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ISIGrowth	is	a	3-year	EC	Horizon	2020	funded	project	aimed	at	offering	comprehensive	
diagnostics	on	the	relationship	between	innovation,	employment	dynamics	and	growth	in	an	
increasingly	globalized	and	financialized	world	economy.	The	project	will	provide	a	coherent	
policy	toolkit	to	achieve	the	Europe	2020	objectives	of	smart,	sustainable	and	inclusive	
growth.	The	theoretical	foundation	is	based	on	the	dynamic	link	between	Schumpeterian	
economics	of	innovation	and	Keynesian	demand	policies.	Analytical	tools	include	agent-based	
modelling,	non-parametric	statistics,	and	detailed	case	studies	of	business	and	industry	
histories.	
	 	



The present deliverable provides an ample overview of the main issues, drivers and threats behind 
the transition towards a pattern of sustainable growth. In the present context, sustainable 
development indicates a trajectory of self-sustained growth, fueled by increasing shares of 
renewable energies, produced through constantly ameliorating technologies, helping reduce the 
adversarial impacts of climate change, both through mitigation and adaptation. Moving away from 
fossil fuel and current business-as-usual practices is not immune to risks, and requires a coherent 
mix of policy interventions and societal transformation. 
 
The deliverable is composed by three papers that – together – offer a comprehensive assessment 
of the policies, the infrastructural and societal requirements that a green transition would need. 
Further, an analysis of transitions in presence and absence of climate change and its impacts is 
proposed. 
 
Lamperti et al (2018) propose an integrated assessment agent based model to explore the 
likelihood of a green transition under business as usual. The model comprises heterogeneous fossil-
fuel and renewable plants, capital- and consumption-good firms and a climate box linking 
greenhouse gasses emission to temperature dynamics and microeconomic climate shocks affecting 
labour productivity and energy demand of firms. Hence, the model allow studying the conditions 
behind sustainable transition both in absence and presence of climate damages. Simulation results 
show that the economy possesses two statistical equilibria: a carbon-intensive lock-in and a 
sustainable growth path characterized by better macroeconomic performances. Once climate 
damages are accounted for, the likelihood of a green transition depends on the damage function 
employed. To move the economy away from fossil fuels, a complex sets of policies encompassing 
any mix of carbon (fossil fuel) taxes and green subsidies is considered and explored through 
counterfactual simulation experiments. The results point to a general lack of effectiveness of these 
incentive-based tools, unless their size grows substantially with respect to the actual levels. In 
general, the paper envisions and discusses complementarities between incentive and regulation 
policies to foster a green transition. 
 
As green transitions necessarily pass through a strong increase in the share of renewables in total 
final energy mix, many challenges emerges from the need of safely integrating novel energy 
producers in current energy markets. Ciarli et al (2018) tackle these issues by building a simple agent 
based model to assess the likelihood of the alternative effects that distributed storage systems 
might have on aggregate energy demand volatility, under different parametrizations of the power 
generation storage systems. In particular, the paper tests weather such systems act as a buffer and 
smooth the intra-daily variation in electricity flows or, by contrast, they may increase volatility, if a 
large number of distributed generators simultaneously use the network. The results suggest that 
distributed storage systems reduce fluctuations, and are thus beneficial at a systemic level, rejecting 
the volatility increase hypothesis.  
 
The third paper that composes this deliverable focuses on the demand side and then examines 
under which conditions the diffusion of sustainable goods among consumers is favored by the 
economic and institutional environment. Pasimeni and Ciarli (2018) build a stylized yet insightful 
agent based model to investigate the process of coalition formation conditioning the common 
decision to adopt a shared (sustainable) good, which is too expensive for an average consumer, who 
would also not be able to exhaust its use. Coalitions formation sets the conditions for adoption, 
while diffusion influences the consequent formation of coalitions. Results show that both coalitions 
and diffusion are subject to network effects, which also have an impact on the information flow 



though the population of consumers. Consumers prefer to form large coalitions in order to buy 
expensive goods and share ownership and use, rather than establishing smaller coalitions. In larger 
groups the individual cost is lower, although it increases if higher quantities are purchased 
collectively. 
 
 
Main policy implications from Deliverable 6.6 
 

• Under business-as-usual, the likelihood of transition is remarkably low. We find that 
endogenous transitions towards the equilibrium where green energy technology dominates 
the market are possible but, in the absence of policy intervention, the likelihood of such an 
event does not exceed 18%. This result is based on assuming zero climate damages.  

• The presence of climate damages can potentially increase or reduce the likelihood of 
transitions. We consider climate damages in two different ways. Firstly, we take the standard 
aggregate perspective embraced by the majority of IAMs. Secondly, heterogeneous climate 
damages that target labour productivity or energy efficiency are considered. In the first case, 
the likelihood of transition is exactly the same as the case of no damages, since they only 
affect aggregate potential output. In the second case, we find that labour productivity shocks 
might increase the likelihood of transitions (with respect to the case of aggregate damages), 
while the opposite happens for energy efficiency shocks. The main channel of these effects 
is represented by the size of the final demand for energy (see Annex IV for details). 

• The price of fossil fuels non-linearly influences the likelihood of transition. We find that an 
increase in the initial price of fossil fuels might increase the likelihood of a transition. 
However, such an effect is largely non-linear. Given the initial backwardness of clean 
technologies’ productivity and the cumulative nature of the technical change process, small 
variations of the fossil fuel price have a surprisingly low impact on inducing the transition, 
while for moderate/high increases the likelihood increases substantially. This result supports 
the idea that policy intervention, in this case aimed at increasing the cost of fossil fuels, 
needs to be substantial in order to significantly affect the environmental sustainability of the 
production system.  

• Within the energy sector and with particular reference to distributed energy storage, 
increasing the size of the systems and their share in the population of energy users reduces 
the aggregate electricity volatility of the network load. Therefore, that there are only gains, 
at the systemic level, from improving battery technology, and promoting their diffusion 
among users. 

• The total number of users is a key determinant of the diffusion success of large scale 
sustainable goods (e.g. near zero-energy buildings) enforcing a green transition. Policies 
should aim at maximizing users’ awareness, engagement as well as their connections.  
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Abstract

In this work, we employ an agent-based integrated assessment model to study the likelihood of
transition to green, sustainable growth in presence of climate damages. The model comprises het-
erogeneous fossil-fuel and renewable plants, capital- and consumption-good firms and a climate
box linking greenhouse gasses emission to temperature dynamics and microeconomic climate
shocks affecting labour productivity and energy demand of firms. Simulation results show that
the economy possesses two statistical equilibria: a carbon-intensive lock-in and a sustainable
growth path characterized by better macroeconomic performances. Once climate damages are
accounted for, the likelihood of a green transition depends on the damage function employed.
In particular, aggregate and quadratic damage functions overlook the impact of climate change
on the transition to sustainability; to the contrary, more realistic micro-level damages are found
to deeply influence the chances of a transition. Finally, we run a series of policy experiments on
carbon (fossil fuel) taxes and green subsidies. We find that the effectiveness of such market-based
instruments depends on the different channels climate change affects the economy through, and
complementary policies might be required to avoid carbon-intensive lock-ins.
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Libertá 33, 56127, Pisa (IT).

1

mailto:f.lamperti@sssup.it


1 Introduction

How does climate change impact on the transition from fossil-fuel to low carbon technologies? Ac-
cording to our results, quite a lot. While the literature analysing transitions is large and variegate,
there is a gap on how climate change can affect the likelihood and speed of decoupling economic
growth from fossil fuels and the ensuing macroeconomics effects. In the present work, we fill this
gap relying on an agent-based integrated assessment model where energy transitions are endoge-
nous and co-evolve with climate change and can be possibly affected by policy interventions.

Economic growth must be sustained by energy production. Different portfolio of energy sources
can support the same rate of growth at different costs, which change over time according to the
technological evolution. However, once the possible impacts of climate change are taken into ac-
count, economic growth ought to be sustainable, i.e. it must be decoupled from greenhouse gas
(GHG) emissions. Indeed, as pointed out by the literature on high-end scenarios, the environmen-
tal, health, and physical damages triggered by climate change may outpace any adaptation effort,
hampering long-term growth prospects and ultimately treating the very existence of life as we know
it. Thus, long-term economic growth cannot be a credible objective without treating the green tran-
sition as an unavoidable goal of public policy-making. And as climate change, technical change and
economic growth co-evolve over time, increasing research efforts are required to understand if the
speed of transition implicitly defined by the international climate agreements is fast enough, and
whether policies are effective.

Against this background, traditional integrated assessment models (IAMs) are badly equipped
to study the role of firm and energy plant heterogeneity and the sources and direction of technical
change triggering successful energy transition towards sustainability. Further, climate damages are
often measured in percentages of GDP losses, under the implicit assumption that, due to linearity
in the economic system, the aggregate shock is plainly the sum of microeconomic shocks. While
being empirically questionable, such a perspective does not allow policy-makers to identify from
where in the economic system the risks and costs of climate change originate and propagate, thus
affecting the transition to sustainable growth. More generally, the microeconomic analysis of energy
transitions has little to say about the ensuing macroeconomic dynamics (Stirling, 2014; Mazzucato
and Semieniuk, 2017).

The Dystopian Schumpeter meeting Keynes (DSK; Lamperti et al., 2018b) agent-based model
constitutes a viable platform to analyze the energy transition while dealing with all the above men-
tioned issues.1 In particular, DSK accounts for endogenous technical change in the three sectors it
comprises, namely capital goods, consumption goods, and energy. Technical change is the outcome
of boundedly rational R&D decisions by heterogeneous agents, who finance R&D through retained
earnings and (rationed) credit, and whose effect is stochastic. Firms also engage in technological
diffusion as they adopt or imitate new vintages of machinery, characterized by heterogenous levels
of labor productivity, energy efficiency, and environmental friendliness.

In the energy sector, firms can choose between fossil-fuel and renewable plants. Brown energy
plants have higher production costs than green one, but have zero installation costs, while firms
has to pay a fixed cost to expand their renewable energy capacity. Energy firms invest in R&D

1Agent based models are flexible computational environments simulating the behaviour of complex systems, nowa-
days widespread in different areas of the social sciences (Bonabeau, 2002; Tesfatsion and Judd, 2006; Haldane and Turrell,
2018). The interested reader might want to look at Fagiolo and Roventini (2012) and Fagiolo and Roventini (2017) for two
surveys on macro agent based models and to Balint et al. (2017) and Lamperti et al. (2018a) for agent based applications
to the issue of climate and environmental change.
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a fraction of its past sales in order to develop the green and dirty technologies. Industrial and
energy productions generate GHG emissions, whose effect on climate is modelled in a climate box.
Once temperatures change, the economy is hit by microeconomic climate shocks affecting, labor
productivity or energy efficiency of machines, and in turn macroeconomic dynamics.

The DSK model is able to account for a wide range of micro and macro stylized facts concerning
economic dynamics and the evolution of climate change (e.g. self-sustained growth punctuated
by endogenous crises, co-integration of energy and output dynamics, increasing frequency of ex-
treme events). Simulation results show that, even without considering climate damages, the model
produces a non-ergodic behaviour characterized by two statistical equilibria: a carbon-intensive
lock-in, wherein the share of renewable energy plants approaches zero; and an equilibrium wherein
the transition to green energy technologies is successful. In the latter case, GDP growth is faster,and
unemployment lower than in the carbon-intensive lock-in, suggesting that sustainable growth can
improve macroeconomic dynamics.

Once climate damages are accounted for, the likelihood of green transition depends on the
damage function employed. When climate shocks are modelled as aggregate output losses, as com-
monly done in the majority of general-equilibrium IAMs (Nordhaus and Sztorc, 2013; Nordhaus,
2014), climate shocks do not affect the probability of carbon decoupling. However, when one focuses
on the different channels through which microeconomic climate damages hit firms, the results are
more complex. More specifically, negative shocks to energy efficiency are found to slow down the
transition, whereas shocks reducing labor productivity accelerate it. Both effects interact with the
dynamics of energy demand and prices, which affect the investment of energy firm in green and
dirty technologies. Finally, the success of policies supporting sustainable growth such as carbon
tax and green subsidies depends on the different channels through which climate damages affect
the economy, and complementary command-and-control interventions are often required to avoid
carbon-intensive lock-ins

The paper is structured as follows. After a brief review of the relevant literature in Section 2, we
describe the model in Section 3. The model is empirically validated in Section 4. Simulation results
focused on transition to sustainable growth are presented in Section 5. Finally, Section 6 concludes.

2 A critical review of the literature

The literature on transitions to sustainable production modes is large and variegate (Frantzeskaki
and Loorbach, 2010; Markard et al., 2012). From a theoretical perspective, four main frameworks
have been developed to analyse the issue. These include transition management (Rotmans et al.,
2001; Loorbach, 2010), strategic niche management (Kemp et al., 1998), the multi-level perspective
on socio-technical transitions (Geels, 2002), and technological innovation systems (Jacobsson and
Johnson, 2000; Jacobsson and Bergek, 2011). Embracing different perspectives they have been used to
analyse shifts in socio-technical systems. In this context, a socio-technical system consists of (networks
of) actors (individuals, firms, and other organizations, collective actors) and institutions (societal
and technical norms, regulations, standards of good practice), as well as material artifacts and
knowledge (Geels, 2004; Weber, 2003). A sustainable transition involves moving from a given socio-
technical system to a novel one characterized by production and consumption modes reducing
the adverse impact on the natural system. Socio-technical transitions differ from technological
transitions in that they include changes in user practices and institutional (e.g., regulatory and
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cultural) structures, in addition to the technological dimension. In this paper, we loosely focus
on the technological dimension but, contrary to the approaches introduced above, we look at the
aggregate (i.e. macroeconomic) effect of moving away from fossil-fuels technologies.

In that, we contribute to a recent stream of studies focusing on economies’ growth dynamics
and the composition of the energy mix. The mainstream economic literature has employed models
of directed technical change to explore how policy can move economic development and R&D
activities away from fossil fuels (Acemoglu et al., 2012, 2015). As a central result, they report that
both subsidies to “green” research and carbon taxes should be used to move the economy towards a
sustainable growth trajectory. Despite they call for a marginal and temporary intervention, Lamperti
et al. (2015) show that such market based policies might be ineffective as a result of path-dependence
and put forward regulation as a valid alternative policy to induce transitions.2 Moving the attention
from R&D to resource availability, other contributions have analysed the optimal trajectory from
non-renewable to renewable resources and highlighted the role of renewables’ production costs
in inducing the transition (Hoel and Kverndokk, 1996; Ploeg and Withagen, 2014; Van Der Ploeg
and Withagen, 2012).3 This feature will be crucial also in our model. Interestingly, while the
majority of studies underlines the importance of shifting to renewable energy sources, Smulders
and Zemel (2011) highlight possible drawback effects on economic growth linked to crowding-
out effects in capacity building. However, they do not account for climate change/environmental
damages. Another main shortcoming of such a research body is that it fails to account for the
complex relationships tying agents in an economic system, and too heavily relies on the capacity
of markets in efficiently allocating both resources and knowledge. In such a context, inducing a
transition loosely boils down at finding the correct set of incentives.

Starting from different theoretical constructs and a more realistic representation of the economy,
the literature on macro agent based and system dynamics modelling has recently moved towards
the analysis of energy transitions, macroeconomic dynamics and policy choices (Balint et al., 2017;
Lamperti et al., 2018a). Such a stream builds on the perception of the economy as a complex evolv-
ing system (Arthur et al., 1997; Tesfatsion, 2006; Dosi and Virgillito, 2017) and, departing from this
basis, looks at the evolutionary mechanisms behind technological development, technological diffu-
sion, and technological transitions with a particular emphasis on energy and environmental issues
(Van Den Bergh and Gowdy, 2000; Safarzyńska et al., 2012).4 This is particularly relevant as sus-
tainability challenges are robustly coupled with and aggravated by the strong path-dependencies,
and ensuing lock-ins, we observe in the existing sectors (Åhman and Nilsson, 2008; Unruh, 2000;
Safarzyńska and van den Bergh, 2010). Under such conditions, endogenous sustainable transitions
can be viewed as positive tipping points, whose determinants needs investigation (Tbara et al.,
2018). Both demand and supply sides matter in shaping the final technological landscape. Bleda
and Valente (2009) investigate the role of demand induced innovations and eco-labelling in foster-
ing the transition to greener production modes. Safarzynska and van den Bergh (2011) study the
role of boundedly-rational investors in driving technological development within the energy indus-

2See also Smulders et al. (2011) on the role of regulation in triggering transitions, and Eriksson (2018) for the social
desirability of a long run perpetual public support of green technologies.

3The interested reader might want to look at Gillingham et al. (2008) for a survey on technical change modelling in
mainstream environment-climate-economy models.

4We refer the interested reader to Nelson and Winter (1982) and Dosi (1988) for the evolutionary background on tech-
nological change, to Tesfatsion and Judd (2006), Farmer and Foley (2009) and Bonabeau (2002) for background material,
and to Fagiolo and Roventini (2012) and Fagiolo and Roventini (2017) for excellent surveys on recent developments in
macro agent based modelling.
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try, highlighting that the emergent energy mix might strongly depend on the investing heuristics.
Gualdi and Mandel (2016) and Ponta et al. (2018) focus instead on technological diffusion, and
study the effects of stylized feed-in tariffs. The first contribution finds that feed-in tariffs are rela-
tively more effective than preferential market access in supporting the diffusion of radical (green)
innovation, with positive consequences on the dynamics of growth. The second study, instead, re-
ports a trade-off: for moderate policy strength the economy benefits from the transition, while for
high policy intensity investments crowd-out consumption and increase interest rates. Our paper
contributes to the debate, as it study the effects of public subsidies to green energy technologies
and, symmetrically, taxes on fossil-fuel ones.

However, the key ingredient we add to the picture is the representation of climate damages.
Transitions involve a broad range of actors and typically unfold over considerable time-spans (e.g.,
50 years and more, Markard et al., 2012). This is further confirmed by the length of the simula-
tions conducted in the battery of studies reported above and, more specifically, by that the length
of the transition itself. Over such long horizons, it is crucial to consider how climate change could
affect the economic system and, therefore, the dynamics of the transition. Both in the mainstream
economic and complex system literatures, climate damages are either overlooked or vaguely rep-
resented as utility losses (Greiner et al., 2014), thereby failing to consider the wide array of impact
channels identified by the nascent literature on climate econometrics (Hsiang, 2016; Carleton and
Hsiang, 2016). In this respect, we take advantage of the DSK model (Lamperti et al., 2018b), where
different micro-level shocks can be modelled and, therefore, we also link to the Integrated Assess-
ment literature Weyant (2017) which, usually, takes into consideration endogenous technical change
but oversee the macroeconomic impacts of transitions.

3 The model

The DSK model (Lamperti et al., 2018b) represents a complex economy endowed with a climate
box. Economic and climatic variables co-evolve interacting non-linearly, with multiple feedbacks,
and emerging tipping points. A graphical representation of the model is provided in Figure 1.

The economic dynamics is grounded on Dosi et al. (2010, 2013) and is composed by two in-
dustrial sectors, whose firms are fueled by an energy industry. In the capital-good sector, firms
invest in R&D and innovate to improve the performances of the machines in terms of productivity,
energy-efficiency and environmental friendliness. In the manufacturing industry, firms invest in
machine-tools in order to produce an homogeneous product consumed by workers and they can
rely on credit to finance their production and investment plans.5

Energy and industrial production emit greenhouse gasses (e.g. CO2), which in turn affect the
evolution of the temperature. More precisely, we model a stylized global carbon cycle which drives
the projections of Earth’s radiative forcing and, finally, the global mean surface temperature. The
impact of an increase in the temperature of the Earth on economic dynamics is modeled through a
stochastic, time-evolving, disaster generating function (as in Lamperti et al., 2018b). In particular,
the probability of large climate shocks hitting firms raises in tandem with the mean size of damages.
In that, climate change does not automatically lead to higher aggregate damages as in most IAMs,
but rather it modifies the very structure of the economy and the ensuing economic growth (or lack

5See Dosi et al. (2016) for a survey of the K+S model family, to which DSK belongs, and Dosi et al. (2017c) for a recent
development.
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Figure 1: A graphical representation of the DSK model; source Lamperti et al. (2018b).

of). As a benchmark, we also use a standard damage function cutting aggregate output in a linear
way as in Nordhaus and Sztorc (2013). The details of the DSK model are spelled out in Appendix
A.

3.1 Industrial sectors

The economy features a capital-good industry and a consumption-good sectors. Firms in the capital-
good industry produce machines employing labour and energy. Different vintages of machines are
characterized by different productivity of labour, energy efficiency and environmental friendliness. The
unit cost of production of both capital- and consumption-good firms depends on labor productiv-
ity, workers’ wage (w), energy efficiency, as well as energy price (pe). Machines and production
technologies induce CO2 emissions via both their electricity consumption (indirect effect) and their
environmental friendliness, i.e. the amount of polluting substances they emit in each period for
each unit of energy employed throughout the production process.

