The developed MILP model
serves as an over-approximate analysis, that is, if our weakly hard
analysis con�rms them-K property, it is guaranteed that there will be
no more thanm deadline misses out of anyK successive job activations
(of the target task), however, if them-K proeprty is not con�rmed, we
cannot conclude the opposite."

The correctness of the solution is implicitly veri�ed by the linear
constraints model developed in this paper. Each linear constraint in
this paper corresponds to an inherent property for jobs (of τi or higher
priority tasks) within the problem window. Some of our constraints
even relax such properties, for example, we use real-valued variables
to count the number of interfering higher priority jobs. This means
our linear constraints model accepts more behaviours than what can
indeed happen inside the problem window and thus as long as there is
a particular scenario such that more thanm deadline misses happen in
the problem window, this scenario must also exist inside the developed
linear constraints model. In other words,

38 Reviewer’s comment:
There are very few �gures and no example to help
the reader understand the numerous notations which
are introduced. In addition, the core part of the pa-
per consists of a long list of constraints but there is
no overall discussion to argue the correctness and
precision of the proposed analysis. Is your analysis
exact or not?

An example system, as in Figure 1, is added
• to demonstrate that the critical instant does not lead to max-

imum deadline misses in the problem window
• to illustrate key concepts on weakly hard analysis
• to help explain linear constraints at each necessary step

Yes, the core part of the paper is the MILP formulation, which
consists of a list of linear constraints.

As stated above for Comment 37, the MILP formulation serves
as a sound over-approximation of the exact weakly hard model. Its
correctness can be implicitly veri�ed by the linear constraints devel-
oped. Its precision is examined through experiments with a variety of
con�gurations.

39 Reviewer’s comment:
An example illustrating that activating all tasks
at the same time at the beginning of the problem
window does not necessarily yield the maximum
number of deadline misses in the window would
improve a lot the motivation of the problem.

We added a simple example system, as in Figure 1, and it illustrates
that activating all tasks at the same time does not maximize the
number of deadline misses in the problem window.

40 Reviewer’s comment:
Quite a few de�nitions remain unclear to me, which
are listed below. This prevents me from being really
convinced that the paper is entirely correct.

Another point: The paper heavily relies on the
fact that deadlines are constrained but this is explic-
itly stated only once in the de�nition of the system
model, and not in the introduction.



Now, we explicitly point out this at the abstraction. "We provide
a new weakly hard schedulability analysis method that applies to
constrained-deadline periodic real-time systems"

41 Reviewer’s comment:
Another assumption, which should be more clearly
stated, is that the scheduler does not react to a dead-
line miss and lets tasks run to completion.

The weakly hard analysis problem is formally de�ned at Section 3.1
(The weakly hard model), where "We assume the system utilization
U =

∑
1≤i≤n Ui is lower than 1, meaning that each job is guaranteed

to complete its requested execution at some point in time, whether it
misses its deadline or not."

Also, in the Section 3 (The SystemModel), "If a task does not always
�nish before its deadline, it can have multiple active jobs at the same
time. In such cases, these jobs are served in FIFO order, meaning that
the latter job cannot execute until all its predecessors are completed."

42 Reviewer’s comment:
Finally, the task model under consideration is quite
restricted (independent, periodic tasks with constrained
deadlines). You should at least mention how your
approach could be generalized to sporadic tasks etc.
If that is not the case it is di�cult to see how your
approach could be applicable.

The weakly hard analysis in this paper focuses on o�set-free periodic
task systems. We demonstrate its applicability to the resource sharing
problem, and in this revision, we further show its extensibility to task
model with jitters.

For the weakly hard analysis of the sporadic case, as we state in
Section 2 (State of the Art), it is addressed by the line of works based on
typical worst-case analysis. Meanwhile, "This line of works and the
method in this paper are orthogonal and the two extend the weakly
hard real-time system analysis at di�erent directions. Combined use
of the two (in the future) can make the safety analysis and system
design more comprehensive."

43 Reviewer’s comment:
All in all, the paper has some merit but its limita-
tions regarding the scope of the model taken into
account and the presentation of the work make it
fall below the level of quality required at EMSOFT. If
however my comments regarding correctness of the
analysis and extendability of the solution to handle
more complex systems can be addressed then I would
not be against acceptance.

Its extensibility is shown by the application to the shared resource
problem and tasks with jitters.

Its correctness is implicitly veri�ed through the set of linear con-
straints developed in this paper. More details are given as the response
for Comment 37.

44 Reviewer’s comment:
Other comments: - A level-i busy period is a *maxi-
mal* interval such that...

- Please add a subsection before 3.1 to explain
in more detail and illustrate issues related to level-i
busy periods.

In the revision, we clari�ed the concept of a level-i period in Section 3
(The System Model), and an example is also added.