Technical change and innovation occur in the capital-good sector. Firms invest in R&D a fraction
of their past sales in order to discover new machines or copy the ones of their competitors. New
machines can be more productive, cheaper, or “greener”. Innovation and imitation are modeled as
two step stochastic processes. In the first step, the amount invested in R&D affects the likelihood
of success. In the second one, technological opportunities determines the size of innovation. In the
case of imitation, firms are more likely to copy the competitions with the closest technologies.

The capital-good market is characterized by imperfect information and competition. Capital-
good firms strive to get new customers by sending brochures to a subset of consumption-good firms,
which in turn choose the machines with the lowest price and unit cost of production. Machine-
tool firms fix price a constant mark-up on the unit cost of production. Time-to-build constraints
characterized the production of machines: consumption-good firms receive their new capital-goods
at the end of the period.

Consumer good-firms produce a homogeneous good using their stock of machines, energy and
labour under constant returns to scale. Firms plan their production according to adaptive demand
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expectations. If the current capital is not sufficient to satisfy the desired level of production, they
buy new machines. As machine embed state-of-the-art technologies, innovations diffuse from the
capital- to the consumption good sector. Relatedly, technical change can also induce firms to replace
their current stock of machines with more productive (and environmental friendly) ones. Firms’
gross investment is simply the sum of expansion and replacement investments.

Consumption-good firms finance their investments as well as their production relying on imper-
fect capital markets (Stiglitz and Weiss, 1981; Greenwald and Stiglitz, 1993). Firms first rely on their
stock of liquid assets and then on bank credit. The borrowing capacity of firms is limited by their
ratio between debt and sales. The bank provides loans to consumption-good firms on a pecking
order basis, considering their net worth-to-sales ratio. If credit supply is lower then demand, some
firms end up being credit rationed.

Consumption-good firms first produce and they try to sell their product in the market. Hence,
production do not necessarily coincide. Consumption-good market is characterized by imperfect
competition: firms fix price according to a variable mark-up which evolve reflecting the dynamics of
market shares. In presence of imperfect information, demand is allocated through a quasi replicator
dynamics, wherein firms competitiveness depends on their price and they successfully satisfied
their past demand. Details and equations are collected in Appendix A.

3.2 The energy sector

3.2.1 Electricity production, costs and and revenues

Energy production is performed by a set of heterogeneous power plants featuring green (renewable)
or brown (carbon-intensive) technologies. The energy industry produces and sells electricity to
firms in the capital-good and consumption-good industries on demand. Demand for electricity,
De, is then matched by the aggregate energy production, Qe, obtained from the portfolio of plant.
Energy cannot be stored.

Plants are different in terms of their technical coefficients reflecting cost structures, thermal
efficiencies and environmental impacts. Brown plants burn fossil fuels (e.g. coal, oil) with heteroge-
neous, vintage-specific thermal efficiency Aτ

de, which expresses the amount of energy produced for
each unit of employed non-renewable resource (fossil-fuel).6 For simplicity, we assume that power
plants have a unitary capacity and, in the case of brown energy, they consume one unit of fuel.
Hence, the average production cost for a brown plant of vintage τ is:

cde(τ, t) =
p f

Aτ
de

, (1)

where p f is the price of fossil fuels, exogenously determined on a international market.7 Burning
fossil fuels yields emτ

de emissions per energy unit, thus increasing the carbon concentration in the
atmosphere.

To the contrary, the carbon footprint of green plants is zero. They transform freely available,
renewable sources of energy (such as wind and sunlight) into energy units at a null production

6The subscript de stands for ”dirty electricity”, while τ denotes the technology vintage.
7Notice that electricity production is a highly capital-intensive process, which mainly requires power generation assets

and resources (be them fossil fuels or renewable sources), while the labour input is minimal. We thus assume away labour
from electricity production.
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cost, i.e. cge(t) = 0 (ge, ”green energy”).8

The total production costs depends on the mix of green and dirty plants. We assume that
plants with the lowest unitary generation costs are the first to be activated, in line with the actual
functioning of the electricity industry (Sensfuß et al., 2008; Clò et al., 2015). Indeed, even before
liberalization, the traditional goal of energy systems management was the minimization of system-
wide electricity production, transmission, and distribution costs. In turn, this imply that green
plants are the first to be turned on. More precisely, if De(t) ≤ Kge(t), the set of infra-marginal
power plants IM includes only green plants and the total production cost is zero. If De(t) > Kge(t),
the total production cost corresponds to the cheapest dirty power plants. Assuming the absolute
frequency of vintage τ plants is gde(τ, t), if dirty plants are operative the total production cost is:

PCe(t) = ∑
τ∈IM

gde(τ, t)cde(τ, t)Aτ
de. (2)

The energy price is computed adding a fixed markup µe ≥ 0 to the average cost of the more
expensive infra-marginal plant:

pe(t) = µe, (3)

if De(t) ≤ Kge(t), and
pe(t) = cde(τ, t) + µe (4)

if De(t) > Kge(t), where cde(τ, t) = maxτ∈IM cde(τ, t). By setting a markup on this unit cost level,
there is a positive net revenue on all infra-marginal plants.9

3.2.2 Expansion and replacement investments

In order to fulfil energy demand, new power plants might be necessary. Moreover, old and obsolete
plants should be replaced as well. In particular, we assume that all (brown and green) plants have
a constant life-time corresponding to ηe periods. All new plants are built in house (i.e. within the
energy sector), but their production cost is technology specific. Specifically, the construction costs
for new dirty plants are normalized to zero, whereas in order to install a new green plant of vintage
τ, a fixed cost ICτ

ge needs to be sustained.
The capacity stock Ke(t) is obtained summing up the capacities of all power plants across tech-

nologies (green vs. dirty) and vintages. Recalling that the capacity of plants is normalized to one
and denoting with gde(τ, t) and gge(τ, t) the absolute frequency of dirty and green plant respectively,
one gets:

Ke(t) = ∑
τ

gde(τ, t) + ∑
τ

gge(τ, t). (5)

For a given capacity stock, the maximum production level that can be obtained depends on the
thermal efficiencies Aτ

de of dirty plants (green plants produce at full capacity):

Qe(t) = ∑
τ

gde(τ, t)Aτ
de + ∑

τ

gge(τ, t). (6)

8Some renewable sources, such as wind and photovoltaics, are intermittent and non-dispatchable: their output is
highly volatile at high temporal frequencies as it depends on weather conditions that cannot be controlled by the power
plant operator. However, our model runs on temporal frequencies that are relevant for macroeconomics, such as annual
or quarterly. Over those time horizons, the average output from intermittent renewable is fairly predictable.

9In the aggregate perspective of our model, market power exercise through markups can be seen as equivalent in its
effects to alternative strategies, such as capacity withholding.
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An expansion investment in the energy industry is undertaken whenever the maximum electric-
ity production level Qe(t) is lower than electricity demand De(t). The amount of new expansion
investments EId

e thus equals
EIe(t) = Kd

e (t)− Ke(t), (7)

if Qe(t) < De(t), whereas EIe(t) = 0 if Qe(t) ≥ De(t). A choice is available between green or brown
new plants. We assume that new green capacity is constructed if green plants are cheaper than
brown counterparts in terms of accounting lifetime costs. This means that green energy technologies
are chosen up whenever fixed cost of building the cheapest green vintage is below the discounted
(variable) production cost of the most efficient dirty plant. Hence, the following payback rule is
satisfied:

ICge ≤ b · cde, (8)

where b is a payback period parameter (e.g. Dosi et al., 2010, 2013), ICge = minτ ICτ
ge, and cde =

minτ cτ
de. Accordingly, in case of new green capacity, the expansion investment cost amounts to

ECe(t) = ICgeEIe(t); (9)

whereas it is zero if the payback rule is not met and the firm builds new dirty plants.

3.2.3 Technological innovation

The technology of green and dirty plants change over time as result of innovations. The energy firm
invests a fraction ve ∈ (0, 1) of total past sales in R&D. Total revenues Se(t) are generated from both
green and brown energy sales, i.e. Se(t) = Sge(t) + Sde(t). R&D investment in each technological
trajectory is proportional to the revenues obtained from the sale of energy generated therein:

RDge(t) = veSge(t− 1) (10)

and
RDde(t) = veSde(t− 1). (11)

Such an assumption is coherent with the evolutionary literature on selection processes and technical
change (Nelson and Winter, 1982; Dosi et al., 2010) and, further, reflects the idea that market size
plays a role in shaping the direction of technical change and that investments tend to cumulate on
the prevailing areas (Acemoglu, 2002; Acemoglu et al., 2012).

We model innovation as a two stage stochastic process as in the capital- and consumption good
sectors. More precisely, the innovative search in the two paths is successful with probabilities θge(t)
and θde(t), conditioned on the R&D investment:

θge(t) = 1− e−ηge INge(t) (12)

θde(t) = 1− e−ηde INde(t) (13)

with ηge ∈ (0, 1), ηde ∈ (0, 1). Successful innovators can then access to the second stage where
they project a new green or dirty plant. Innovation along the green technological trajectory reduce
the installation fixed costs. Formally, the installation cost of a new vintage of green plants, ICτ

ge,
is lowered by a factor xge ∈ (0, 1) (a random draw from a Beta distribution) with respect to the
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previous vintage:
ICτ

ge = ICτ−1
ge xge. (14)

Innovation in dirty technology can improve plants’ thermal efficiency and reduce greenhouse gas
emissions. The thermal efficiency and emissions intensity coefficients (Aτ

de, emτ
de) of the new vintage

τ of dirty technology are given by:

Aτ
de = Aτ−1

de (1 + xA
de) emτ

de = emτ−1
de (1− xem

de ) (15)

where xA
de and xem

de are independent random draws from a Beta distribution.10

3.2.4 Profits and liquid assets

Energy sold to the capital- and consumption-good industry is paid in advance. Hence, the total
profits realized in the energy industry reads:

Πe(t) = Se(t)− PCe(t)− ICe(t)− RDe(t) (16)

where Se(t) indicate energy sales, PCe(t) are production costs, ICe(t) denotes expansion and re-
placement investment, and RDe(t) are R&D expenditures. At the end of the period, the stock of
liquid assets in the energy sector is accordingly updated:

NWe(t) = NWe(t− 1) + Πe(t). (17)

3.3 Climate change and climate damages

A climate model is added to our economic system to fully endogenize the relationship between
climate change and the growth pattern of the economy. In particular, we rely on a discrete-time
version of the C-ROADS model described in Sterman et al. (2012, 2013). Such model accounts in a
parsimonious away for the complex physical and chemical relations governing climate’s evolution,
especially including the multiple feedbacks responsible for non-linear dynamics. Note that while
the economy reacts quarterly, the climate module updates annually.

A core carbon cycle, whose details are included in Appendix A, takes the annual emissions from
the industry and the energy sector as input and models carbon exchanges between the atmosphere,
the biomass and the oceans. The latter two elements constitute the main in-take channels, whose
dynamics are affected by the temperature through two main feedback loops. Then, the equilibrium
concentration of carbon in the atmosphere impacts the size of the Earth’s radiative forcing and
finally, the evolution of the temperature.

In particular, building on Schneider and Thompson (1981) and Nordhaus (1992), the heat content
of the two layers (upper layer: atmosphere and surface of oceans; lower layer: deep oceans) is
modulated by their reciprocal exchanges and, with respect to the upper compartment, by the CO2

10A more realistic depiction of green energy technologies would set their thermal efficiencies far below 100% (i.e. they
can only convert a relatively small fraction of the energy they receive from renewable sources) and allow for efficiency-
improving innovations. Higher thermal efficiency allows a faster amortization of the fixed construction cost. The way we
model innovation in green technologies, however, yields the same effects, because a lower fixed construction cost allows
to anticipate the break-even point, too.
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radiative forcing (FCO2):11

Tm(t) = Tm(t− 1) + c1 {FCO2(t)− λTm(t− 1)− c3[Tm(t− 1)− Td(t− 1)]} (18)

Td(t) = Td(t− 1) + c4 {σmd[Tm(t− 1)− Td(t− 1)]} , (19)

where Ti is the temperature in the different layers relative to pre-industrial levels, Ri is the thermal
inertia in the two boxes, λ is a climate feedback parameter, FCO2 represents the radiative forcing in
the atmosphere from greenhouse gasses (relative to pre-industrial levels), and σmd is the transfer
rate of water from the upper to lower ocean layers accounting also for the heat capacity of wa-
ter. The main climate variable we are interested in is the temperature of the surface-upper oceans
compartment, Tm.

How does climate change affect economic dynamics? In most IAMs, the negative impact of rising
temperatures on the economy is simply captured via an aggregate damage function expressing
fractional losses of GDP.12 Apart from the difficult (and often arbitrary) choice of parameters, one
issue with the use of such aggregate damage function is that it does not distinguish among different
microeconomic impact channels. Is climate change reducing labour productivity? Is it increasing
capital depreciation? Or, is it augmenting, caeteris paribus, energy demand? And are firms and
households hit in the same way?13

A recent econometric strand of literature is increasingly focusing on the analysis of climate
damages, thus providing empirical estimates to answer such questions. Carleton and Hsiang (2016)
propose a survey of recently investigated climate impacts on labour productivity, labour supply,
mortality, electricity consumption and a series of other variables. There is little doubt that such
micro impacts will manifest, in aggregate terms, through a variation of final income. However,
disentangling the various channels, the possible heterogenous impacts on agents, and their effects
on the behaviour of the economy remains under-investigated.

The DSK model relys on stochastic agent-based damage generating function, which endogenously
evolve according to the dynamics of the climate. Such a function simply takes the form of a density
and, at the end of each period, multiple draws establish the size of the shocks hitting firms and
workers. Notably, shocks are heterogeneous across agents and across economic variables, with
only a subset of firms facing climate disasters. Given its flexibility, we take advantage of a Beta
distribution over the support [0, 1], whose density satisfies:

f (s; a, b) =
1

B(a, b)
sa−1(1− s)b−1, (20)

where B(·) is the Beta function and a, b are respectively the location and scale parameters. Both

11Radiative forcing is a measure of the influence a factor has in altering the balance of incoming and outgoing energy in
the Earth-atmosphere system. It is then an index of the importance of the factor as a potential climate change mechanism
(IPCC, 2007b). To simplify we use CO2 as a proxy for all green house gases and we consider only its radiative forcing.

12For example, Nordhaus (2008) uses an inverse quadratic loss function, Weitzman (2009) proposes a negative expo-
nential specification emphasizing the catastrophic role of large climate changes, while Tol (2002) uses sector and area
specific loss function.

13For more extensive and circumstanced critiques to the existing damage functions see Ackerman et al. (2010) and
Pindyck (2013).
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Table 1: Summary statistics on selected variables under business-as-usual scenario and no climate
shocks, and comparison with historical empirical counterparts.

MC average MC st. dev. Empirical counterpart Data source

Yearly GDP growth 0.032 0.004 0.044 WDI
Unemployment rate 0.088 0.021 0.061 WDI
Energy demand growth 0.028 0.003 0.023 WDI
Emissions growth 0.013 0.001 0.018 CDIAC
Relative volatility of consumption 0.64 0.03 0.79 FRED
Relative volatility of investments 1.95 0.05 2.77 FRED
Volatility of output 0.258 0.013 0.0157 FRED
Likelihood of crises 0.10 0.065 - -
Share of green energy at 2100 0.50 0.22 - -
Emissions at 2100 26.81 9.510 - -
Temperature at 2100 4.45 0.543 - -

Note: All values refer to a Monte Carlo of size 200. Emissions are expressed in GtC, which can be converted in GtCO2 using
the following conversion factor: 1 GtC = 3.67 GtCO2. Temperature is expressed in Celsius degrees above the preindustrial level,
which is assumed to be 14 Celsius degrees. WDI stands for World Development Indicators, provided by the World Bank. Empirical
counterparts are computed over large time spans, but are subject to data availability: World real GDP, unemployment and CO2
emissions data refer to the period from 1980 to 2010; employed energy consumption data go from 1991 to 2013; quarterly data for
volatility analysis are from 1970 to 2002 and refer to the US economy, but the reported features are quite robust across countries, see
also Stock and Watson (1999); Napoletano et al. (2006). Volatilities are expressed as standard deviations of bandpass filtered series;
relative volatilities use output volatility as comparison term. A crisis is defined as an event where the yearly loss of output is higher
than a 5% threshold. Growth rates computed as (yfinal − yinitial)/(yinitial ∗ T).

parameters are assumed to evolve across time reflecting changes in climate variables:

a(t) = a0[log(1 + Tm(t))] (21)

b(t) = b0
σ10y(0)
σ10y(t)

, (22)

where σ10y(t) is a measure of the variability of surface temperatures across the previous decade
and a0, b0 are positive integers.14 Equations (21) and (22) shape the disaster generating function as
a right-skewed, unimodal distribution, whose mass moves along the positive axis as temperature
increases, thereby raising the likelihood of larger shocks. Equation (22) determines the size of the
right tail of the distribution and allows to account for the importance of climate variability on
natural disasters (Katz and Brown, 1992; Renton et al., 2014).

Formally, climate shocks hit the economy at the end of each period according to the following
specification:

Xi,τ(t) = X′i(t)[1− ŝx
i (t)], (23)

where i indexes firms in the economy, ŝx(t) is the draw from the disaster generating function, while
X(t) captures the target impact variable one wants to study. In the simulation experiments below,
we will focus on labor productivity and energy efficiency characterizing machines and production
techniques.

14For modelling purposes we estimate the standard deviation of previous ten recorded temperatures; however, a widely
used measure of climate variability corresponds to the count of extreme temperatures.
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Figure 2: Temperature projections and their density estimates.

(a) Temperature projections. (b) Distribution of temperature.

(c) Average firm productivity projections. (d) Distribution of average firm productivity.

Note: All panels show 50 model runs under different seeds of the pseudo-random number generator. Red dashed lines
in panel 2b indicate mean values. In panel 2d the x-axis is in logarithmic scale.

4 Empirical validation

We start exploring whether the DSK model can account for micro and macro empirical regularities
concerning economic and climate dynamics. The DSK model should be considered as a global
model. In its baseline (benchmark) configuration, the model runs in absence of climate damages
and the parametrization reported in Appendix B.

In line with the indirect calibration approach discussed in Windrum et al. (2007) and Fagiolo
et al. (2007) and following the prevailing practice in the agent based macro modelling literature
(see the survey in Fagiolo and Roventini, 2012, 2017), the parameters of the DSK models have been
selected to reproduce six empirical features of the real world system.15 More precisely, simulated
data should account for: (i) presence of self-sustained growth and business cycles punctuated by

15In a nutshell, the indirect calibration approach first identifies a set of empirical features that the model wants to
match, then employs a search strategy to select points into the parameter space and finally test weather the identified
empirical properties are robustly present in the simulated series. For a survey of validation approaches in the macro
ABM literature we refer the interested reader to Fagiolo et al. (2017) and to the literature review sections in Lamperti
(2017a,b) and Guerini and Moneta (2017).
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Table 2: Main empirical stylized facts replicated by the DSK model. Source: Lamperti et al. (2018b).

Stylized facts Empirical studies (among others)

Macroeconomic stylized facts
SF1 Endogenous self-sustained growth Burns and Mitchell (1946); Kuznets and Murphy (1966)
with persistent fluctuations Zarnowitz (1985); Stock and Watson (1999)
SF2 Fat-tailed GDP growth-rate distribution Fagiolo et al. (2008); Castaldi and Dosi (2009)

Lamperti and Mattei (2016)
SF3 Recession duration exponentially distributed Ausloos et al. (2004); Wright (2005)
SF4 Relative volatility of GDP, consumption, investments and debt Stock and Watson (1999); Napoletano et al. (2006)
SF5 Cross-correlations of macro variables Stock and Watson (1999); Napoletano et al. (2006)
SF6 Pro-cyclical aggregate R&D investment Wälde and Woitek (2004)
SF7 Cross-correlations of credit-related variables Lown and Morgan (2006); Leary (2009)
SF8 Cross-correlation between firm debt and loan losses Foos et al. (2010); Mendoza and Terrones (2012)
SF9 Pro-cyclical energy demand Moosa (2000)
SF10 Syncronization of emissions dynamics and business cycles Peters et al. (2012); Doda (2014)
SF11 Co-integration of output, energy demand and emissions Triacca (2001); Ozturk (2010); Attanasio et al. (2012)

Microeconomic stylized facts
SF12 Firm (log) size distribution is right-skewed Dosi (2007)
SF13 Fat-tailed firm growth-rate distribution Bottazzi and Secchi (2003, 2006)
SF14 Productivity heterogeneity across firms Bartelsman and Doms (2000); Dosi (2007)
SF15 Persistent productivity differential across firms Bartelsman and Doms (2000); Dosi (2007)
SF16 Lumpy investment rates at firm-level Doms and Dunne (1998)
SF17 Persistent energy and carbon efficiency heterogeneity across firms DeCanio and Watkins (1998); Petrick et al. (2013)

endogenous crises; (ii) average growth rate of output between 2.5% and 3.5%; (iii) average unem-
ployment rate between 5% and 15% percent; (iv) investment more volatile than output, consumption
less volatile than GDP; (v) growth rate of energy consumption lower than growth rate of output,
but higher than the growth rate of emissions, (vi) growth rate of emissions lower than the growth
rate of output, but consistent with RCP 8.5, (vii) projected temperature anomaly at 2100 in line with
the ranges relative to RCP 8.5.16

The simulation protocol adopted to inspect the baseline configuration employs 400 simulation
steps, which should be interpreted as quarters. Accordingly, the model can simulate and project
GDP and temperature dynamics till the year 2100 as commonly done by integrated-assessment
models. To wash away the effects due to stochastic terms, we performs Monte Carlo exercises of
size 200 on the seed of pseudo random number generator. The same protocol will be maintained
throughout the paper.