"A level-i busy period is de�ned as a time interval during which
the processor is always occupied by the execution of tasks with priority
higher than or equal to τi . For example, in Figure 1, [s0, f2) and [a3, f3)
are two level-3 busy periods: Because the focus of this paper is not
the single task WCRT, our de�nition of a busy period does not strictly
follow its original meaning in [21], where a busy period corresponds
to the maximal level-i busy period in this paper."

45 Reviewer’s comment:
- You should formally de�ne what you mean by
problem window.

The problem window is now formally de�ned at Section 3.1 (The
weakly hard model), together with other concepts for the weakly hard
analysis problem. "the problem window for the analysis starts from
a time instant s0 (let us say s0 = 0), which is the earliest time instant
such that from s0 to a1 the processor is fully occupied by the execution
of higher priority tasks, till the �nish of the Kth job, i.e., [s0, fK )."

An example is also added for the illustration purpose.

46 Reviewer’s comment:
For me observations (O1) and (O2) are not under-
standable due to this lack of formalization. What I
understand is that a problem window should start
with a non-schedulable job J1 but I really don’t see
why.

O1 and O2 aim to show that, in order to maximize the number of
deadline misses in the window, we should start the analysis from a
non-schedulable job J , but the job J ′ just before J must be schedulable.
Given any task activation pattern (let us say Scenario A) that does
respect O1 or O2, we can always �nd a Scenario B that satis�es O1
and O2, and the number of deadline misses in Scenario B does not
decrease (w.r.t Scenario A).

We added concrete examples to help understand.

47 Reviewer’s comment:
- Figures 1 and 2 should be explained and com-
mented. In fact, you should show higher priority
jobs.

We upgraded Figure 1, and inlined examples based on it for each
necessary linear constraint. As an example, "For the particular scenario
in Figrue 1, L1 = 0.5 and L3 = 0."

Figrue 2 only aims to show several shortcut notations: "For short,
we �rst de�ne several terms: ρk = fk − ak , λk = fk − (ak − Lk ) and
λ′k = fk − fk−1." To avoid confusing, we deleted FIgure 2. Instead, "As
an example, in Figure 1, ρ1 = 7.5, λ1 = 7 and λ′2 = 3. "

48 Reviewer’s comment:
- "inidicates" −− > "indicates"

Fixed.

49 Reviewer’s comment:
- The right-hand side bound of the equation related
to o�sets should be justi�ed.



"Assume that the �rst job Jj,1 of τj in the window arrives at time
s0 +Tj − r j + ϵ with ϵ > 0. This implies the precedent job (let us say)
Jj,0 is activated at time s0 − r j + ϵ . Because any job of τj needs at
least r j time to �nish, Jj,0 will be still active at time instant s0, which
contradicts the fact that s0 is the earliest time instant that from s0 to
a1 the processor is fully occupied by higher priority task execution.
This small proof explains why the upper bound for α j is Tj − r j ."

50 Reviewer’s comment:
- Please recall what M is in (1), (2) etc. (it has been
introduced quite a long time before).

Added.
"We de�neM as a big enough constant value that will be used in

the model to encode conditional constraints, and this is well known as
the big-M method."

"We remind that theM is supposed to be a big enough constant."
"Again, we apply the big-M method."
"the big-M constraint (7) is updated to"
"and this explains these big-M terms in (C9)."
Also, we added high level operators to help understand the big-M

encoding. E.g., bk = 0 ⇔ fk ≤ ak + Di , βk = 0 ⇔ fk ≤ ak+1,
βk = 1⇒ ιk = 0, "Otherwise, βk−1 = 0 implies that Φk +Ci = λk ".

51 Reviewer’s comment:
- In the paragraph on the number of interfering
jobs from higher priority tasks, what is the number
of jobs within a time interval? The number of jobs
released?

Yes.
"Given a job Jk of τi and a higher priority task τj , we de�ne an

array of boolean variables Γ fj,k [p] ∈ B to count the number of jobs
(i.e., job releases) of τj inside the time interval (p is used to index these
jobs).

• [ak −Lk , fk ) if Jk−1 does not interfere with Jk , i.e., βk−1 = 0;
• [fk−1, fk ) if Jk−1 does interfere with Jk , i.e., βk−1 = 1.

"
Such "time intervals" are always in form of [ak−Lk , ...) or [fk−1, ...),

which indicates that there is no pending workload from higher priority
tasks when entering such intervals, and numer of jobs within them
are in fact number of job released within them.

52 Reviewer’s comment:
- The paragraph on re�ning the interferences from
higher priority tasks is confusing and must be clari-
�ed.

In the revision, we added Table 2) to show concrete variables’ values
during the re�ning procedure.. "As shown in Table 2, for the example
in Figrue 1, when j = 1 and k = 3 there is L3 = 0 and ∆1,3 jobs from
τ1 within the time interval [a3 − L3, f3). As β1 = 1, from f1 to f2,
∆1,2 = 1 job is released."