Simulation results show that the baseline DSK model is consistent with the seven requested
conditions introduced earlier and, further, it reasonably matches the long run empirical counterparts
of many key variables (e.g. growth paces of output and energy demand; see Table 1). The economy
exhibits endogenous fluctuations and self-sustained growth (3.2% on average; see also Figure 2)
punctuated by crises, emissions grow at an average pace that is close to those observed in the last 30

years and energy intensity to GDP is decreasing over time as suggested by the empirical evidence.
In addition, final projections of total emissions (average of 26.81 GtC at 2100) are in line with those
produced in the business-as-usual scenario by many other integrated assessment models used by
the IPCC (Clarke et al., 2009; Nordhaus, 2014). Moreover, the projections of temperature anomaly
over pre-industrial levels are consistent with RCP 8.5 and show an average of 4.45 Celsius degrees
(see Figure 2).

Beyond these general features, the DSK model jointly reproduces a large ensemble of micro
and macro stylized facts characterizing short- and long-run behavior of modern economies. Table

16RCP stands for Representative Concentration Pathways; they describe four possible climate futures, all of which are
considered possible depending on how much greenhouse gases are emitted in the years to come. RCP 8.5 is the most
pessimistic scenario and reflects a world without policy intervention, uncontrolled emissions and high energy demand.
See Riahi et al. (2011) for details.
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Table 3: Percentages of non-rejection of statistical equilibrium and ergodicity tests.

baseline carbon lock-in transition to green

Variable Equilibrium Ergodicity Equilibrium Ergodicity Equilibrium Ergodicity

Output 0.85 0.83 0.95 0.91 0.90 0.89

Average productivity 0.91 0.89 0.96 0.92 0.89 0.86

Emissions 0.46 0.41 0.95 0.91 0.89 0.88

Temperature 0.74 0.72 0.92 0.90 0.85 0.83

Note: The results come from T(T − 1)/2 and T ·M pairwise comparisons for equilibrium and ergodicity respectively.

2 reports the main empirical regularities replicated by the model together with the corresponding
econometric evidence. Relevantly, from a long run perspective, the model matches co-integration
relationships between output, energy demand and emissions. Moreover, growth rates and duration
of recessions display fat-tailed distributions, pointing to the fact that crises are more frequent that
what expected in a Gaussian world. As a consequence, macroeconomic volatilities are relevant and
should be also taken into account in climate change economic analysis as advocated by e.g., Rogoff
(2016). Indeed, from a short run perspective, we find that DSK exhibits business cycles properties
akin to those observed in developed economies: investments are lumpy and more volatile than
output and consumption, R&D expenditures are pro-cyclical and tend to anticipate the economy’s
fundamentals. This, in particular, supports the idea that technical change is a relevant element in di-
recting the pattern of growth. Finally, we notice that emissions and GDP are strongly synchronized,
which suggest a careful interpretation of emission slow-downs.17

5 Green transitions and climate change dynamics

Let us now consider under which conditions a green transition to a sustainable growth path can
emerge and if such a process is characterized by path-dependency and possible carbon lock-ins.
More specifically, we adopt the following strategy. First, we study green transitions switching off
climate-change shocks (cf. Section 5.1). In this way, by isolating the economy from the possible
negative impacts of climate change, we can focus on the economic processes and constrains affect-
ing the energy choices of firms. We then introduce feedbacks from climate change to economics
dynamics, thus studying the co-evolution of the economy and the climate (see Section 5.2). Finally,
we analyze the possible policy interventions to support the transition to a sustainable growth path
grounded on renewable energies (Section 5.3).

5.1 Green transition in an economy with zero climate-change impacts

We begin considering the adoption of green vis-à-vis dirty energy technologies and we study the en-
suing economic dynamics assuming that higher level of temperatures never trigger climate shocks.
This is a strong assumption as a closer scrutiny of Figure 2 suggests that the model projects tem-
perature anomaly at the end of the century well above 4 degrees in the vast majority of cases.
However, in some simulation runs, temperature growth is much less pronounced and it does not

17For a more detailed analysis of the empirical regularities that the model reproduces, together with their formal
investigation, we refer the reader to Lamperti et al. (2018b).

15



Figure 3: Example of runs where a carbon lock in or a green transion occurs.
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(a) Share of green energy production - Lock in.
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(d) Energy demand - Transition.

Table 4: Kolmogorov-Smirnov tests for difference between equilibria.

Variable Kolmogorov-Smirnov test statistic p-value Test-type N

Output growth 0.2125 0.1017 two-sided 200

Emissions growth 0.4438 0.0000 two-sided 200

Emissions at 2100 0.8250 0.0000 two-sided 200

Temperature at 2100 0.5688 0.0000 two-sided 200

Note: output and emission growth are averages over the whole time span.

exceed the 3 degrees threshold at 2100. Since the model is run in a business-as-usual (BAU) scenario,
i.e. without mitigation and adaptation policies, two reasons could explain the observed patterns.
First, the economy growth’s engine could loose momentum, thereby reducing aggregate produc-
tion, emissions and, finally, climate change. Second, the economy endogenously changes its energy
mix and, in some cases, moves away from fossil-fuels to renewables, thus reducing the increase in
temperature.

To disentangle the two possible effects, we rely on a series of formal tests for stationarity and
ergodicity of stochastic simulation models (Grazzini, 2012; Guerini and Moneta, 2017; Dosi et al.,
2017b). Such tools allow checking whether a model exhibits one or more statistical equilibria. In
a nutshell, the model runs in an ergodic statistical equilibrium state if the properties of the series
it generates are constant. In particular, we will first study whether the series (or a transformation

16



of them) have distributional properties that are time-independent. Then, we will test whether the
series are ergodic, meaning that the unknown stochastic process selecting the observed time series
can be treated as a random sample. Following Guerini and Moneta (2017), we simulate the model
in its baseline configuration, transform the data removing trends (if necessary), and collect them in
a M× T matrix, where M = 200 represents the size of the Monte Carlo experiment and T = 400 the
simulation length. Then, we use a series of Kolmogorov-Smirnov tests on pairs of series to detect the
presence of a statistical equilibrium and its ergodicity. In particular, the model can be considered in
a statistical equilibrium if a good proportion (e.g., 90%, as suggested in Guerini and Moneta, 2017) of
tests do not reject the null hypothesis of equality of distributions, where each of these distributions
is obtained polling data relative to the same simulation period but to different MC runs. Further,
the statistical equilibrium is said to be ergodic if a good proportion (90%) of Kolmogorov-Smirnov
tests confirm that distributions across time and seeds do not differ. In particular, ergodicity is
determined by checking the equality of pairs of distributions, where the first is obtained pooling
observations across time (within the same MC run) and the second pooling observations across
runs (at the same time). Additional details on tests for statistical equilibria and their ergodicity are
included in Appendix C. In what follows, we focus on 4 variables: (i) GDP, (ii) average productivity,
(iii) emissions and (iv) temperature, where trends are removed through logarithmic differences.

Table 3 presents the percentage of non-rejections of the Kolmogorov-Smirnov tests carried out for
each pairwise comparison of series. It clearly shows that the time series delivered by DSK model do
not appear to exhibit one statistical equilibrium and ergodicity. Emissions and temperature anomaly
appear to drive such a result. In particular, the very low non-rejection rate for emissions suggests
that different dynamics of climate change may be closely linked to the energy mix adopted in the
economy.

In turn, we find that the model produces a non-ergodic behaviour characterized by two statistical
equilibria, each encompassing model runs characterized by specific dynamics of the share of green
energy production (cf. Figure 3 and the last columns of Table 3 ). A carbon intensive lock in occurs
whenever in a given run, the share of green energy drops below 15% and never rises again. Con-
versely, in the transition to green outcome, the share of green energy reaches the 85% threshold and
never fall back afterward. As the energy market employ the cheapest power plant first (see Sec-
tion 3), the transition toward sustainable growth occurs under comparable energy demand patterns
observed in the carbon lock in cases. This suggests that the emergent energy mix depends on the
relative competitiveness of different technologies, rather than on market design elements. A battery
of Kolgomorov-Smirnov tests applied to average output and emission growth rates, and to the final
observation (at 2100) of emissions and temperature anomaly confirm that the two statistical equilib-
ria are statistically different in terms of model behaviour they produce, especially for climate-related
variables (cf. Table 4).

Let us now investigate the behaviour of the model under carbon lock ins and green transitions.
Table 5 reports the Monte Carlo average values of output growth, unemployment, emission growth,
emissions and temperature at 2100, as well as their standard deviations. In addition, it further
clusters runs on the basis of the timing they employ to reach their equilibrium state. As one could
reasonably expect, carbon-intensive lock-ins are much more frequent (82%) than carbon decoupling
outcomes (18%).18 Moreover, we find that the most of (90%) of carbon lock-ins take place fast, i.e.

18In no Monte Carlo runs the share of renewable energy continues to fluctuate in way that does not allow categorization
in one of the two types of equilibrium patterns.
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Table 5: Likelihood of transition in the baseline configuration and main features of the different
endogenous scenarios.

Stat. Eq. I: Carbon intensive lock-in Stat. Eq. II:Transition-to green

Likelihood 82% 18%

before 2025 after 2025 before 2075 after 2075

90% 10% 91% 9%

Output growth 3.16% 3.14% 3.20% 3.18%
(0.001) (0.002) (0.001) (0.004)

Unemployment 11.4% 12.1% 9.12% 10.0%
(0.016) (0.020) (0.019) (0.012)

Emission growth 1.22% 1.25% 0.77% 0.96%
(0.001) (0.002) (0.001) (0.002)

Emissions at 2100 28.64 30.12 18.22 23.13

(1.761) (2.237) (1.52) (2.172)
Temperature at 2100 4.59 4.91 1.75 2.68

(0.103) (0.178) (0.123) (0.153)
Note: all values refer to the average computed on the sub-sample of runs from a Monte Carlo of size 200 that are classified in each
scenario. Standard errors are reported below each coefficient in parenthesis.

before 2025. A similar feature characterizes the transition to the sustainable scenario: when green
technologies start to diffuse and reach some critical mass, their relative share with respect to dirty
ones suddenly increases and they saturate the market, showing a typical S-shaped diffusion curve.
Such results stems from the large investment outlays required to build renewable energy plants (in
line with empirical evidence, see e.g. EIA, 2013). Moreover, a growing penetration of renewables
causes a merit order effect whereby fossil-fuel plants are crowded out and the average electricity
price falls (see various contributions from de Miera et al., 2008). In turn, unit production costs of
capital- and consumption-good firms decline (see also Appendix A), leaving larger cash flows for
investments in R%D and new green production capacity.

Our findings suggest that transition to green energy production ought to be timely in order to
achieve sustainable growth with temperature projections below the +2 degree threshold at the end
of the century. More specifically, simulation results show that transition should take place before
2030 to meet the +2 degree target and that temperature will likely rise above +3 degrees if the switch
to green energy production occurs after 2075 (cf. Table 5). At the same time, economic growth is
higher and unemployment rate is lower in carbon decoupling outcomes vis-à-vis fossil fuel lock-
ins. Such results find in line with recent empirical evidence showing that investments in renewable
energies creates substantially more jobs than in fossil fuels (Garrett-Peltier, 2017). Transitions to-
ward sustainable growth trajectories could thus lead to win-win outcomes characterized by lower
temperature and higher economic growth. However, the foregoing results do not account for the
possible feedback effects from climate change to the economy. Let us study whether they are robust
in presence of climate-change shocks hitting the economy.

5.2 Climate impacts and green transition

In the previous sections we have voluntarily excluded climate change shocks from the picture. This
allowed to explore the properties of the model in absence of damages, while keeping consistency
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Table 6: Likelihood of transition, economic performances and emissions under the different climate
shock scenarios. Aggregate shocks use the damage function in Nordhaus and Sztorc (2013) and
target aggregate output. Labour productivity and energy efficiency shocks hit individual firms.

Shock scenario: Transition likelihood Output growth Energy growth Emissions at 2100

Aggregate output 18% 3.18% 3.09% 28.33

(of which 83% before 2025) (0.001) (0.003) (6.431)
Labour productivity 20%*

1.51%*
1.16%*

25.70
*

(of which 69% before 2025) (0.002) (0.003) (4.921)
Energy efficiency 7%*

3.02% 3.37%*
40.64

*

(of which 43% before 2025) (0.003) (0.003) (3.872)

Note: all values refer to the average computed from a Monte Carlo of size 200. Standard errors are reported below each coefficient
in parenthesis. * indicates a statistically significant (0.05 level) difference with respect to the Aggregate output scenario; tests for
transition likelihoods are carried out via bootstrapping.

with the macro agent based and system dynamics literature on transitions (e.g. Safarzynska and
van den Bergh, 2011; Ponta et al., 2016; see section 2 for details). However, as moving away from
fossil fuels and developing low carbon energy capacity can take time (in our simulation the average
time is around 40 years, consistent with the discussion in Markard et al., 2012), climate change is
likely to exert significant effects on the transition (IPCC, 2014; Schleussner et al., 2016; Springmann
et al., 2017), especially in absence of corrective policies. Here we present results from a series of
computational exercises that investigate the impact of micro-level climate damages (see section 3.3)
on the likelihood and feature of transitions to low carbon energy sources.

We model climate damages across three scenarios:

• Aggregate shocks on GDP as in traditional IAMs (Nordhaus and Sztorc, 2013; Nordhaus, 2014).

• Micro labour productivity (LP) shocks. Labor productivity (AL
i,τ and BL

i,τ, see Appendix A) falls by
a factor that varies across firms, as climate change negatively impacts on workers’ operational
and cognitive tasks (see Seppanen et al., 2003, 2006; Somanathan et al., 2014; Adhvaryu et al.,
2014.

• Micro energy efficiency (EF) shocks. Firm-level energy efficiency (AEE
i,τ and BEE

i,τ , see Appendix A)
is reduced as climate shocks increase energy requirements in production activities (e.g. more
stringent needs of cooling in response to higher temperatures and of heating in response to
weather extremes, or partially ruined machines in response to natural disasters; see Auffham-
mer and Aroonruengsawat, 2011; Auffhammer and Mansur, 2014; Jaglom et al., 2014).

. While in the aggregate shocks case we adopt the damage function proposed in Nordhaus and Sztorc
(2013), in the two remaining scenarios we employ the bottom-up approach described in section
3.3. In that, heterogeneous climate shocks hitting firms are drawn from a Beta distribution whose
first and second moments closely follows the quadratic behaviour assumed in DICE and in a large
part of the literature. Indeed, we account both for damages triggered by increases in temperature
levels and variability. To provide an insight, equations 21 and 22 imply that the average individual
climate shock would size about 1.46% for a temperature anomaly of 2 degrees, which becomes
3.69% at 3 degrees and 6.7% at 4. Table 6 collects the results of our comparison across the three
impact scenarios.

Simulation results show that the likelihood of transitions towards green growth depends on
how climate damages are modelled. In the standard aggregate perspective commonly adopted
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by the majority of IAMs (Table 6, upper row), the likelihood of transition is invariant to climate
damages as shocks affect only aggregate potential output. However, when one assumes that the
occurrence and magnitude of micro climate damages affects agents heterogeneously, the probability
of achieving a sustainable, low emission growth pattern depends on the dynamics of climate change
(cf. Table 6, middle and lower row). More specifically, shocks to labour productivity might increase
the likelihood of transitions (20% vs. 18% in the case of aggregate damages), while the opposite
happens for energy-efficiency shocks (only a 7% likelihood).

Such results stem from the size of the final demand for energy and the role path dependence.
Indeed, if energy efficiency is reduced by climate shocks, the energetic needs to produce a given ag-
gregate output will increase, thereby inducing the energy industry to adapt its generation capacity.
Since fossil-fuel technologies start with a lower lifetime production cost, expansionary investment
will favour such a technological trajectory.19 Dynamically, this leads to a much larger spending in
R&D activities aimed at improving the efficiency of brown plants, which creates a vicious cycles im-
peding the shift to low carbon technologies. This phenomenon turns out to dominate the dynamics,
notwithstanding the penalizing effect the merit order market mechanisms exerts on brown plants.

By a similar token, shocks to labour productivity induce an increasingly sharp contraction in
industrial production, wages and final demand (notice the low growth rate of output in Table 6, see
also Lamperti et al., 2018b for additional details). In presence of merit order activation protocol,
the lower energy demand will induce an increase in the share of green plants’ production in the
energy mix, which will further stimulates green R&D and improves the competitiveness of low
carbon technologies. When such technologies catch-up their initial backwardness, the transition
start to take place and, further self-sustains, as the marginal cost of green plants remains below the
one of the brown counterparts, making them operating at increasing under-capacity.20 At the end
of their lifetime, un-activated brown plants will be replaced by green energy generation units, thus
sustaining the transition.

5.3 Climate policy and green transition

Given the presence of substantial and heterogenous climate impacts, what is the role of climate
policies in triggering and sustaining the transition to renewable energy sources? The last battery
of simulations exercises will reply to this question. In particular, we will focus on price-related
instruments, which modify the cost of fossil fuels and, in turns, the relative cost-competitiveness of
green vs. brown technologies. In that, we study the imposition of an implicit carbon tax (Martin
et al., 2014).21

In the following experiments, we assign different values to the parameter, θ, which modifies the
price of fossil fuels and, in turns, the relative lifetime and production costs of brown energy plants.
In particular, the unitary production cost of a fossil-fuel plant of vintage τ can be written as

cde(τ, t) =
p f + θ

Aτ
de

. (24)

Then, the lifetime total cost of a brown plant, LCde(t), is obtained, under the assumption that

19See also Acemoglu et al. (2012) and Aghion et al. (2015) on this point.
20This findings are in line with the results in Van Der Ploeg and Withagen (2012) and Ploeg and Withagen (2014).
21Note that a good portion of climate policies is ultimately representable through the policy effect on energy prices,

which reflect the cost-structure of energy generation (Marin et al., 2017).
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the plant is employed at full capacity for its entire life, by simply multiplying cde(τ, t) by be, which
represents the accountable life of the plant. On the green side (cf. section 3), unitary production costs
of renwable energy plants are virtually set to zero, while installation fixed costs are represented by
ICτ

ge, which is dynamically affected by innovations in the green technological trajectory. This implies
that the lifetime total cost of a green plant, LCge(t), is exactly equal to ICτ

ge. Our policy experiments
focus on the ratio LCde/LCge, which expresses the cost-advantage of dirty technologies. By varying
the parameter θ, we modify the relative cost-competitiveness of low carbon technologies: θ > 0
mimics a tax on fossil fuels or a subsidy toward investments in green energy technologies (e.g. a
sort of feed-in tariff increasing the expected profitability of a green investment), whereas θ < 0
captures fossil fuel subsidies, which are diffused policy instruments (Coady et al., 2017).22

We adopt the following simulation protocol: starting from the baseline configuration described
in section 4, where brown energy technologies have a 20% cost-advantage at the beginning of the
simulation23, and we modify θ through the whole simulation time (in line with policy exercises in
macro ABMs, c.f. e.g. Dosi et al., 2015; Popoyan et al., 2017; Ponta et al., 2016). Such experiments
are combined with the three climate-change impact scenario described in the previous sub-section
and, namely, aggregate shocks to GDP, micreconomic shocks to labour productivity and microeconomic
shocks to energy efficiency. Figures 4 - 6 summarize our main findings.

Simulation results show that price of fossil fuels influences the likelihood of transition in a
non-linear way (panels 4a, 5a and 6a). A policy-engineered increase in the cost-competitiveness
of green energy technologies can increase the likelihood of a transition, regardless of the type of
climate damage we assume. However, given the initially larger installed capacity of brown vis-á-vis
green plants (see Appendix B) and the cumulative nature of the technical change process, small
variations of the LCde

LCge
ratio have a remarkable low impact on inducing the transition. In presence

of sufficiently carbon tax and/or subsidies to green energy, the likelihood of achieving growth
decoupled from carbon emission improves substantially. Naturally, the transition to sustainable
growth is almost impossible in presence of subsidies to fossil-fuel energy plants. These results
suggest that energy policy interventions needs to be substantial in order to significantly affect the
environmental sustainability of the economy’s growth process. Moreover, policies ought to be timely
as path-dependence in the process of technological change (David, 1985; Arthur, 1994) deeply affect
the policy outcome.24

Further, we find that the effectiveness of policy interventions also depends on the type of climate
damage. As already documented in section 5.1 with respect to the likelihood of transition, policy
impact differs shifting from aggregate to individual climate damage scenarios. When shocks are
aggregate, consumers suffer the damage and reduce consumption, thereby cutting output levels
but leaving unaltered the production schedule for the next period. In that, aggregate shocks have
no memory and policy intervention is not affected by the shock. Things change when climate di-
rectly reduce productive abilities of firms. In particular, when climate change shocks affects labour
productivity, policies supporting green energy technologies are substantially more effective than in
the case of shocks targeting energy efficiency. Similarly to what discussed above, the size of final
demand matters. When aggregate demand is lower (see panels 4b, 5b and 6b), the economy is more

22Note that such policy experiments are akin to a variation of the price of fossil fuels in international markets.
23Such an initial setting is broadly consistent with the existing estimates and modeling assumptions for energy tech-

nologies. We refer the interested reader to the series of annual reports of the IEA (https://www.eia.gov/outlooks/aeo/)
and to Tidball et al. (2010) for information about costs of energy plants.

24For further readings on the role of path dependence in shaping the technological landscape, see e.g. Liebowitz and
Margolis (1995); Frenken and Nuvolari (2004); Castaldi and Dosi (2006) and, more recently, Dosi et al. (2017a).
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responsive to energy policies aimed at increasing the competitiveness of green technologies. On
the contrary, when climate change exerts its negative effects on plants’ efficiency, the final demand
of energy increases, and green plants face a comparative disadvantage in terms of R&D spend-
ing, which cuts the chances of observing a surge in green energy production. As a consequence,
stronger policies are required to support the transition, whose likelihood remains, however, remark-
ably low (17%) even when cost-advantage of brown plants is initially reduced to 1% by the policy
intervention. Climate damages increasing energy demand exacerbate the role of path-dependence
in the energy industry, pointing to the need for additional complementary policy instruments (e.g.
command-and-control; see Lamperti et al., 2015) to market-based incentives.25

6 Discussion and conclusions

Climate change can impact both the process of transition towards low-carbon energy systems and
the effectiveness of related policy interventions. In the paper, we have employed the DSK agent-
based integrated assessment model (Lamperti et al., 2018b) to study the shift from brown (fossi-fuel
based) to green (low-carbon) energy technologies and its macroeconomic implications in presence
of climate change.

We find that the model exhibits two statistical equilibria (a carbon intensive lock-in and a tran-
sition to green energy) characterized by different energy mix. Transitions from brown to a green
energy system might endogenously happen, but the likelihood of such events is exceptionally small
and it depends on exceptional technological breakthrough.26 Further, we found that climate change
can influence the likelihood of carbon decoupling according to the way climate damages are mod-
elled. When an aggregate and linear damage function is considered, as in the majority of general-
equilibrium IAMs, the likelihood of transition is invariant to climate shocks, which simply reduce
aggregate GDP. However, in presence of microeconomic climate damages, the probability of tran-
sition depends on the channels climate damages affect agents and firms. When climate shocks hit
labor productivity, economic growth is reduced, but the likelihood of transition to green energy is
higher. This result supports the idea that the economic environment is more responsive to climate
policy in times of crisis (Jaeger et al., 2011; Ekins et al., 2014), also in line with recent systematic
evaluations of the green stimulus programs implemented in the aftermath of the 2008 financial cri-
sis in the U.S. (Mundaca and Richter, 2015). On the other side, climate damages reducing energy
efficiency exacerbates the role of path-dependence in the energy industry, thereby increasing the
difficulty of the catch-up process of clean energy technology.

Of course, the climate damages emerging in the present paper are somewhat downwardly biased
by the fact our impact scenarios constraint shocks to a single variable (e.g. labour productivity
or energy efficiency). This is - however - a necessary condition to study how different impact
channels affect the macro-economy. Table 7 provides insights on the overall damage of climate
change, assuming that all impacts other than those studied in the scenarios can be represented by a
variable, labelled “environmental quality”, which deteriorates over time by a factor corresponding
to the average shock suffered by agents in that particular period (this is consistent with the similar

25As reported in Figure 6, in presence of energy efficiency shocks, GDP and emissions growth remains relatively
high with respect to the other two scenarios, as individual damages just decrease energy efficiency, whose aggregate,
macroeconomic effects are found to be limited (see the extensive discussion on macroeconomic impacts of climate change
in Lamperti et al., 2018b).

26See also Unruh (2002) for thoughtful discussion on escaping carbon lock-ins with and without supporting policy.
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Table 7: A simplified approach to welfare evaluation of climate damages in case of labour produc-
tivity and energy efficiency shocks. All values are relative to the case of no damages (a value of 100

would indicate identity with respect to the scenario where climate damages are not considered).
Welfare is proxied as a simple average of normalized GDP, employment rate and environmental
quality. Environmental quality degradation represents all dimensions of climate impacts other than
labour productivity and energy efficiency. Environmental quality is assumed to start at 100 and
decrease by a factor equal to the average climate shock suffered by agents in that period.

GDP Employment rate Environmental quality Well being index

Labour Productivity Shocks
2000-25 0.90 0.96 0.98 0.95

25-50 0.76 0.88 0.94 0.86

50-75 0.47 0.71 0.90 0.69

75-2100 0.21 0.48 0.84 0.51

Energy Efficiency Shocks
2000-25 0.96 0.99 0.98 0.98

25-50 0.88 0.99 0.94 0.94

50-75 0.87 0.93 0.90 0.90

75-2100 0.84 0.92 0.84 0.87

Note: all values refer to the average computed from a Monte Carlo of size 200.

shape damage functions show in different sectors, see Hsiang et al., 2017). Results show that in both
our scenarios climate damages are substantial. For example, using a simplistic “welfare” measure
averaging GDP level, employment share and environmental quality (all conveniently normalized),
climate change would reduce well-being by 49% in the labour productivity shock scenario and 13%
in the energy efficiency shock scenario, pointing to the need of an early green transition whatever
the impact channel might actually be.

Our findings have both theoretical and policy implications. From a modelling perspective, the
traditional way of representing damages in the climate economics literature in terms of GDP losses
oversimplifies the effects of climate change in a complex economic system, hiding the role of cli-
mate impacts in fostering a carbon lock-in or in favoring a transition to sustainable energy. As
a consequence, policies supporting the transition to sustainable growth fueled by green energy
should careful consider the possible different channels through which climate damages affect the
economy. Indeed, we find that the effectiveness of policies measures depends on the impact chan-
nel of climate change and that, in general terms, policies constructed around monetary incentive
often produce limited results in fostering a transition whose likelihood reduces over time due to
path dependence in technological change. Such results point to the necessity of rapidly taking into
consideration complementary policy instruments to market-based incentives and carbon taxes of a
deemed optimal size (see also Unruh, 2002; Aznar-Mrquez and Ruiz-Tamarit, 2016): regulation and
adequate monitoring are often much more effective than other tools (Lamperti et al., 2015; Shapiro
and Walker, 2015). Finally, one of the future developments of our model envisions the inclusion of
financial actors shaping the investment-incentive landscape for different energy technologies, and
points to the analysis of credit policies in addition to fiscal and regulatory initiatives as a necessary
step forward in the study of green transitions.27

27The interested reader might want to look at Linnenluecke et al. (2016) for a research agenda on environmental finance.
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Figure 4: Likelihood of transition, average output and emissions growth under different policy
strengths and aggregate climate damages as in (Nordhaus and Sztorc, 2013). LCde/LCge represents
the relative cost-advantage of brown energy technologies at the beginning of the simulation; 20% is
the baseline. MC of size 200 is used, shaded area represents 90% percentile interval.
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Figure 5: Likelihood of transition, average output and emissions growth under different policy
strengths and individual climate damages targeting labour productivity. LCde/LCge represents the
relative cost-advantage of brown energy technologies at the beginning of the simulation; 20% is the
baseline. MC of size 200 is used, shaded area represents 90% percentile interval.
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Figure 6: Likelihood of transition, average output and emissions growth under different policy
strengths and individual climate damages targeting energy efficiency. LCde/LCge represents the
relative cost-advantage of brown energy technologies at the beginning of the simulation; 20% is the
baseline. MC of size 200 is used, shaded area represents 90% percentile interval.
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A Appendix - Model details

The capital good industry

Capital-good firms’ technology is defined by a set of six firm-specific coefficients composed by Ak
i,τ with

k = {L, EE, EF}, which represent the technical features of the machine produced, and Bk
i,τ , which represent

the features of the production technique employed by firm i, with τ being the technology vintage. Firms
define their price by applying a fixed mark-up (µ1 > 0) on their unit cost of production defined by the
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nominal wage, nominal cost of energy, labour productivity, energy efficiency and, eventually, a carbon tax.
Capital-good firms can increase both their process and product technology levels via (costly) innovation and
imitation. Indeed, R&D expenditures, defined in each period as a fraction of past sales are split between both
activities according to the parameter ξ ∈ [0, 1].

The innovation process has two steps: first a random draw from a Bernoulli distribution with parameter
ϑin

i (t) = 1− exp−ς1 INNOVi(t) determines whether firm i innovates or not, with 0 ≤ ς1 ≤ 1. Note that higher
amounts of R&D expenditures allocated to innovation, INNOVi(t), increase the probability to innovate. If
an innovation occurs, the firm draws the new technology whose main features are described by equations
(??), (??) and (??) in section ??. The imitation process is similarly performed in two steps. A Bernoulli draw
(ϑim

i (t) = 1 − exp−ς2 IMITi(t)) defines access to imitation given the imitation expenditures, IMITi(t), with
0 ≤ ς2 ≤ 1. In the second stage, a competitor technology is imitated, based on an imitation probability
which decreases in the technological distance (computed adopting Euclidean metrics) between every pair of
firms. Note that the innovative and imitation processes are not always successful as the newly discovered
technology might not outperform firm i’s current vintage. The comparison between the new and incumbent
generations of machines is made taking into account both price and efficiency, as specified by equation (??).
Next, capital-good firms advertise their machine’s price and productivity by sending a “brochure” to potential
customers (both to historical clients, HCi(t), and to a random sample of potential new customers, NCi(t)28

consumption-good firms thus have access to imperfect information about the available machines.

The consumption good industry

Consumption-good firms produce a homogeneous good using two types of inputs (labor and capital) with
constant returns to scale. The desired level of production Qd

j depends upon adaptive expectations De
j =

f [Dj(t− 1), Dj(t− 2), ..., Dj(t− h)], desired inventories (Nd
j ), and the actual stock of inventories (Nj):

Qj(t)d = De
j (t) + Nd

j (t)− Nj(t), (25)

where Nj(t) = ιDe
j (t), ι ∈ [0, 1].

Consumption-good firms’ production is limited by their capital stock (Kj(t)). Given the desired level of
production firms evaluate their desired capital stock (Kd), which, in case it is higher than their current one,
calls for desired expansionary investment (EId):29

EId
j (t) = Kd

j (t)− Kj(t). (26)

Each firms’ stock of capital is made of a set of different vintages of machines with heterogeneous pro-
ductivity. As time passes by, machines are scrapped according to (??) . Total replacement investment is then
computed at firm level as the number of scrapped machines satisfying the previous condition, and those
with age above η periods, η > 0. Firms compute the average productivity of their capital stock, the unit cost
of production, and set prices by applying a variable mark-up on unit costs of production as expressed by
equation (??). Consumers have imperfect information regarding the final product (see Rotemberg, 2008 , for
a survey on consumers’ imperfect price knowledge) which prevents them from instantaneously switching to
the most competitive producer. Still, a firm’s competitiveness (Ej(t)) is directly determined by its price, but
also by the amount of past unfilled demand lj(t):

Ej(t) = −ω1 pj(t)−ω2 Ij(t), (27)

where w1,2 ≥ 0.30 At the aggregate level, the average competitiveness of the consumption-good sector is
computed averaging the competitiveness of each consumption-good firm weighted by its past market share,
f j. Market shares are finally linked to their competitiveness through a “quasi” replicator dynamics:

f j(t) = f j,t−1

(
1 + χ

Ej(t)− Ēt

Ēt

)
, (28)

28The random sample of new customers is proportional to the size of HCi(t). In particular, NCi(t) = ΥHCi(t), with
0 ≤ Υ ≤ 1.

29In line with the empirical literature on firm investment behaviour (Doms and Dunne, 1998), firms’ expansion in
production capacity is limited by a fixed maximum threshold. Moreover, as described below, credit-constrained firms’
effective investment does not reach the desired level.

30Such unfilled demand is due to the difference between expected and actual demand. Firms set their production
according to the expected demand. If a firms is not able to satisfy the actual demand, its competitiveness is accordingly
reduced. On the contrary, if expected demand is higher than actual one, inventories accumulate.
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where χ > 0 and Ēt is the average competitiveness of the consumption good sector.

The banking industry, complements.

Our financial system is relatively stylized. We assume a banking sector composed by a unique commercial
bank (or multiple identical ones) that gathers deposits and provides credit to firms. In what follows, we first
describe how credit demand is calculated by each firm. Next, we discuss how total credit is determined by
the bank, and how credit is allocated to each firm.

The financial structure of firms matters (external funds are more expensive than internal ones) and firms
may be credit rationed. Consumption-good firms have to finance their investments as well as their production
and start by using their net worth. If the latter does not fully cover total production and investment costs,
firms borrow external funds from the bank. Total production and investment expenditures of firms must
therefore satisfy the following constraint

cj(t)Qj(t) + EIj(t)d + RIj(t)d ≤ NWj(t)d + Debj(t)d (29)

where cj(t)Qj(t) indicates total production costs, EIj(t)d expansion investment, RIj(t)d replacement in-
vestment, NWj(t) the net worth and Debj(t) is the credit demand by the firm. Firms have limited borrowing
capacity: the ratio between debt and sales cannot exceed a maximum threshold: the maximum credit demand
of each firm is limited by its past sales according to a loan-to-value ratio 0 ≤ λ ≤ +∞. The maximum credit
available in the economy is set through a credit multiplier rule. More precisely, in each period the bank is
allowed by the Central Bank to grant credit above the funds obtained through deposits from firms in the two
industries (and equal to firms’ past stock of liquid assets) according to a multiplier k > 0:

MTCt = k
N

∑
j=1

NWj,t−1. (30)

Since deposits are the only form of debt for the bank, k determines also the debt to asset ratio that should
be satisfied by the bank while providing credit. Such a total credit, which generates endogenous money,
is allocated to each firm in the consumption-good sector on a pecking order basis, according to the ratio
between net worth and sales. If the total credit available is insufficient to fulfill the demand of all the firms
in the pecking order list, some firms that are lower in the pecking order are credit rationed. Conversely, the
total demand for credit can also be lower than the total notional supply. In this case all credit demand of
firms is fulfilled and there are no credit-rationed firms. It follows that in any period the stock of loans of the
bank satisfies the following constraint:

N

∑
j=1

Debj(t) = Loan(t) ≤ MTCt. (31)

The profits of the bank are equal to interest rate receipts from redeemable loans and from interests on
reserves held at the Central Bank minus interests paid on deposits. Furthermore, the bank fixes its deposit
and loan rates applying respectively a mark-down and a mark-up on the Central Bank rate.

Consumption, wages, taxes and public expenditures

The consumption of workers is linked to their wage. We assume that the wage rate, w(t) is determined by
institutional and market factors, with indexation mechanisms upon the inflation, average productivity, and
the unemployment rate:

w(t) = w(t− 1)
[

1 + ψ1
∆ĀB(t)

ĀB(t− 1)
+ ψ2

∆cpi(t)
cpi(t− 1)

+ ψ3
∆U(t)

U(t− 1)

]
, (32)

where ĀB indicates the average productivity in the economy, cpi is the consumer price index and, intu-
itively, U stands for unemployment rate.

The public sector levies taxes on firm profits and worker wages (or on profits only) and pays to un-
employed workers a subsidy, which corresponds to a fraction of the current market wage. In fact, taxes
and subsidies are the fiscal instruments that contribute to the aggregate demand management. All wages
and subsidies are consumed: the aggregate consumption (Ct) is the sum of income of both employed and
unemployed workers. We notice that consumption, in this model, does not directly entail production of
emissions. The model satisfies the standard national account identities: the sum of value added of capital-
and consumption-goods firms (Yt) equals their aggregate production since in our simplified economy there
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are no intermediate goods, and that in turn coincides with the sum of aggregate consumption, investment
(It = EIt + RIt) and change in inventories (∆N):

∑
i=1

Qi(t) + ∑
j

Qj(t) = Yt ≡ Ct + It + ∆N. (33)

Climate module: carbon cycle and time-line of events

As in Goudriaan and Ketner (1984) and Oeschger et al. (1975), our carbon cycle is modeled as a one-
dimensional compartment box. Atmospheric CO2 evolve according to anthropogenic emissions and oceans
and biomass intakes.

Terrestrial net primary production (NPP), grows with CO2 stocks (Wullschleger et al., 1995) and is nega-
tively affected by rising temperatures:

NPP(t) = NPP(0)
(

1 + βC log
Ca(t)
Ca(0)

)
(1− βT1 Tm(t− 1)) (34)

where Ca(t) represent the stock of carbon in the atmosphere, Tm is the increase in mean surface temperature
from the pre-industrial level (corresponding to t = 0), βC is the strength of the CO2 fertilization feedback
(Allen, 1990; Allen and Amthor, 1995; Matthews, 2007), and βT1 captures the magnitude of the temperature
effect on NPP. In line with the recent findings of Zhao and Running (2010), we model a negative effect of
global warming on NPP as in Sterman et al. (2012). This constitutes the first positive climate-carbon feedback
in our model.31

The concentration of carbon in the atmosphere depends also on the structure of exchanges with the
oceans. The latter are represented by a two-layer eddy diffusion box which simplifies Oeschger et al. (1975).32

The equilibrium concentration of carbon in the mixed layer, Cm, depends on the atmospheric concentration
and the buffering effect in the oceans created by carbonate chemistry:

Cm(t) = C∗m(t)
[

Ca(t)
Ca(0)

] 1
ξ(t)

(35)

where C∗m is the reference carbon concentration in the mixed layer, Ca(t) and Ca(0) are the concentrations
of atmospheric carbon at time t and at the initial point of the simulation, and ξ(t) is the buffer (or Revelle)
factor.33 The Revelle rises with atmospheric CO2 (Goudriaan and Ketner, 1984; Rotmans, 1990) implying that
the oceans’ marginal capacity to uptake carbon fall as its concentration in the atmosphere increases. Moreover,
rising temperatures also reduces seawater solubility of CO2 (Fung, 1993; Sarmiento et al., 1998), introducing
another climate-carbon cycle positive feedback which accelerate climate change by reducing C∗m (Cox et al.,
2000). Finally, CO2 is gradually transferred from the mixed to the deep layer of the oceans according to a
speed that varies with the relative concentration of carbon in the two layers.

The flux of carbon though atmosphere, biosphere and oceans affects the heat transfer across the system
and, hence, the dynamics of Earth surface mean temperature. Such a relationship is modelled through
equations (18) and (19) in the main text, and mediated by the accumulation of carbon leads to global warming
through increasing radiative forcing according to a logarithmic relationship:

FCO2(t) = γ log
(

Ca(t)
Ca(0)

)
. (36)

Equation (36) represents the main link between anthropogenic emissions, which contribute to increase the
concentration of carbon in the atmosphere at any period, and climate change, which is induced by the
radiative forcing of atmospheric GHGs. On the other side, global warming exerts two important feedbacks
on the dynamics of carbon, affecting its exchanges with the biosphere and the oceans.

31Even if the role of climate change on biosphere’s carbon uptake of is still object of debate (Shaver et al., 2000; Chiang
et al., 2008; IPCC, 2001, ch. 3), the recent IPCC (2007a) provides evidences of stronger positive climate-carbon cycle
feedbacks.

32In particular, it is composed by a 100 meters mixed layer (which constitutes upper oceans) and a deep layer of 3700

meters for an average total depth of 3800 meters. Our representation of the oceans resembles that in Nordhaus (1992).
33The Revelle factor (Revelle and Suess, 1957) expresses the absorption resistance of atmospheric carbon dioxide by the

ocean surface layer. The capacity of the ocean waters to take up surplus CO2 is inversely proportional to its value.
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B Appendix - Parameters’ value

Table 8: Main parameters and initial conditions in the economic system. For previous parametriza-
tion of some sub-portions of the model and for model sensitivity to key parameters see Dosi et al.
(2006, 2010, 2013).