"For instance, during the interval [f2,a3−L3) in Figure 1, no higher
priority jobs are released: Γ1,3 = Γ2,3 = 0."

More importantly, we improved the readability for concepts like
I fj,k and ILj,k . After all, the re�ning procedure is for re�ning the
values of I f and IL, which are linearized from their original integer
values

• I fj,k = d
fk−α j
Tj e is linearized as 0 ≤ I fj,k −

fk−α j
Tj < 1.

• βk−1 = 0 ⇒ ILj,k = d
ak−Lk−α j

Tj e is linearized as βk−1 =

0⇒ 0 ≤ ILj,k −
ak−Lk−α j

Tj < 1 The reason for βk−1 = 0 is
that "that we only use the value of Lk , and thus the interval
[0,ak − Lk ), when βk−1 = 0."

53 Reviewer’s comment:
- (C9) needs to be clari�ed. For example, what hap-
pens for schedulable tasks (Ni = 1)? I did not un-
derstand why the term −M .(1 − βx ) is needed. For
�xed priority preemptive with Di <= Ti it is sim-
ple to prove that βx = 0 is true only for x = Ni
where x ∈ 1, ...,Ni , which means that β1 = 1 and
the third term is not needed. Furthermore, k in the
fourth term already excludes the last activation in
the busy period and its response time is added in the
�fth term in (C9).

(C9) always holds. Ni = 1 means that even the longest level-i busy
period only contains one job of τi . Thus, every job inside the problem
window will �nish before the next job release, which implies that
βx = 0 in (C9), and the big-M term −M · (1 − βx ) will guarantee the
right side of (C9) to be a small enough value.

As a matter of fact, an implicit pre-condition for the weakly hard
analysis is that a task is not schedulable, otherwise, there will be no
deadline miss in any case. As stated in the paper "schedulable tasks can
be ruled out by simply performing a traditional hard schedulability
test in advance".

"For arbitrarily Ni successive jobs inside an arbitrary problem
window, we do not know if they are inside the same busy period,
however, βk = 1 is a su�cient condition for two jobs Jk and Jk+1 to
be in the same busy period (the same for βx = 1) and this explains
these big-M terms in (C9)."

54 Reviewer’s comment:
- In the case study (Section 6.1), it would be better to
illustrate the MILP by showing how the constraints
look like for this example.

We added an example system as in Figure 1 and use it to illustrate
constraints at each necessary step.

A.5 Reviewer 5
55 Reviewer’s comment:

The paper provides a new weakly hard schedulabil-
ity analysis method for periodic real-time systems
scheduled with �xed priority and without knowl-
edge of the task activation o�sets. The schedulability
problem is abstracted to a Mixed Integer Linear Pro-
gramming problem which can compute an upper
bound for the number of deadline misses of an arbi-
trary K successive activations of a task.

The paper improves the current weakly hard
analysis for �xed priority periodic tasks systems
by relaxing the constraint of systems analyzed from
o�set-determined to o�set-free. Furthermore, an ex-
tension of the analysis method for shared resources



is proposed. Also, the e�ectiveness of the method is
well explored in the experiments section.

56 Reviewer’s comment:
The method is not scalable as is showed in the ex-
periments section.

As shown in the experiments, depending on the system con�gurations,
the proposed MILP weakly hard analysis is scalable to tens of tasks
when the problem window size K is relatively small, on the other
hand, even if we increase the problem window size to be as big as
20, the method is still eligible to handle tasksets with more than 10
tasks. Implicitly, we set up the runtime threshold of the solver to
1800 seconds and they apply to all experiments in the paper. This
threshold is already very realistic for many (if not most) temporal
safety analysis senarios in avionics and automobiles.

57 Reviewer’s comment:
With the increasing of taskset size, the percentage
of the con�gurations that can obtain the results in
reasonable time might decrease considerably.

In case there are 50 tasks in a system, we experienced a signi�cant
amount of tests that exceed the runtime threshold 1800 seconds. How-
ever, even in the case, there are still a signi�cant amount of tests that
get con�rmed results: 42.7% whenm = 1 and 94.0% whenm = 2.

58 Reviewer’s comment:
Furthermore,the presentation in section 4 is not clear
enough and hard to read. More illustrations should
be added.

More ilustrations are added in the revision.
In the revision, we focus on improving the readability of the paper.

Especially,
• we formalize key concepts in Section 3 (The System Model)

and Section 3.1 (The weakly hard model)
• an example system, as in Figure 1, is added

– to demonstrate that the critical instant does not lead to
maximum deadline misses in the problem window

– to illustrate key concepts on weakly hard analysis
– to help explain linear constraints at each necessary step

• high level operators are used to annotate these big-M con-
straints

59 Reviewer’s comment:
Typo

1. Section 4.1, 4th paragraph, 4th line. indicates
the portion of the level-i busy period. 2. Section 5, 5th
paragraph, 6th line. largest elements in the multiset.

Fixed.
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