Description Symbol Value

Monte Carlo replications MC 200

Time sample in economic system T 400

Time sample in climate system T 400

Number of firms in capital-good industry F1 50

Number of firms in consumption-good industry F2 200

Capital-good firms’ mark-up µ1 0.04

Consumption-good firm initial mark-up µ̄0 0.28

Energy monopolist’ mark-up µe 0.01

Uniform distribution supports [ϕ1, ϕ2] [0.10, 0.90]
Wage setting ∆ĀB weight ψ1 1

Wage setting ∆cpi weight ψ2 0

Wage setting ∆U weight ψ3 0

R&D investment propensity (industrial) ν 0.04

R&D allocation to innovative search ξ 0.5
Firm search capabilities parameters ζ1,2 0.3
R&D investment propensity (energy) ξe 0.01

Share of energy sales spent in R&D ve 0.01

Beta distribution parameters (innovation) (α1, β1) (3, 3)
Beta distribution support (innovation) [χ1, χ̄1] [−0.15, 0.15]
New customer sample parameter ω̄ 0.5
Desired inventories l 0.1
Physical scrapping age (industrial) η 20

Physical scrapping age (energy) ηe 80

Payback period (industrial) b 3

Payback period (energy) be 10

Initial (2000) share of green energy 0.1
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C Appendix - Tests for statistical equilibrium and ergodicity

This section largely draws on Guerini and Moneta (2017). Assume that a simulation model is used to produce
synthetic series Xk for a set of variables k = 1, ..., K. In particular M Monte Carlo realizations, each of length
T simulation periods are collected. Then, one can test that the series, or a transformation of them, have
distributional properties that are time-independent; and that they are, ergodic, meaning that the stochastic
process underlying the observed time series can be treated as a random sample. These two assumptions can
be tested through a simple procedure. Indeed if we consider all the M time series realization of a variable k of
interest we will collect a matrix with dimensions M× T containing all the observations Xm

k,t, where m indicates
the number of the MC run and t the simulation time. We here define ensembles all the possible column vectors
of such a matrix; therefore, each of these vectors contains the M observations Xm

k,· with m = 1, ..., M, in which
the time dimension is fixed; we instead define samples all the possible row vectors of such a matrix, each
of which contains the T observations Y·k,t with t = 1, ..., T in which the Monte Carlo dimension is fixed.
Hence, denoting by Ft(Xk) the empirical cumulative distribution function of an ensemble and by Fm(Xk) the
empirical cumulative distribution function of a sample, testing for statistical equilibrium and for ergodicity
reduces to test respectively for the following conditions using the Kolmogorov-Smirnov statistic:

Fi(Xk) = Fj(Xk) ∀i, j ∈ {1, ..., T} (37)
Fh(Xk) = Fg(Xk) ∀h ∈ {1, ..., T}, g ∈ {1, ..., M}. (38)

Therefore, we performed two kind of tests as represented in Figure 7: we recursively run tests of pairwise
equality of distributions and we presented the percentage of non-rejection of such tests. Rejecting the test
would imply that the distributions under investigation are different one from the other. For the model to
be in an ergodic statistical equilibrium, we need to have high percentages of non-rejection, meaning that we
cannot distinguish between distributions. In case this is not verified, MC runs can be clustered and, then, the
same procedure will be applied to any cluster. If we register high percentages of non-rejection within each
cluster we can claim these clusters represent multiple statistical equilibria. Finally, if some summary statistics
of model behaviour exhibit distributions that are statistically different across clusters, we claim that statistical
equilibria are truly different one from the other.

Figure 7: Diagram showing the elements of comparison when testing for statistical equilibrium (left)
and for ergodicity (right). Source: Guerini and Moneta (2017).
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1 Introduction

Tesla’s Powerwall has been hailed as a promising technological breakthrough in energy
storage. By providing storage opportunities through a small-sized rechargeable lithium-
ion battery that can be integrated with rooftop photovoltaic (PV) panels, the Powerwall
meets the increasing willingness of consumers to save on the electricity bill and to set
themselves free from the electricity grid, as highlighted by recent consumer surveys, e.g.
in Galassi and Madlener (2016) or Agnew and Dargusch (2016).

One key motivation for energy storage lies in the quest for load stabilization (Fairley,
2015; Fumagalli, 2016). Power load is subject to wide changes during an average day,
following the daily cycle in economic activities. The shortage of economically viable storage
technologies has for long time prevented the achievement of a smooth profile in electricity
network flows. The increasing penetration of renewable energy (RE) sources with supply
varying according to weather conditions, has further complicated matters. Because of
ramping costs and response time, most electricity generation technologies cannot promptly
respond to the unpredictable variation in RE supply. The possibility of maintaining a
reserve capacity may insure against surges of demand – which would disrupt the balance
on the grid and cause blackouts – and, less predictable drop in RE supply. The stabilizing
effect of storage is all the more needed in transmission grids that are frequently subject to
congestion, which can be induced by RE as shown by Sapio (2015) and Ardian et al. (2015).
Mitigating volatility would allow grid operators and utilities to delay the installation of
extra generation and transmission capacity. Besides the sheer costs of a larger back-up
capacity, volatile energy sources also reduce the utilization rate of conventional power
plants, which therefore operate below their maximal efficiency and require more frequent
maintenance. Energy-intensive manufacturing firms would also benefit from load-levelling
and constant frequency in their power supplies (Whittingham, 2012).

While distributed storage systems (DSS), such as Tesla’s Powerwall, may be appeal-
ing for households – once their installation costs and duration will improve (Johann and
Madlener, 2014), their system-wide stabilising effects depend on the contemporaneous deci-
sions of multiple interacting actors, and are therefore not easily predictable. The emergence
of prosumers, enabled by distributed generation facilities, is seen as a destabilizing force
for the incumbent technological paradigm (Sioshansi, 2014), which is based on centralised
power generation, established in the early decades of the 20th century (Granovetter and
McGuire, 1998).1 Agnew and Dargusch (2015) illustrate some potentially disruptive ef-
fects of PV-integrated DSS on the overall performance of the energy system. Adding to
these concerns, it is worth noting that because PV energy is not produced in off-peak
hours, when electricity prices are low, storage integrated with PV does not provide access
to the same arbitrage opportunities as storage technologies explicitly dedicated to smooth
peak loads.

The present paper contributes to this debate by comparing two possible effects on load
volatility of an hypothetical large scale diffusion of distributed storage facilities integrated
with renewable sources such as PV . First, in line with the existing literature on energy
storage, distributed storage systems may reduce the volatility of electricity demand because
batteries act as buffers. Supporting such expectation, DSSs decrease the users’ necessity to
access the network, whether on the supply or demand side. Thus, the aggregate intra-day
load profile would be smoother if all users had access to energy storage.

Second, and opposite, DSSs may increase demand volatility by increasing the coor-

1See Künneke (2008) for a comparison of the centralized and distributed generation paradigms from
the perspective of evolutionary economics.
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dination of users. If the capacity of the storage systems is limited (comparable to the
consumption level), and the production from RE in different sites is positively correlated,
then a large number of distributed generators endowed with storage would simultaneously
use the network, causing large jumps in the intra-day load profile. According to this
hypothesis, we would observe that although small-scale volatility may be reduced by a
large presence of DSS’s, fewer but far larger un-balances would be faced by grid operators
when a large share of producers suddenly flood the network with energy after having fully
charged their batteries, or spike their energy request when all the stored energy is used up
(at similar times in the day, by most consumers).

With a view to enhancing forecasts and improving the design of technical infrastruc-
tures and policy initiatives, it is crucial to understand which of the two effects is most
likely to prevail (if any), and to assess the extent to which the likelihood of the two effects
varies with respect to specific features of the system. If the second effect prevails – dis-
tributed storage facilities magnify volatility – then policy makers should carefully consider
any policy intended to promote the diffusion of storage systems, for example subsidising
the installation of PV and wind generators, ensuring priority dispatch to renewables in
wholesale electricity markets, and fostering the adoption of distributed generation tech-
nologies (see e.g. the policies reviewed in Anaya and Pollitt (2015). The reason is that,
in the second scenario the diffusion of storage systems integrated with PV would entail
an increment of volatility and, consequently, the need to maintain a large amount of elec-
tricity production – possibly from polluting and costly power plants on the grid – to face
volatile load peaks.

To investigate the effect of storage systems on volatility, in the presence of RE, we
present an agent-based model featuring a large number of users equipped with electricity
production systems from renewable sources, such as PV panels, installed in private homes.
We assume that a share of the users have also a storage system coupled with their PV
facilities. Under a number of reasonable assumptions concerning the mechanics of energy
production and consumption, we analyse the effects of storage systems diffusion on the
electricity system-wide volatility, the research question of this paper. We assess the size
of the ‘safety margin’ for energy producers, that is, the share of electricity to be produced
solely for the purpose of ensuring that a sudden load peak does not disrupt the demand-
supply balance. The model provides a representation of a generic power grid comprising
consumers, small-scale energy producers from renewable sources, and storage systems so
as to assess the levels of volatility under a number of different scenarios.

The preliminary results suggest that the first effect dominates: as the adoption of
batteries increase, the system fluctuations, measured as the sum of squares of one-minute
variations in the network demand, reduces linearly. As the size of the batteries increases,
the fluctuation reduce at an increasing rate, for all adoption rates. That is, storage system
can contribute to reducing volatility of demand, therefore the ‘safety margin’ that energy
suppliers need to guarantee, and the overall amount of energy produced and wasted.

The paper is structured as follows. After reviewing the existing literature on the
economics of energy storage in Section 2, Section 3 presents the agent-based model of the
electricity system. The simulation results are described and discussed in Section 4 and
Section 5 concludes.

2 Previous literature

Energy storage has long been felt as a needed technological innovation in the energy in-
dustry. Some of the main stylised facts about the liberalised electricity industry, such as
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volatility clustering and spikes, are seen as coming straight from the shortage of econom-
ically viable storage facilities (Graves et al., 1999). While liberalisation has itself been
a source of volatility in an industry previously organised as a regulated monopoly, fur-
ther factors have contributed to spur volatility, such as tensions in fossil fuel producing
countries (Sioshansi et al., 2009), supply disruptions due to climate change induced catas-
trophes, and the increasing penetration of RE sources (Beaudin et al., 2010; Nyamdash
and Denny, 2013), thereby further motivating research on energy storage technologies.

As observed in the introductory section, smoothing the short-term fluctuations of ex-
changed volumes in the electricity industry allows to save on costly reserve generation
capacity, cycling-induced maintenance, network congestion, and network upgrades. Along-
side such benefits, energy storage is seen as a powerful tool to facilitate the integration of
RE technologies in the energy system, relieving issues that slow down their diffusion, such
as high overhead costs, low predictability, or supply curtailments. Denholm and Margolis
(2007) provided one of the earliest results showing that energy storage can enable the
diffusion of solar power generation, followed by Sioshansi et al. (2009) on concentrating
solar power. Sioshansi (2010) finds that storage enhances the value of wind power plants,
using US data. Relatedly, Connolly et al. (2012) show that storage allows to improve the
penetration of wind power in the electricity market, once investment costs are sufficiently
reduced, using data on the Irish electricity system. Kaldellis and Kavadias (2009) un-
derline the potential of energy storage for minimising the energy waste related to wind
curtailments, occurring when the stability of the grid is threatened by excessive wind power
production and grid operators force curtailments. Madlener and Latz (2013) explore the
potential of compressed air storage integrated with wind turbines to balance the fluctu-
ations of wind power production. Storage, moreover, can help improve the planning of
new interconnections or substitute for them, whenever the correlations between load and
the RE source is negative (Bell et al. 2015). This is particularly valuable as congestion
sets is due to either load growth or to surges in RE supply. The strategic placement of
energy storage systems may be more viable than the construction of new transmission and
generation capacity.

The way storage technologies achieve a smoother intra-day load profile impinges upon
arbitrage, induced by within-day electricity price excursions. Assuming price-taking be-
haviour and perfect foresight, Graves et al. (1999), Figueiredo et al. (2006) and Walawalkar
et al. (2007), among others, have shown that the optimal arbitrage strategy by an agent,
running an ESS integrated with a conventional power source, involves an all-or-nothing
operation of the device. Specifically, according to the optimal strategy, the battery should
charge until full capacity when market prices are low, typically in off-peak hours; should
fully discharge at prices above the charge threshold, usually on-peak; and should remain
idle at all other times. In other words, the deployment of storage should increase the gen-
eration of conventional power plants at night and decrease it during the day. According
to the estimates reported in Bradbury et al. (2014), 4 hours of energy storage would be
optimal for most storage technologies, given the round-trip efficiency parameters. Such an
optimal size is anyway conditioned by the technology mix in the electricity market, by the
growth in energy demand, and by congestion patterns, which affect the gap between on-
and off-peak prices.

Along with smoother intra-day patterns in the use of the network, yielding less volatile
wholesale electricity prices (shaving peaks and filling throughs), ESS can cause a redis-
tribution of surplus from electricity producers not equipped with ESS to users who have
installed a storage facility. As noted by Sioshansi et al. (2009), the lower energy demand
off-peak implies that the decrease in consumer surplus from the higher price paid off-
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peak is more than offset by an increase in consumer surplus on-peak due to a drop in
the on-peak price. Conversely for the generators who are not equipped with ESS. These
welfare-enhancing effects depend on the governance structures linking storage operators,
consumers, and power generators (Sioshansi, 2010), and have however been questioned by
Hittinger (2017), noting that while the intra-day load profile flattens out, the overall level
of energy consumption increases, possibly with growing climate-altering emissions.

Whether the above mentioned benefits materialise, and to what extent, depends on
the specificities of the storage technology in use and the associated technical parameters.
In a review of the literature, Beaudin et al. (2010) provided a thorough comparison of
several energy storage technologies (pumped hydro, compressed air, batteries, supercon-
ducting magnetic, hydrogen, flywheels, capacitors and super-capacitors) in terms of their
contribution to managing time variation in RE outputs (see Table 1 in their article). Bat-
teries were found to be most suitable for maintaining power quality and grid stability,
and to possess favourable properties, such as scalability, modularity, duration, and low
maintenance costs.

The recently introduced Tesla storage device, a lithium-ion battery which exploits
solar power, is expected to share the same advantages of other batteries and, what is
more, is characterised by a longer duration than alternative batteries. Indeed, the life
of e.g. lead-acid batteries is shorter than that of PV modules, which has been noted
by Johann and Madlener (2014) as deteriorating the net present value of investments in
storage and slowing down diffusion. The implicit tenet in the reviewed works on arbitrage,
though, was that batteries could be charged by means of controllable energy sources, such
as dispatchable power plants or pumped hydro (Nyamdash and Denny, 2013). This is
not true with Tesla Powerwall, which can be charged only when the sunlight is available.
The advantages of Tesla Powerwall in managing intermittent RE sources and mitigating
volatility may not hold if the ”optimal” arbitrage strategy cannot be implemented. The
time pattern of battery charging and discharge, constrained by the availability of sunlight,
is at the heart of our conjecture that DSS integrated with PV might make the network
flows more volatile on an infra-day time scale.

From a methodological viewpoint, previous works assessing the value of energy storage
have analyzed dynamic stochastic programming models, both for computing the optimal
arbitrage profile from the perspective of an individual investor and in order to find the
optimal dispatch in an electricity system. The only agent-based model on distributed PV
that we are aware of has been published by Palmer et al. (2015), who have studied the
diffusion of PV generation systems under different support schemes, through a simulation
model calibrated on Italian data, but does not address the fluctuation properties.

3 The model

In order to test our hypotheses we need to evaluate the volatility of the load balance on
different hypothetical electricity distribution grids with different shares of PV and local
storage systems. For this goal we develop a simulation model replicating reliably the
behaviour of the elements affecting the variables of interests.

The model makes a number of simplifying assumptions, focussing on a fairly detailed
representation of the daily energy demand from each consumer, the amount of energy
produced from PV systems and the collective impact of distributed storage systems. This
model can be considered as a first block of a more complete model of the energy system
that, once extended as, may be used as a policy tool to be deployed to examine additional
research questions and, in particular, evaluate the effects of different policy measures.
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In the simulation time scale, a time step represents a real-time minute. Agents consume
energy according to a pattern partly common to all consumers (depending on the time
of the day), partly idiosyncratic to each agent, including both systematic and random
variations. Consumers equipped with a PV system generate electricity which is used
primarily for own consumption. Non consumed PV energy is sold to the network, unless
the consumer/producer owns a dedicated, not fully charged, battery. When production is
not sufficient to fulfil energy consumption, consumers endowed with a local storage system
drain energy from their batteries, if available, before accessing the grid.

3.1 Consumers

The proposed representation is meant to simulate observed consumption patterns. The
model represents N of consumers, each following the same consumption pattern with id-
iosyncratic variations, randomly distributed, variations. The consumption pattern follows
a cyclical (daily) pattern defined for each minute of a 24 hours (1440 minutes) day.

Each consumer start their consumption pattern between 6:00 AM and 7:00 AM, ran-
domly distributed. Energy consumption for each consumer is also randomly distributed
around and average value µ.

3.2 Producers

A share of consumers, randomly extracted from the population, is assumed to be endowed
with PV systems. These agents have the same energy demand as consumers and, in
addition, produce electricity that is primarily used to satisfy the user’s demand. In cases
in which the user produces more energy than requested by current demand, the excess
energy is fed into the grid reducing the overall load.

Energy production is modelled following a simulated daily solar cycle. Each consumer
receives the same amount of light, though each PV system has a different maximum
production. The distribution of production capacity is determined randomly at the start
of the simulation (following a rule initialised by the modeller). The sunlight available for
solar energy production to all producers is also subject to random modifications simulating
varying weather conditions.

3.3 Storage systems

A share of producers, randomly chosen, is assumed to also own a local storage system,
whose size is assigned randomly at the start of the simulation run. These producers use
the energy in excess of consumption to charge their batteries, releasing electricity to the
grid only when the batteries are filled up. In case of insufficient production, consumption
is primarily served by the energy in the storage system, resorting to the grid when the
batteries are emptied.

3.4 Formal description

The energy consumption of user i, Ci,t, is determined as a variation from the previous
minute energy consumption towards a theoretical value CTi,t:

Ci,t = αCi,t−1 + CTi,t (1)
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where α is the measure of the inertia of consumption; and CTi,t is a random value drawn
from a normally distributed function centred on a cyclical variable:

CTi,t ∼ norm(CCi,t, V arC) (2)

The cyclical variable is computed as:

CCi,t = Cmin +
(sin(π + 2π (t+si)

1440 ) + 1) × (Cmax − Cmin)

2
(3)

where π is trigonometric constant 3.1416; Cmin is the minimum consumption level; Cmax
the maximum consumption level; si is the user specific time shift representing the individ-
ual consumer consumption habits, expressed as a temporal differences in starting a daily
cycle. This value is defined at the start of a simulation run drawing a random value from
a uniform distribution between smin and smax:

si ∼ U(smin, smax) (4)

Energy demand net demand from the grid of each user depends on the amount of
energy produced, if any, and of the discharge/recharge of the battery, if available. Such
demand is positive when production and the flow from the sun and from the battery
is not sufficient meet consumption. While batteries are charging (meaning production
matches and surpasses consumption, and batteries not yet fully charged) net demand is
null. Finally, net demand is negative when the energy produced surpasses consumption
and batteries are fully charged. In this latter case the user is selling energy to the grid,
increasing global supply. Formally:

Ei,t = Ci,t − Si,t + ∆i,t (5)

where Si,t indicates production from the PV plants and ∆i,t the flow of energy from or to
the batteries.

Energy production is computed as the product of the plant capacity (PVi) times avail-
able sunlight (Lt), equal for all users:

Si,t = PVi × Lt (6)

where production capacity is determined at the start of a simulation run with a random
value drawn from a uniform distribution:

PVi = PV max × U(PV u, 1) (7)

Sunlight is computed as a cyclical variable representing the time of the day measured
in minutes (Tt, computed as the remainder of the ratio t

1440) times one minus the clouds
intensity (Zt). The sunlight is zero during night and follows the upper section of a sinus
function during the day from 6:00AM to 18:00PM:

Lt =

{
sin
(
2π(Tt−360)

1440

)
× (1 − Zt), if 360 < Tt < 1080

0, otherwise
(8)

The clouds intensity is computed as an inertial random walk:

Zt = αzZt−1 + (1 − αz) × U(0; 1) × Zmax (9)
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where U(0; 1) returns a uniformly distributed random value between 0 and 1; αz is the
inertia of weather conditions; and Zmax is the maximal reduction of sunlight. The variable
is constrained to take only values in the range [0; Zmax].

The battery charge variation depends on: current energy consumption Ci,t, the current
production from PV Si,t, the past level of the battery charge Bi,t−1, and the maximum
capacity of the battery, Bmax

i .

∆i,t =


0 , if Bmax

i = 0

min (Si,t − Ci,t;B
max
i −Bi,t−1) , if Ci,t < Si,t

−min (Bi,t−1;Ci,t − Si,t) , if Ci,t > Si,t

(10)

The level of the battery charge is computed as:

Bi,t = Bi,t−1 + ∆i,t (11)

The excess energy produced and not used for consumption nor to charge batteries, is
fed into the grid, and computed as:

Gi,t = max(0;Si,t − Ci,t − ∆i,t) (12)

As results of the model, we collect all the values for every variable from individual
users and the aggregate variables (computed as the sums over every user). Moreover, we
compute an index of demand volatility as a 1-minute volatility of net load variation of
energy from the grid:

Vt = (

N∑
i=1

Ei,t −
N∑
i

Ei,t−1)
2 (13)

3.5 Main parameters

The model is meant to simulate a complex electricity grid and compute the aggregate
properties concerning the load pattern in relation to different assumptions on the number
agents (share of producers and share of storage systems) and their characteristics (e.g.
capacity of PV plants and size of storage systems). To simplify the implementation we
control many of the properties of the simulated system by means of statistical distribu-
tions defined with few parameters. All the features of the model may, however, be easily
calibrated using data from real-world systems, possibly modified to include the outcome
of specific policies, for example in terms of share of observed consumers purchasing PV
production systems.

Table 1 reports the main parameters used in the simulation runs presented in the next
section (4).

Notice that the configuration tested assumes a system where all consumers are also
producers. This assumption is adopted to test the hypothesis under extreme conditions,
since any configuration with a smaller percentage of producers will necessarily reduce the
volatility, and hence the probability that local storage system increase the volatility of the
system.

4 Results

To illustrate the model properties and main result we use an arbitrary setting made of
plausible values for the parameters (Table 1). We begin with the presentation of results
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Par. Description Value(s)

N Total number of consumers 10,000
Cmin Minimum regular consumption 0.05 Kw
Cmax Maximum regular consumption 2 Kw
V arc Variance of individual random variation per minute 1 Kw
– Share of users owning a PV energy production system 100%
PV max Maximum PV capacity (0 means user has no PV) 2 Kw
– Share of producers owning a storage system* 10% - 90%
Bmax Maximum capacity storage systems (0 means user has no storage)* 30 - 90 Kw
smin Max. anticipation time shift -120
smax Max postponement time shift 120
α Autocorrelation random individual energy consumption 0.7
αz Autocorrelation random common weather 0.7
Zmax Maximum PV production reduction due to weather 0.5
PV u Maximum rate of underutilization of the PV production 0.5

Table 1: Parameter values tested in the results. Parameters marked with * are explored
with multiple values.

for individual members of a grid, consumers and producers, then we show the aggregate
properties of the whole system and, finally, we assess the effects of storage systems on the
load volatility.

4.1 Individual users

We start by showing the shape of the consumption pattern assumed for individual con-
sumers. Figure 1 presents the energy consumption Ci,t for two sample consumers over
two days (2880 minutes), and the population average consumption (black line). Every
consumer follows the same overall pattern, shifted by a random time gap, and is affected
by random noise.2

1 720 1440 2160 2880

0

0.75

1.5

2.25

3

Figure 1: Energy consumption: population averate and sample of two users.

Consumers are also producers, endowed with PV plants with heterogeneous productiv-
ity levels (in the current initialisation we assume that all consumers have a PV plant, to

2The model may be extended to adapt the consumption pattern may to reflect different typologies of
consumers.
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study a case of extremely high volatility). Productivity is also influenced by the weather
conditions (common to all consumers), which also affects total production. Figure 2 re-
ports the amount of energy produced by two sample producers Si,t, in two days.

1 720 1440 2160 2880

-0

0.4435

0.8871

1.331

1.774

Figure 2: Energy produced by two sample producers.

A consumer owning a PV power plant may reduce the energy demand from the grid,
and show a negative load when the production is higher than the consumption. Under
those conditions some of the electricity produced by the consumers is returned to the grid.
Figure 3 reports the series of energy consumption Ci,t and the net demand from the grid
for a consumer/producer Ei,t.

1 720 1440 2160 2880

-1.036

0.009338

1.055

2.101

3.146

Net load

Energy consumption

Figure 3: Consumer/producer. Energy consumption and net load on the grid.

The horizontal line reports the null load. When the load touches this line the consumer
neither draws energy from the grid nor feed in any electricity, that is the user has zero
consumption or consumes exactly the same amount of electricity produced by the PV
panels. When the load is above this level the consumer is using some energy from the
grid, while when it is below the consumer is selling electricity back into the grid.

For those users endowed with a storage system, the energy produced but not used
charges the batteries (if they are not fully charged). When, instead, the consumer demand
is higher than supply, and they own a storage system, they use energy from the batteries.
Figure 4 reports the charge level of the batteries Bi,t for two sample producers endowed
with a local storage system. Batteries are charged at a rate proportional to the efficiency
of the PV system. When they reach the maximum level the excess energy is fed into the
grid. When production terminates because of lack of sunlight the energy stored in the
batteries is used and, finally, the user resorts to consume energy from the grid when the
batteries are flat.
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1 720 1440 2160 2880

0

13.75

27.5

41.25

55

Figure 4: Battery level for two sample storage systems.

For producers owning a storage system the energy is not directly sold, but it is used,
firstly, to fill up the battery. When the production falls below consumption needs, the
energy is drawn from the batteries, and only when they are exhausted the consumer resort
to the grid. Figure 5 reports the two series of consumption and net load for one user, as
in the previous figure, together with charge level of the battery.

1 720 1440 2160 2880

-1.473

-0.3089

0.8552

2.019

3.183

(0)

(12.5)

(25)

(37.5)

(50)

Battery level

Energy consumption

Net demand

Figure 5: Consumer/producer. Energy consumption, net load on the grid and charge level
of the batteries (last series measured on a different scale).

4.2 An empirical case study

The simulation results shown above, generated with arbitrary technical values, offer a
qualitatively realistic representation of energy systems. Figure 6 reports, for comparison,
the actual graph concerning the outcome of PV system coupled with a local storage3.

The data are obtained for a system located in Rome during early April over two mostly
sunny days. The production system has the maximum potential of 3 Kw/hour and the
storage can contain up to 4 Kw. The data concern a two-day period beginning just before
dawn with batteries completely flat. Consumption is initially relying on the grid but,
at about 8:00 AM, the sun starts producing sufficient energy to meet consumption and
charging the battery.

At about noon the batteries are filled up and the production begins to be sold to the
grid. When the sun stops to power the PV panels the battery replace direct production.

3The figure reports the snapshot of the online control panel of a system by Sonnen, a German company
providing storage systems integrated with PV plants.
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Figure 6: Real-world data for a two-day period of a 3Kw/hour PV system coupled with a
4 Kw storage. Snapshot of the online control panel by Sonnen.

The high consumption level reduces rapidly the battery charge in early afternoon. During
the night the low consumption is not sufficient to exhaust completely the stored energy.

The second day begins with some energy in the batteries, so that the sunny day man-
ages to complete the recharge well before noon. However, higher energy consumption
(around 4:00 PM and during the evening) depletes the battery just after midnight.

The qualitative comparison between the simulated data and the empirical case study
suggests that our model replicates qualitatively the overall pattern of the energy con-
sumption, PV production and effects of a storage system. While more precise data may
be obtained, using them would require a far heavier computational effort to manage large
datasets instead of simple functional representations as in the present version of the sim-
ulation model. For our purposes, assessing an overall property of the system, we consider
the similarity between virtual and empirical data sufficient to consider the model a valid
representation of real world systems.

4.3 Aggregate results: The impact of batteries on load volatility

Before testing the main hypotheses of our paper, we discuss the aggregate properties
generated at system level by the interaction among the heterogeneous users in the model.
Figure 7 reports all the relevant aggregate series for a single day, made of 1440 minutes.

The series labelled as Tot. Consumption indicates the total consumption by energy
users (

∑
iCi,t), represented conventionally according to a sinus dynamics, starting at

3:00am. The series Network Demand reports the electricity demanded from the network
(
∑

iEi,t), i.e. the net load. In the early hours of the simulations, during the night, there
is no PV production, and thus all consumption must be satisfied by network electricity.

At 6:00am the simulated dawn allows for PV energy production to start (series Dis-
tributed Production (

∑
i Si,t))), so that demand from the grid falls below total energy

consumption. The PV production in excess of demand starts filling households’ batteries,
whose level begins to grow (series Batteries (

∑
iBi,t)).

As more users fill up their batteries, the excess of energy is sold on the network (series
Energy sold (

∑
iGi,t)), generating consequently a negative network demand. As consump-

tion grows, although sunlight peaks, PV energy production fails to meet demand, and the
energy stored in batteries is used up, thereby decreasing their levels. Eventually, batter-
ies are depleted, PV production falls, and network demand quickly catches up with total
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259.7

1028

1797

2565

Tot.Consumption

Batteries

Network demand

Distributed production

Energy sold to network

Figure 7: Time series for aggregate variables during a simulated day.

consumption.
The main goal of this preliminary simulation exercise consists in evaluating the impact

of distributed storage systems on electricity demand volatility, to assess whether the dif-
fusion of batteries would increase or decrease the size of the safety margin necessary for
centralised producers to guarantee the overall network energy balance. For this purpose,
we replicated the results varying the two parameters describing the extent of storage sys-
tems through their adoption and capacity: the share of consumers that own batteries, and
the size of the average battery. With respect to the share of PV producers that also own
batteries to store electricity we considered five values: from 10% to 90%, with intervals
of 20%. With respect to battery capacity, we also considered 5 values: from 10KW to
90KW. Figure 8 reports for each combination of the two parameters the level of volatility,
measured as the sums of squares of 1-minute variations in network demand, cumulated
over two full days.

The results show that the volatility falls with increased diffusion levels of storage
systems among PV energy producers and for increasing size of such storage systems.
Thus, the model suggests that the volatility mitigation hypothesis is correct, rejecting
the alternative hypothesis that storage systems may increase volatility in the presence of
coordinated behaviour.

5 Discussion and conclusion

This work has presented preliminary results of an agent-based model developed to study
the effects of energy storage systems integrated with distributed power generation. The
results show that increasing the size of storage systems and their share in the population
of energy users, reduces the aggregate electricity volatility of the network load, measured
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Figure 8: Total network energy demand variation over 1 minute, cumulated over all users
and all time steps for a two-day simulation run.

by the cumulated 1-minute variations in demand of energy from the grid.
Policy implications are therefore quite straightforward in this case, suggesting that

there are only gains, at the systemic level, from improving battery technology, and pro-
moting their diffusion among users.

The model presented in this paper is designed to be used for more ambitious goals and
in a broader set of experiments. Concerning the issue of volatility of demand, it would
be interesting to study specific forms of volatility of particular interest to default energy
suppliers. For example, it may be possible that a low overall volatility may still include
particular conditions with large jumps that may potentially concern central producers.

The model can be extended to include a more detailed representation of real-world
energy systems. For example, the model may encompass heterogeneous producers, with
differentiated costs and reaction times to changes in demand, in order to assess the best
organisation of supply with respect to the rapidly changing needs of a demand sector in
which the share of self-consumption is rapidly expanding. Moreover, the model may be
extended to include virtual energy suppliers, who trade electricity obtained by coordinating
actions of large consumers and fringe producers (reference). Within the shifting landscape
of the markets for energy, constantly affected by technological innovations and policy
initiatives aiming to mitigate the environmental impact of energy production, our model
can be used as the foundation of a comprehensive tool assisting decision makers, such
as policy-makers, regulatory authorities, network designers, and individual actors of the
energy industry.

Besides the specific application discussed in this work, the model can also be calibrated
with data from a specific system, and used to test alternative policy measures such as the
effect of incentives, expected costs, load imbalances, and any other measure relevant to
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determine a regulatory framework able to best exploit the technological opportunities in
the field of energy production and distribution.
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Abstract

In this paper we study the process of coalition formation conditioning the
common decision to adopt a shared good, which is too expensive for one aver-
age consumer, who would also not be able to exhaust its use. We develop an
agent based model to study the interplay between coalition formation and the
diffusion of shared goods. We model coalition formation in an evolutionary
game theoretic setting, and adoption drawing from the Bass and the threshold
models. Coalitions formation sets the conditions for adoption, while diffusion
influences the consequent formation of coalitions. Results show that both coali-
tions and diffusion are subject to network effects, which also have an impact on
the information flow though the population of consumers. Consumers prefer
to form large coalitions in order to buy expensive goods and share ownership
and use, rather than establishing smaller coalitions. In larger groups the in-
dividual cost is lower, although it increases if higher quantities are purchased
collectively. The paper concludes by connecting the model conceptualisation
to the on-going discussion of diffusion of sustainable goods, discussing related
policy implications.
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1 Introduction

Diffusion is usually studied as an individual decision to adopt a good for own con-
sumption, overlooking cases when the decision is taken collectively (Rogers, 1962),
such as when sharing a property. While collective action (e.g. Olson, 1971; Hardin,
1982; Oliver, 1993), such as group consumption (Borcherding and Filson, 2002), is
usually studied independently from the formation of the group (e.g. Komorita and
Chertkoff, 1973; Komorita, 1974).

This paper aims at combining the process of coalition formation leading to the
diffusion of a shared good, where consumers agree to act cooperatively in order
to share costs and use of a common property. Coalition formation and diffusion
are studied as two co-evolving processes. Coalitions are necessary for the diffusion
of shared goods, being adoption a collective decision; and diffusion influences the
consequent formation of coalitions since it changes the structure of the social network.

We model the diffusion of goods that are characterised by high investment cost –
above the budget constraint of an average consumer – but affordable by a coalition of
people acting cooperatively. This is, for example, the case of common pool resources
(CPR) (Bowles, 2004), such as large irrigation systems adopted by groups of farmers
(Bardhan, 1993b,a, 2000). Sustainable goods, such as large-sized decentralised energy
systems (DES), can be also considered as CPR (Wolsink, 2012). These are too
costly for individual households, but can be purchased by a group of neighbouring
households to access energy off the grid.

We model coalition formation in an evolutionary game theoretic setting (Axtell,
1999, 2002), and diffusion using elements from both the Bass and the threshold
models in which the role of innovators is central. In the model, agents sequentially
interact in order to form a coalition: they form links, communicate, evaluate options,
establish stable groups, and eventually adopt a shared good that produces a services
available from a centralised provider at a higher cost, if convenient. Adoption is
feasible only when a coalition is stable.

The network structure is not fixed, but evolves throughout time allowing for the
formation of new spatially bounded links. The model differs in two main aspects with
respect to the literature on diffusion over networks. First, instead of studying which
network structure facilitates or prevents diffusion, it studies diffusion that co-evolves
with the process of group formation, as the network of linked individuals grows.
Second, the diffusion process is not considered to be dependent on an individual
adoption decision, but, conversely, it is studied as a collective decision, conditioned
by prior steps of coalition formation (Schlager, 1995).

The model fits in the category of sequential games of coalition formation as those
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formulated by Bloch (1995, 1996) and Mutuswami and Winter (2002), but is closer
to the evolutionary model by Axtell (1999, 2002) on firms formation as the result of
coalition. We differ from the these models in a number of ways.

In the bargaining process to form the coalition, social interactions (Oliver and
Myers, 2003) and individual characteristics play an important role. Negotiations
aimed at the common investment depend on how much each individual is willing to
contribute to the fixed costs of capital, and how much they expect to consume of
the service produced with the good (demand). Agents communicates their demand
for the service and the monetary contribution that they are willing to commit into
the common investment. This contribution is a portion of agent’s income and it is
the amount that maximises individual utility. Agent’s decision is not only based on
individual income and demand, but it also considers their consumption preference.
Agent’s utility in coalition is also related to the monetary contribution that other
members have committed, and to the cumulative coalition demand for the service.
Therefore, since agents adapt their behaviour and choices in relation to the evolving
interactions with others, their attitude towards the common investment in coalition
also changes over time. Once adopted, we assume that the shared good guarantees
a more efficient service at a lower price, compared to the existing supply.

Results show that the formation of coalitions and the diffusion of shared goods
co-evolve. Both are subject to network effects: agents’ behaviour is affected by oth-
ers’ decision and by societal trends, and the social network evolves because of the
changing links between consumers. Although the formation of coalitions is essen-
tial to the adoption of shared goods, they also reduce future adoption, by isolating
consumers that do not find a suitable coalition on time. Network clustering and geog-
raphy (the size of neighbourhoods) and the speed at which information flows among
consumers determine higher adoption in consumers’ coalitions. We also find that
consumers prefer to form larger coalitions which allow them to buy expensive goods
with higher capacity, rather than smaller coalitions that can adopt smaller goods.
This is because, although larger coalitions require longer negotiations, the individual
consumer monetary contribution to the common investment is lower than in smaller
coalitions, and the unit price of the service is lower. However, smaller coalitions are
more cohesive, and agents’ connectivity and centrality is higher. Larger coalitions
also tend to induce free riding, up to a size (N = 8) after which free riding falls
because the large cost of the investment would not be sustainable. Results crucially
depend on the speed at which networks form and information circulates, and on the
composition of individual preferences.

We connect these results to implication for the diffusion of sustainable energy
technologies that can be adopted by groups of consumers, and provide a local service,
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such as decentralised energy systems (Ackermann et al., 2001).
The paper has the following structure: the next section 2 reviews the literature

regarding diffusion and coalition formation. Based on these two, the model concep-
tualisation is also explained. Section 3 presents the mathematical formulation of the
model and its sequential process of coalition formation. Then, section 4 presents and
discusses the results. Section 5 explains the potential of this model in the context of
diffusion of sustainable goods and its policy implications. Section 6 concludes.

2 The Literature: Diffusion and Coalition Forma-

tion

Our modelling strategy builds on two rich literatures: diffusion of innovation (espe-
cially in networks), and coalition formation. We briefly discuss each in turn.

The literature has discussed extensively how diffusion is related to the influence
of the social network on potential adopters (Burt, 1987). Innovation diffusion the-
ory often deals with an individual decision-making process to adopt a new good or
process, where the choice may change through time, as the awareness of adopting
changes. The role of initiators or early knower is pivotal (Rogers, 1962) in starting
the diffusion process, since they create the initial critical mass of adopters (Gersho
and Mitra, 1975). Over time, social interactions is important for diffusion, facilitat-
ing imitation effects (Bass, 1969) and fashion effects (Smallwood and Conlisk, 1979;
Arthur, 1989). Late adopters may imitate the innovation behaviour of early adopters
in order to reach the same social status (Tarde, 1962). Therefore, interactions among
individuals determine the bandwagon effect which influences the behaviour of later
adopters (Abrahamson and Rosenkopf, 1993, 1997).

To examine the role of social networks, diffusion has been studied as part of
network theory, where adopters are modelled as nodes of a social network and links
represent the interactions necessary to spread information among nodes (Rogers,
1976; Cowan and Jonard, 2004). In this context, diffusion has been shown to depend
on the network structure (Delre et al., 2010; Peres, 2014). The regular network is
locally very dense and has a long average path since every node has the same number
of nearest neighbours. With this structure, diffusion is slow since information must
travel around the whole network before reaching nodes located at the opposite side.
The small world structure (Watts and Strogatz, 1998) is a regular network in which
few randomly chosen links are reconnected to distant nodes. This structure maintains
the same level of clustering of the regular network, but reduces dramatically the
average path, resulting in a faster process. In random networks (Erdos and Renyi,
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1960) nodes are connected randomly to each other. This structure has low average
path and low clustering, resulting in fast diffusion, although nodes are not locally
connected.

Beyond the structure, the position of potential adopters in the network also mat-
ters for diffusion (Granovetter, 1973).

Social networks also evolve over time, as new links are formed and existing links
are severed, influencing information flows and individuals’ decisions, which are, con-
sequently, dynamic and spatial-dependent (Jackson and Wolinsky, 1996; Dutta and
Mutuswami, 1997; Bala and Goyal, 1998; Johnson and Gilles, 2000; Jackson and
Watts, 2002). In the evolving process of network formation, highly connected nodes
are hubs in the social structure, and they accelerate the contagion between individ-
uals, thereby facilitating diffusion over the network (Barabasi, 2002).

Coalition formation has been mainly studied in the context of game theory. Stud-
ies on coalitions in triads (Caplow, 1956; Gamson, 1961) and the n-person coalition
formation games, with n>3 (Komorita and Chertkoff, 1973; Komorita, 1974), have
analysed the bargaining process among agents in relation to individual resources
share. Negotiations is influenced by the initial distribution of resources and coalition
members aim at forming coalitions that guarantee stability. Smaller and homoge-
neous coalitions are most likely to be formed compared to larger and heterogeneous
coalitions, since the probability to reach stability and reciprocity is higher.

The hedonic coalitions literature (Dreze and Greenberg, 1980) has studied the
process of coalition formation in relation to individuals’ effort, where the objective
is to carry out joint activities, such as production. In these models the individual
payoff depends on her own and other members’ characteristics and effort. As a result,
members tend to form coalitions that maximise the common utility. They have been
used, for example, to investigate strategic alliances among firms (Axelrod et al.,
1995) and task allocations within an organisation (Shehory and Kraus, 1998). More
recently, players’ motivation and trust have been introduced (Griffiths and Luck,
2003; Griffiths, 2005), which were shown to lead to the formation of small clans.

Bloch (1995, 1996) models the process of pairwise coalition formation with infinite
horizon and with finite number of players. In these models the aim is to find a stable
equilibrium with all the players belong to a coalition. Mutuswami and Winter (2002)
extends those models, allowing agents to remain out of coalitions and have a payoff
equal to zero, and introducing in the offer to form a coalition a ”conditional cost
contribution” (Mutuswami and Winter, 2002, p. 244) which represents the cost an
agent is willing to pay to form the coalition. Both Bloch (1995, 1996) and Mutuswami
and Winter (2002) study the payoff division rule that guarantees stability, efficiency
and equity among agents.
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In conclusion, the model in this paper fits in the category of sequential models
of coalition formation with the ”best reply” type of adjustment dynamic, that are
common in the evolutionary game theory. It makes it possible to overcome two com-
mon difficulties relative to the one-stage models of coalition formation, as explained
by Bloch and Dutta (2011). First, agents in sequential models of coalition forma-
tion are not anymore ”myopic”, meaning that they are aware of what might be the
subsequent outcomes. Second, sequential models are more likely to result in efficient
coalitions since agents are ”forward-looking” and there is an endogenous resolution
of the problem of coordination among agents.

3 The Model

We model self-interested agents that have two options to satisfy their demand for a
given service: purchase it from the market from a central provider, or invest in an
expensive capital good, whose cost is larger than anyone’s income, and which can
provide the same service.1 The cost and the utility related to the first option are
given and depend on the individuals’ utility function. The second option requires
to form a coalition of consumers. The cost and utility of this option also depend on
characteristics of the other coalition members and on characteristics of the coalition,
such as its size. Driven by their interest in improving their utility, each agent inter-
acts, attempts to form coalitions, and compare the different options. At the offset,
all agents satisfy their demand from the general provider, and no coalition exists (all
agents are singletons).

In the sequential process of coalition formation, an agent announces the invest-
ment they intend to make, and proposes to form a coalition to a different agents.
These agents, in turn, after negotiation, may accept or reject the proposal. Agents
decide to become coalition members if their utility is higher, and cost of service is
lower, compared to the case of acting as singleton. If no subset of the contacted
members reaches an agreement to form a coalition, the coalition formation process
evolves by including more agents, or allowing for the exit of some the members
contacted earlier (some members may manage to free-ride). After each interaction,
agents adjust decisions, which are also influenced by what happens in the whole
population, such as changes in the potential members, their monetary contribution
to the investment, and demand of the service.

1One may think, for example, at transportation or energy. Consumes may purchase transport
from a local service, or purchase a car; or they can buy energy from the grid, or invest in a smart
grid.
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More formally, agents (i) have the following characteristics: demand for the ser-
vice (di), income (ei) and preferences for income, equal share of the common good
consumption, and equal contribution (respectively θi, αi and βi). Agents have two
options to consume the same service: purchase it form a central provider at a given
price (singleton), or purchase a capital good in coalition and use its services shared
with other members (investment in coalition). The latter implies an investment cost,
I, which is shared among the agents belonging to the coalition. To decide among
the two options, consumers compare their cost and utility.

Singletons (i1) pay a given unitary price p1 to purchase the service. Agents in
coalition (i2) pay the unitary price of the services produced by the shared capital
good (p2) and a share of the fixed cost of the investment. We express the two cost
functions (ci) as:

ci1 = dip1 (1)

ci2 = dip2 + xi (2)

where xi<I In the second option (Eq. 2) is the monetary contribution that an agent
is willing to commit in the joint investment. xi is computed as to maximises agent i
utility in coalition, such that Ui2: dUi2/dx=0.

The utility functions for the two options are computed using a Cobb-Douglas
function combining the indirect utility of saving, the direct utility of consuming, and
in the case of coalitions the utility derived from other members’ contribution and
the disutilty of their consumption. Formally, the two utility functions are written as
follows:

Ui1(ei; ci1; di; θi1) = (ei − ci1)θi1(di)1−θi1 = [ei − dip1]θi1(di)1−θi1 (3)

Ui2(ei; ci2; di;D−i;xi;X−i;N ; θi2;αi; βi) =

= (ei − ci2)θi2{(di +D−i)[
αidi

di +D−i
+ (1− αi)(

βixi
xi +X−i

+
1− βi
N

)]}1−θi2 =

= [ei − (dip2 + xi)]
θi2{(di +D−i)[

αidi
di +D−i

+ (1− αi)(
βixi

xi +X−i
+

1− βi
N

)]}1−θi2

(4)

where Eq. 3 refers to consumers purchasing from the central provider (singletons),
and Eq. 4 to consumers that enter a coalition; θi ∈ [0; 1] is the preference for
income; 1-θi is the preference for consumption; αi ∈ [0; 1] the importance given by
agent to the proportional division rule based on consumption; βi ∈ [0; 1] measures
the preference for the proportional rule to divide the consumption from the shared
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investment based on the agent’s contribution, with respect to the equal rule, when
all agents receive the same amount of service, irrespective from the contribution; ei is
the given agent’s income; X−i=(X-xi) is the total monetary contribution of the N−i
coalition members belonging to the coalition; D−i=(D-di) is the total demand of the
other N − i coalition members belonging to the coalition; and N is the coalition size.

The function of the members purchasing from the central provider (Eq. 3) is
straightforward. The utility reduces with the cost of purchasing, relative to income,
and increases with consumption. The relative importance of each factor depends
on θi. This is the reference utility whenever an agent evaluates the opportunity of
joining a coalition.

In this second case (Eq. 4) we use a function similar to Axtell (1999, 2002), and
take into account the agents’ characteristics and their willingness to commit part of
their income into the common investment2. Higher θi2 indicates a higher preference
for saving rather than consuming, reducing the propensity to invest, and vice versa.
More importantly, the utility in coalition is function of other members’ contribution.
αi measures a member preferences for sharing consumption based on each relative
demand, rather than sharing on the basis of the contribution. βi measures the
preference for a proportional division of consumption based on each member relative
contribution, with respect to an equal division with all coalition members. The
individual utility in coalition also depends on the sum of the contributions and of
the demand of the other N − i members.

To compute the individual’s utility in each time period we model an iterative
process with feedbacks between negotiating members, which stops only when a stable
coalition is either formed or or not. During this process X−i and D−i vary as a result
of members’ decisions, affecting the remaining members’ utility.

At the outset of the simulation, agents are nodes of a regular network with l
neighbours with whom they can tie and form a link. Agents have limited number
of interpersonal connections which, additionally, require efforts to be created and
maintained (Amaral et al., 2000; Watts and Strogatz, 1998). We also assume that
neighbours must be within one step from the originating node, because the shared
good provides a localised service.3

We distinguish between regular, active, and initiator agents. The sequential game
of coalition formation starts with m randomly chosen agents that are initiators, the
innovators needed to start the diffusion process according to Rogers (1962).

An initiator is always active, meaning that they are always aware of the technol-

2Please see Annex I for a complete discussion regarding the properties of equation 4 and its
parameters.

3Therefore the model does not consider the role of social media.
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ogy, and willing to consider joining a coalition.4 An agent becomes active as soon
as an initiator proposes to form a link with them. Active agents become aware of
the opportunity to make the common investment, and replace the centralised service
provider. When active agents become initiators, they can tie new links, thereby
continuing the processes of knowledge diffusion following the percolation diffusion
model in networks (Mort, 1991; David and Foray, 1994; Solomon et al., 2000). An
active agent becomes initiator when the interest for the investment in coalition is
higher compared to a minimum level, computed endogenously each time step. This
threshold is defined visibility, as in Faber et al. (2010), and represents the minimum
level of agent’s awareness towards the new good. Every time step a random value,
RND ∈ [0; 1], is generated and associated to active agents. An active agent becomes
initiator when this number is lower than the visibility (Wt):

Wt = MAX[Vt−1;min[1;Adv + (ShareInCoalitiont−1)
ξ]] (5)

where Adv is the level of advertising, exogenously defined, as in the Bass model;
ShareInCoalitiont−1 is the share of agents that have entered a coalition; and ξ is
an exogenous parameter reflecting the bandwagon effect (Smallwood and Conlisk,
1979). Once an active agent becomes initiator, this characteristic is maintained for
the remaining time steps.

Only initiators can contact other agents, tie new links, and start the process
of coalition formation. As more capital goods in coalition are diffused, visibility
increases, and more agents become initiators, increasing the likelihood that agents are
involved in coalition formation and adoption. However, agents who already belong
to coalitions cannot participate in further coalition formation processes, reducing
the number of initiators and the likelihood that new agents are contacted. For this
reason, coalition formation and diffusion co-evolve.

In each time period the process of coalition formation begins with initiators (not
yet in coalition) that randomly tie a new bidirectional link with one of their neigh-
bours not yet linked (Action 1). Initiators then choose the product they want to
purchase and propose the investment to their linked neighbours (Action 2). The
choice is done considering the set of products available in the market, each of them
with different investment cost (I), amount of service supplied (S) and price (p2).
A product q is chosen randomly with probability proportional to its share, Diffq,

over of the total number of products already adopted,
∑Q

q=1Diffq. Therefore, the

4But not all active agents are initiators.
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probability that a product is chosen by an initiator is:

Ωq =
Diffq + 1

(
Q∑
q=1

Diffq) +Q

(6)

where the terms (+1) and (+Q) are needed in order to guarantee equal probabilities
at the beginning of the simulation, when diffusion is zero. Initiators, therefore, are
subject to the indirect network influence. This feature integrates in the model the
concepts of imitation and fashion effects that are common in diffusion theory.

Next, initiators explore the investment in coalition options (Action 3), taking
into account investment, demand, utility and cost constraints (Eqs. 7, 8, 9 and 10).
First, they evaluate all coalitions of size two. Then, one of the two coalition members
chooses randomly one of his or her linked neighbours and invites him or her to join
the coalition and evaluate the investment proposed by the initiator. After evaluation,
one more linked neighbour is invited. Actions 2 and 3 are repeated a number of time
in each time step, allowing initiators to evaluate different coalitions, with different
members and products.

Since agents are constrained with respect to time and computational power, they
cannot evaluate all the possible combinations of products and coalitions. After eval-
uating each coalition, agents make a conditional decision between invest in it or
remaining singleton, and stores as optimal the option with highest utility and lowest
cost. If a subsequent coalition yields higher utility and lower cost in comparison to
the optimal condition stored previously, the decision is updated. At the and of the
evaluation process, a final decision is taken. All agents announce separately their
optimal decision. If all members of a coalition announce that this option is their
optimal decision, the coalition is established. Consequently the common good is
adopted.5 Adopters may not take part in future coalition formation processes.

The evaluation of coalitions is a multi-step bargaining process occurring in each
time step of the simulation. Negotiation is necessary because agents try to max-
imise individual utility in coalition, which depends also on what other agents have
announced in previous bargaining steps (which determine continuous variations in
the value of X−i). In other words, agents adjust behaviour continuously in relation
to other agents’ announcement and to new opportunities, aiming at improving indi-
vidual utility and at experiencing cost reduction. Coalition formation, therefore, is
modelled as a dynamic and as a long process of continuous interactions among agents
because many features evolve over time and agents adapt behaviour accordingly.

5Annex II describes in detail how the coalition formation works, by means of an illustrative and
numerical example.
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The iterative process of coalition formation stops when stability among a group
of members is reached. A coalition is stable when Pareto efficiency is reached – each
member is better off without making at least one other worse off: (i) all members
maximise their utility; (ii) no member has an incentive to move to another coalition;
and (iii) no other agent would prefer to enter the coalition. Two more conditions that
must be satisfied to reach stability among the group of agents. First, the sum of all
members monetary contributions has to be at least equal to the investment cost (I)
and not exceeding 110% of its value (equation 7). Second, the common investment
capacity (S) must satisfy the total coalition demand (equation 8). Formally:

I ≤ xi +X−i ≤ I ∗ 1.1 (7)

di +D−i ≤ S (8)

Pareto efficiency and conditions in equations 7 and 8 guarantee coalition stability,
and a secure investment. This is also granted by two further conditions: that a
member’s utility (cost) in coalition is higher (lower) than utility (cost) as singleton:
Eq. 9 (Eq. 10). Formally:

Ui2 > Ui1 (9)

ci2 < ci1 (10)

To summarise, at the outset every agent acts as singleton and purchases the
service from a central provider. A few innovators, interested in purchasing jointly a
shared good that could provide locally the same price at a lower cost, but which is too
expensive to buy individually, contacts neighbours to inform about the opportunity.
Increasing the size of the network by forming new links, agents interact and explore
several coalition options of different size. Once a group of agents cannot improve
their utility by changing coalition, and no other linked agent would want to join,
or would be accepted by all existing members, they reach a stable coalition. Once
they and commit to the joint investment, no agent would move to another coalition
because this would incur a high sunk costs.6 We thus assume the good is purchased
and the coalition stable forever.

6This is in line with the fifth stages of the Innovation-Decision Process in Rogers’ theory where
confirmation of adoption implementation is a decisional step which comes later in time, once the
product reaches its maturity phase (Rogers, 1962).
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4 Results and Discussion

4.1 Model Initialisation

The model simulates the co-evolution of coalition formation and diffusion of shared
goods in a population of P = 200 agents. Tables 1 and 2 report the initial values of
the parameters.

Total population of agents P 200
Number of initiators at t=0 m* 4
Spatially bounded links in the neigh-
bourhood

l* 8

Income ei µ=1000, σ=250
Demand di µ=45, σ=10
Preference θi1=θi2 µ=0.5, σ=0.1
Preference for proportional division
rule (consumption)

αi 0.5

Preference for proportional division
rule (contribution) and equal share di-
vision rule (size)

βi 0.5

Advertising Adv 0.01
Bandwagon effect ξ 0.85
Price singleton p1 10
* Parameter analysed

Table 1: Model initialisation

Agents are distributed on a regular network, which represents a relatively large
neighbourhood (figure 1). Only 2% are initiators (m=4), randomly chosen at the
beginning of every simulation (t=0). Each agent has eight potential neighbours
(l = 8) with whom they can tie links (dotted edges in figure 1) and form a coalition.7

At the end of this section, two different analyses evaluate whether the diffusion
outcome changes in relation to the variation of these two parameters: number of
initial informed agent (m) and size of neighbourhood, or network clustering (l).

Agents are heterogeneous in terms of income (ei), demand (di) and preference (θi)
and all values are proportional and compatible. Individual values are assigned ran-
domly from a normal distribution. Agents have the same preference for the service
regardless from whether it is bought centrally or produced by the joint investment

7Although the degrees of separation between agents in a coalition may be larger then one, as
members may invite their own neighbours and so on.
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(θi1=θi2). They are homogeneous in respect to the two remaining preferences: pro-
portional division rule based on consumption (α=0.5) and proportional division rule
based on contribution and equal share division rule based on coalition size (β=0.5).

Agent’s awareness towards the common investment increases at each time step
(Adv=1%), meaning that chances for more agents to become initiators increase over
time. Further, the bandwagon effect related to the share of adopters is almost linear
(ξ=0.85). The unit price of the service paid by singletons to a general provider (p1)
is higher than the unit price of the service produced by the shared good (p2) (table
2).

Product Investment (I) Supply (S) Price (p2)
q1 500 200 5.00
q2 600 250 4.75
q3 700 300 4.50
q4 800 350 4.25
q5 900 400 4.00
q6 1000 450 3.75
q7 1100 500 3.50
q8 1200 550 3.25
q9 1300 600 3.00
q10 1400 650 2.25

Table 2: Model initialisation: available products

There are 10 capital goods in the market. Each of them has a different cost,
maximum capacity, and price: the larger the capacity (the higher the investment
cost), the larger the economies of scale, the lower the unit price.

The model has a time horizon of 200 time steps, where each step defines the time
needed to initiate a face-to-face contact and to evaluate investment in coalition. To
control for the random effects we show results as averages over 40 simulations with
different random seeds.

4.2 Diffusion in Coalition: Emergent Properties

We first discuss the emerging aggregate properties of the model. The model simulates
agents’ interactions aiming at forming coalition needed to buy jointly a common good
to replace service provision from a centralised provider. At the outset, only 2% of the
population is aware of the good. The information is spread throughout the network
by means of contacts among agents.

13



Figure 1: Initial regular network, 200 agents

Diffusion

After 200 periods, still only about 75% of the population is informed (Fig. 2), mean-
ing that on a regular network ‘contagion’ is relatively slow (as discussed earlier). Two
more factors are relevant. First, potential direct links are geographically bounded,
due to the need to adopt a good that provide a service locally, and an agent can
communicate only to the nearest neighbours (l=8). Second, the low number of ini-
tiators (m=4) slows down the initial ‘contagion’, since the formation of new links
and dissemination of information start from these agents.8

Awareness, does not imply adoption: only 50% of the population establishes a
coalition and adopts the shared good. The cumulative adoption follows the character-
istic S-shaped curve, although adoption is higher in the initial time steps compared to
traditional diffusion curves. This is due to the fact that in our model, when adoption
in coalition reaches a higher utility than buying from the central provider for several

8Interpersonal communications are necessary to spread information in social networks (Lin, 1999;
Woolcock and Narayan, 2000): these are particularly important for the diffusion of environmental
motivations (Ek and Patrik, 2010) and energy-efficiency innovations (McMicheal and Shipworth,
2013).
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Figure 2: Cumulative share of active agents and agent in coalition

agents, this is for certain, reducing the risk of early adopters.9 50% adoption rate is
not new in the literature on diffusion of capital goods, such as for micro-CHP (Faber
et al., 2010) and electric vehicles (Higgins et al., 2012; Shafiei et al., 2012). We will
test this outcome against different initial configurations of the network structure (m
and l).

Size of coalitions and shared investment

Initiators may choose among ten different products (q1−q10), where q1 is the smallest,
cheapest, but which provides the service with the highest unit cost; and q10 is the
largest, most expensive, providing the service at the lowest unit cost. The more a
product is adopted, the higher is the probability to be chosen (Ωq) in new coalitions.
Figure 3 shows the value of Ωq for each of the ten products over time. At the very
beginning of the simulation all products have the same probability to be chosen.
After a transition period in which probabilities vary rapidly, we observe a long term
pattern.

Overall, the most-chosen products are those with a lower investment cost (I),
lower capacity (S) and higher unit cost (p2). Among these, products q1 and q2 are
those that have the highest rate of adoption during the initial time steps. This is due
to both the network structure and to coalition size. At t=0 there are few initiators
that can tie links with neighbours, the network of connected agents is far from dense,

9In order to test whether the model is able to reproduce the traditional S-shaped diffusion curve,
Annex III presents diffusion outcome when uncertainties are added at the beginning of the process.
We show that uncertainty does reduce initial levels of adoption.
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Figure 3: Product probability to be chosen, Ωq

and there are few active agents that can enter in coalitions. Therefore, only small
coalitions can be evaluated and established, which have a small budget and can afford
less expensive goods (Figure 4 shows).10
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Figure 4: Share of agents in coalition, for each product adopted

Figure 4 plots the share of adopters for different coalition sizes (between 3-13) and

10These results resonate with notions of group size developed in the collective action literature
(Olson, 1971) and in the coalition formation literature (Komorita, 1974). Accordingly, small groups
are formed faster than bigger groups and these are more stable than the others. Further, coordi-
nation among agents in large-sized groups requires more time and in these formations agents have
higher bargaining power and higher opportunity to defect.
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type of capital good purchased. The figure shows that agents organise themselves
in different coalitions to buy specific products. Larger coalitions are established
to adopt goods with higher investment cost and higher capacity, whereas smaller
coalition are formed to purchase smaller goods. However, depending on the product
purchased, some coalitions are more likely to be formed compared to others. For
small investments, one type of coalition (small) is markedly more frequent than
others. The variability of coalition size increases with I and S, meaning that larger
goods are purchased by more heterogeneous types of coalitions (in terms of size).

We then put forward the following propositions.

Proposition 1: The investment costs (I) and capacity (S) of the shared goods
adopted in coalition increase with the coalition size.

Proposition 2: Coalitions tend to be of homogeneous size (small) when purchas-
ing common goods with low I and S. The heterogeneity of coalition size increases
with I and S.

Figure 5 plots the average number of options evaluated before establishing a
coalition and the coalition size: we find a positive significant correlation (r=+0.939,
p<0.001). Beside the timing (smaller coalitions are evaluated early in time, when few
individuals are active), this result suggests that, when agents have the opportunity
to choose between smaller and larger coalitions, they opt for the latter; and for larger
shared goods with higher I and S (proposition 1).11

Proposition 3: Agents prefer larger coalitions, with larger investments and low-
ers unit cost, despite they take longer to form.

Average contribution to coalition

In the model, agents commit to the common investment a monetary contribution
(xi) that maximises their utility (Ui2), and may vary with respect to preferred size
of coalition and shared good. Figure 6 plots the individual average contribution by
coalition’s size and, within each coalition, by good’s size. We shows that, the larger
the coalition, the lower the average agent monetary contribution, regardless the level
of the investment cost: N and xi are negatively correlated (r =-0.985, p=0.011).12.

11This result may support criticisms of Olson’s theories of small groups, suggesting that, in the
case of shared goods, large groups may favour collective action (Hardin, 1982; Oliver and Marwell,
1988).

12r is the Pearson correlation coefficient and p is the p-value
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Figure 5: Average number of options evaluated by agents before establishing a coali-
tion

Whereas, for a specific coalition size, the larger the investment cost (and the lower
the cost of the service supplied) the higher the average agent individual contribution:
I (or S) and xi are positively correlated (r=0.997, p=0.001). This result conforms
with the theory of sharing groups showing that: the more the people in coalition,
the less the individual costs; the larger the quantity purchased in group, the higher
the individual cost (Lindenberg, 1982).

Proposition 4: Average agent contribution to the shared investment (xi) de-
creases with coalition size (N) and increases with the size of the investment (I and
S).

Free riding

One possible interpretation is that In large coalitions individual behaviour is non-
influential for the whole group: as group size grows, the individual contribution
becomes less relevant. This may give raise to free-riding, and explain the tensions
in large groups between cooperation and free-riding (Canning, 1995; Glance et al.,
1997; Huberman and Glance, 1996; Shehory and Kraus, 1998; Axtell, 2000). In our
model we find that this relation is confirmed only partially. Figure 7 plots the share
of free riders by coalition size.13 The aveage share of free-riders in coalitions increases

13Free-riders are coalition members that do not contribute to the common investment (xi=0),
but pay the unit consumption costs (ci2>0).
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Figure 6: Average agents’ contribution in coalition per size and product

with coalition size up to a point (N = 8), to decrease again. This is explained by the
fact that large coalitions purchase, on avearge, large and expensive common goods
which require commitment of all memebrs.

Proposition 5: The relation between free-riding and coalition size follows an
inverted V shape.
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Figure 7: Free-riding agents
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4.3 Network analysis

Coalition formation and collective adoption occur in a network of agents whose struc-
ture evolves over time, as part of coalition formation. In this section we study how
adoption and network structure co-evolve, as part of the coalition formation process.

The co-evolution between coalition formation and diffusion

In each time step t, an agents i neighbours can take one of the following alternative
status: linked (fit) – can be part of the coalition, not linked (git) – cannot be part
of the coalition, or in coalition (hit). With the current initialisation (see table 1):
lit=

∑
fit+

∑
git+

∑
hit=8. If wt is the total number of active agents at time t, it is

possible to calculate the share of linked neighbours byactive agent (Lt, eq. 11) and
the share of linked and not linked neighbours in the total population (Vt, eq. 12) as
following:

Lt =

wt∑
i=1

∑
fit
lit

wt
(11)

Vt =

wt∑
i=1

∑
fit+

∑
git

lit

P
(12)

Lt can be interpreted as the share of potential members (among those already
aware) and Vt as the share of agents that could be potentially involved in the process
of coalition formation (in the whole population). Figure 8 plots both series over time.
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Figure 8: Co-evolution: links, network, coalition and adoption
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At the very beginning of the simulation, the share of linked agents (series Lt)
and the share of agents that potentially can enter in coalition (series Vt) increase
rapidly. When the first coalitions are established, both series stop to grow because
the number of active agents stabilises (series wt/P ). This is because adopters are
no more available for further coalitions, they break links with neighbours, reducing
communication between remaining agents. As soon as information starts to flow
again (when the share of active agents increases again), the two series start to rise
again but with a different slope.

Lt grows faster than Vt because while the number of new links fit increases (equa-
tion 11), the increasing share of agents in coalition (series % Adopters) reduces the
number of neighbours that could be part of new coalitions (

∑
fit+

∑
git=lit-

∑
hit in

equation 12). Both curves reach their maximum when the share of remaining active
agents (wt/P ) becomes stable, and eventually decrease until a stable state. We can
explain this better looking at the actual networks.

Figure 9 plots the network configuration of agents (left) and the network structure
of all established coalitions (right) at the end of one simulation run.14

Black nodes and edges represent connected agents belonging to a coalition that
has adopted a shared good (hit). Grey nodes and edges are agents that have been
informed and that have participated to the coalition formation process but remained
singletons (fit). White nodes connected with dotted edges are neither initiators nor
active (git), and could not participated in any process of coalition formation. The
top-left part of the final network configuration in Fig 9 shows a substantial number
of agents that have not been informed during the simulation rub, clustered in the
same area. A part of a relative low rate of adoption is then explained by a slow
information flow.

However, there is also a substantial number of singletons, active, between estab-
lished coalitions, with no connections to other individuals. As adopters break their
links with neighbours, once they coalesce and adopt, some singletons who did not
agree to enter any coalition, are left behind. Figure 10 shows a section of the network
in which three agents (69, 71 and 73) are not involved in any of the closest coalitions
(64-65-67-68, 59-60-61-62-63-66-70 and the one including agents 73, 74, 75 and oth-
ers). Since adopters are out of the game, these three isolated agents cannot enlarge
further their social contacts and a coalition of size does not improve the utility of all
of them. This reduces diffusion.

14Because it is not possible to plot an average network configuration over the 40 simulation runs,
for illustrative purposes we plot results from a single simulation, representative in terms of average
numbers of adopters.
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Figure 9: Final configuration: network (left) and coalitions (right)
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Figure 10: Isolated agents and established coalitions

Proposition 6: Although coalition formation is necessary for the adoption of
shared goods, it may also reduce future coalitions and therefore adoption by reducing
the number of available links among remaining agents. Coalition formation and dif-
fusion are co-evolving processes.
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Network properties of coalitions

Figure 11 plots the relation between network metrics (density, radius and diameter,
and centrality) and coalition size.
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Figure 11: Network metrics

Network radius and diameter (first panel) define the size of networks (the distance
between the two most distant nodes). Both measures are not surprisingly positively
correlated to N (diameter: r=+0.972, p<0.001; radius: r=+0.968, p=0.009), sug-
gesting that the minimum and maximum absolute shortest paths (or eccentricity) in
coalitions increases with size.

Network density (second panel) is the ratio between the number of links over the
total possible number of links among agents in a coalition.15 The negative correlation
(r=-0.933, p<0.001) suggests that smaller coalitions are more cohesive than large
ones, leaving out a lower number of isolated potential users.

The connectivity within coalitions can be measured with network centrality (third
panel). The level of connections between agents is inversely proportional to N . This
indicates that in larger coalitions the number of links that agents have with others
(Degree: r=-0.935, p<0.001), the extent to which agents serve as bridge between
other coalition members (Betweenness: r=-0.901, p<0.001), and agents’ degree of
being connected to all other agents (Closeness: r=-0.934, p<0.001) decrease.

Proposition 7: Smaller coalitions to buy shared goods are more cohesive than
bigger ones, and agents’ connectivity and centrality is higher.

Taken together, as time goes by, the number of aware and linked agents increases,
allowing for larger coalitions. These are preferred with respect to smaller ones (see
Proposition 3), thus contributing to the decrease in adoption rates.

15A proxy of structural cohesion (Friedkin, 1981).
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4.4 The Role of Geography

The relation between the network structure and coalition formation, suggest that the
size of the neighbourhood is likely to influence the processes of coalition formation
and the diffusion of shared goods. To examine its role, we run the model with different
initialisations of parameter l (between 4-14), the number of closest neighbours that
an agent can form links with. Figure 12 shows the relation between adoption rates,
the % of active agents, and different values of l.
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Figure 12: Diffusion, in brackets, and share of adopters and active agents per different
values of l

We find a positive and linear relation between the share of adopters and of ac-
tive agents (r=+0.998, p<0.001), and between these two shares, l, and the diffu-
sion of common goods (in brackets) (active agents: r=+0.971, p=0.001; adopters:
r=+0.977, p<0.001; diffusion: r=+0.950, p=0.003). That is, when the good can be
shared between users located at a larger distance, agents have more opportunities to
build contacts, form larger coalitions (figure 13), and increase adoption, than when
they can form coalitions with the immediate neighbours.

Figure 13 plots the distribution of coalition size for varying values of l. We find
that increasing the number of closest neighbours leads to larger coalitions. The
higher the value of l the higher the average number of adopters, and the higher the
number of larger coalitions.

Coalition size is also related to the size of the investment. Figure 14 plots the
distribution of shares of adopters per product (where q1 is a good with low investment
cost and high service unit cost; and q10 is a good with high investment cost and low
service unit cost). For low values of l, on average, coalitions decide to buy common
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Figure 13: Total number of adopters per coalition size and different values of l

goods that have low investment costs and service supplied. Along with the increase
of agents neighbourhood, the share of goods with higher level of I and S increases.
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Figure 14: Share of adopters per product and different values of l

Proposition 8: As the size of the neighbourhood that can share a good increases
(the service provided is less tied to the location), information about the shared good
flows more rapidly, adoption increases, coalitions are, on average, larger, and buy
goods with higher I and S.

4.5 The Role of Initiators

So far we have investigated a system with few initiator agents (m=4, as suggested
by the literature). What happens if all agents in the economy are aware of the
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shared good? In this section, we compare results with the case of all agents being
initiators (m=200): all agents are connected to their closest neighbours (l=8). This
initialisation allows to study diffusion in a complete network. At t=0, agents already
know what their utility in all possible groups.

Figure 15 compare the share of adopters resulting from the baseline (m = 4) and
the complete network scenario (m = 200). In complete networks, adoption occurs
very rapidly and rate of adoption is higher: after few time steps, the share of adopters
reaches its steady state, which is higher than the baseline scenario. This indicates
that the absence of communication, which instead occurs simultaneously with the
network formation process in the baseline scenario, speeds up the diffusion of shared
goods (and is necessary to obtain the S shaped diffusion curve). However, although
all agents are informed and connected, differently from many earlier studies, diffusion
does not reach 100%. In the case of the complete network, this is because some agents
prefer to purchase the service from the central provider, i.e., it depends to structure
of individual heterogeneous preferences.
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Figure 15: Share of adopter for different values of m

Figure 16 plots the distribution of adopted goods by size. In the complete net-
work, the majority of the coalitions buy the largest product, with the highest value
of both I and S (q10). As above, this is related also to coalition size. Figure 17
plots the share of adopters per coalition size. Moving from incomplete (m = 4) to
complete network (m = 200) the average size increases. When possible, agents de-
cide to establish larger coalitions (proposition 3) despite the high level of negotiation
and alternative options. Large groups purchase shared goods with higher investment
cost, and providing higher quantity of the demanded service (proposition 1) at a
lower cost. In these large groups, in agreement with proposition 4, agents minimise

26



their individual contribution xi.
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Figure 16: Share of adopters per product and different values of m
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Figure 17: Share of adopters per coalition size and different values of m

Proposition 9: In a population of fully informed and linked agents, the share of
adopters is higher than in a population where information and connections build as
an outcome of diffusion.

5 Implications for the Diffusion of Sustainable Goods

The literature on the diffusion of sustainable energy has focused on adoption as an
individual decision. Hence, it studies mainly small-sized goods which are affordable
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to the average consumer, such as water-saving technologies (Schwarz and Ernst,
2009), micro-cogeneration (Faber et al., 2010), or solar PV panels (Murakami, 2014).
Some of these studies examine the role of social interactions and diffusion through
networks (Tran, 2012; Bale et al., 2014) and find that networks directly and indirectly
influence the individual choices and preferences regarding sustainable goods (Choi
et al., 2010; Bollinger and Gillingham, 2012) and might accelerate the diffusion of
sustainable energy innovations.

However, to study the diffusion of large-sized sustainable goods, such as smart
micro grids, it is necessary to consider adoption as a collective decision. The anal-
ysis presented in this paper is suitable to study different cases where a group of
individuals may choose to buy a good which is too expensive for a single, such as
large-sized decentralised energy systems (DES). DES are too expensive for individual
households, but can be purchased by group of neighbours. DES are considered to be
indivisible, capital-intensive good with high fixed costs; DES may be beneficial only
to users that are connected to it and that share its use; consequently, diffusion of
DES is as a case of technology adoption that takes place through collective action;
adoption and diffusion of DES requires to first study how such coalitions are formed.

There is still an open discussion about which technologies should be considered as
DES. Ackermann et al. (2001) propose four categories, distinguishing distributed gen-
eration based on the power installed: these are micro, small, medium and large. The
model presented in this paper, accordingly, studies agents who can choose among a
set of goods availableof different size. Overall, DES are considered to be small-scaled
electric power sources and, since these are non-movable common goods, they have
to be physically installed close to the end users directly connected to them (Hatziar-
gyriou and Meliopoulos, 2002; IEA, 2002). Coherently, a more direct involvement
of final users can widely boost diffusion of DES (Sauter and Watson, 2007). They
can buy and use these systems independently, and experiencing economic benefits
(Watson, 2004).16 Therefore, as simulated in the present model, the adoption of DES
can be seen as an emerging bottom-up process requiring a careful understanding of
consumers’ behaviour, features and preferences (Groh et al., 2014; Pasimeni, 2017).

Results discussed in section 4 can then provide useful policy advice regarding
the diffusion of DES, where an adequate regulation is required (Lopes et al., 2007;
Driesen and Katiraei, 2008; Marnay et al., 2008; Agrell et al., 2013). A large diffusion
of DES might bring environmental benefits (Hadley and Van Dyke, 2005; Tsikalakis
and Hatziargyriou, 2007; Akorede et al., 2010), reduction of transmission losses (Chi-

16Adoption of DES can also be improved by private and public investments. However, since the
focus of this paper in on consumers’ coalitions aiming at purchasing (independently) and sharing a
common property, these aspects are not considered in the model.

28



radeja and Ramakumar, 2004; Pepermans et al., 2005) and enhancing energy security
(Asmus, 2001; Battaglini et al., 2009). As suggested by our model, to facilitate the
transition towards a more decentralised energy system, the first requirement is to in-
crease awareness. DES might diffuse more if consumers were sufficiently connected,
and DES were able to provide services at higher distance (higher clustering in the
neighbourhoods). Under these conditions, large-sized DES (for example those be-
tween 50MW and 300MW, as defined in Ackermann et al., 2001) may have a larger
probability to be adopted than smaller systems, and, at the same time, consumers
might spend less for their energy consumption.

In conclusion the study on diffusion of common goods in consumers coalitions
applied to the case of DES permits to analyse what are the factors that can facilitate
the direct involvement of final users into the necessary shift towards a less centralised
energy system. The importance of consumers’ empowering in this transition process
has been recognised by both the scientific community (Hyysalo et al., 2016; Schot
et al., 2016) and public organisations (European Commission, 2015a,b). The Eu-
ropean Commission clearly endorses this necessity, as communicated in the Energy
Union Strategy:

“To reach our goal, we have to move away from an economy driven by
fossil fuels, an economy where energy is based on a centralised, supply-
side approach and which relies on old technologies and outdated business
models. We have to empower consumers through providing them with
information, choice and through creating flexibility to manage demand
as well as supply” (European Commission, 2015c, p. 2).

6 Conclusion

This paper has presented ad discussed a model to study the co-evolution of diffu-
sion of expensive shared goods and the formation of the coalitions required to adopt
them. Differently from earlier studies on diffusion, our model considers the adoption
decision as a collective action, taken by a group of consumers. These groups are
endogenous: consumers organise themselves following a bargaining process, as stud-
ied in coalition formation game theory. Similarly, links between agents are evolve
over time endogenously by means of interpersonal contacts occurring in the social
network. By combining different contributions from diffusion and game theory in one
agent-based model, this paper aims at contributing to the discussion on the diffusion
of shared goods, for which a collective adoption is required.

Results show that larger coalitions are preferred with respect to small ones, to
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adopt more expensive goods that satisfy a larger demand at a lower unit cost for
the service provided. Adopters in large coalitions experience a greater cost reduction
than in smaller coalitions. However, small coalitions form at the beginning of the
process, when the network is too sparse to involve many consumers.

Coalition formation and diffusion both depend on spreading information abut the
good in a given population, which depends on the connectivity among individuals.
In larger networks, information flows rapidly and more people decide to join a coali-
tion and to adopt a shared good. However, diffusion also reduces future coalition
formation and adoption: because coalitions include only some of the neighbours,
those who do not enter (because they do not benefit from those coalitions) remain
isolated in the network, and are not able to join further coalitions which may be
more suitable to them. For this reason, and contrarily to common outcomes in the
literature, adoption in coalition does not guarantee full diffusion, also in cases when
information the is available to the whole population.

As discussed in section 5, the modelling exercise presented in this paper can be
applied to sustainable energy technologies where the role of consumers’ ownership is
crucial, as for example in relation to investments regarding local energy infrastruc-
tures. For instance, the directive 2010/31/EU of the European Parliament provides
guidelines towards the nearly zero-energy building. These are ”building [with] very
high energy performance” where the ”energy required should be covered to a very
significant extent by energy from renewable sources, including energy from renew-
able sources produced on-site or nearby” (European Parliament, 2010, p.18). The
implementation of this directive, together with other propositions supporting direct
energy production and consumption, may substantially benefit from our analysis.
For instance, as emerges from our analysis, when not all users are involved in the
transition towards a more sustainable energy infrastructure, they main remain iso-
lated, with a negative impact on social inclusion and on the energy transition (due
to lower formation of groups of adopters).

The model may also be extended to study related dynamics, such as network and
coalition formation in the international climate agreements (Barrett, 1994; Benchekroun
and Claude, 2007; Tavoni et al., 2011; Balint et al., 2017). The model can be ex-
tended in different ways, such allowing the reintegration of agents in the game after
a certain period after the adoption. Shared goods may be considered as mobile,
allowing to study the fifth stages of the Innovation-Decision Process in Rogers’ the-
ory where confirmation of adoption implementation occurs once the product reaches
its maturity phase. Another relevant modification concerns the possibility to have
agents in different network structures, such as random networks or small word.
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Annex I

In the utility function of option 2 (equation 4), the two parameters αi and βi allow
for the linear combination of three elements. The first, di

di+D−i
, is, approximately, the

percentage of the total service, S, provided by the common good consumed by agent
i, once the coalition is formed (see equation 8). Second, in the same way, xi

xi+X−i
, is,

approximately, the percentage of the value I of the shared good, purchased by agent
i through their monetary contribution xi, once the coalition is formed (see equation
7). Third, 1

N
represents the equally shared percentage of the service based on the

number of coalition members. Eq. 4 can be rewritten as follow:

Ui2(ei; ci2; di;D−i;xi;X−i;N ; θi2;αi; βi) =

(ei − ci2)θi2{αidi + xi
di +D−i

xi +X−i
(1− αi)βi +

di +D−i

N
(1− αi)(1− βi)}1−θi2 (A1)

Equation A1 means that, neglecting the effect of α and β, the agent’s utility function
concerning the second option, along with the money saved from individual income
(first part of the equation) depends on the linear combination of (i) the individ-
ual demand of the service, (ii) the return of the common investment (total service
produced, di + D−i, divided by the total cost spent to purchase the common good
producing that service, xi +X−i) multiplied the individual monetary contribution in
that investment, and (iii) the total service produced by the common good equally
divided to each of the coalition members.

Figure A1 shows how the utility function terms, cœeteris paribus, influence the
agent’s utility in coalition, their relative monetary contribution, and, most impor-
tantly, their relation.

High level of θi indicates that an agent has a higher preference to save money,
while low level of θi indicates a higher preference to satisfy the demand for the ser-
vice. When θi = 1, the utility depends only on the income saved. In the opposite
case, when θi = 0, agent’s utility depends only on consumption. When preference
for income is high (high θi2) (and preference for consumption low), cœteris paribus,
an agent in coalition maximises utility (Ui2) by reducing individual monetary con-
tribution (xi). When θi2 has a lower value (hence, higher consumption preference),
agents in coalition are willing to contribute more in order to maximise utility.

The relation is similar for di on xi and Ui2. A higher demand raises also the
cost (ci2=di p2), reducing the contribution thatt maximises utility. Instead, agents
in coalition with higher income (ei) are willing to contribute more, in comparison
to those with lower income. This is because savings are higher when the income is
higher, and utility increases even if contribution is higher, cœteris paribus.
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θi2 di ei

αi βi N

p2 X−i D−i

Figure A1: impact of model variables on xi and Ui2

αi and βi influence individual utility and contribution in opposite ways. With
higher (lower) value of αi (βi), utility reaches its maximum at a low levels of monetary
contribution. This is because αi measures the importance given by an individual to
the proportional division rule based on consumption. The higher is αi, the higher is
the importance that the individual assigns using only part of the service provided by
the common good. Therefore, when this share grows, utility decreases. Parameter
αi, therefore, captures the individualistic perception of the sharing attitude; an agent
agrees to share the use with others, but, at the same time, is also reluctant to limit
her own consumption. βi instead measures the importance given by an individual
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to the proportional division rule based on contribution. Higher value indicates a
preference for consuming a lower portion one’s income while owning and using part
of the common good. Higher βi also signals that agents attach lower relevance to
the number of coalition members. As a result, individuals with high βi are willing
to contribute more to the common purchase, having a higher interest in sharing the
cost proportionally with others.

With respect to coalition size (N) individuals participating in smaller coalitions
increase their utility by contributing more than in larger coalitions. The last three
terms are also straightforward. The higher the price (p2) of consuming the service
in coalition, the lower the utility. The higher is the other members total contribu-
tion (X−i), the lower is the individual contribution; the higher is the total demand
(D−i), the higher the individual contribution. These two latter characteristics, in
combination with other factors in the utility function, might induce members to
free-ride.

Annex II

In order to simplify the explanation of the coalition formation process and its co-
evolving decisional process, an illustrative example is used. The initial parameters
are set as in table A1. For simplicity, it is assumed that initiators can only choose
one product. Agents are heterogenous only in respect to their demand (di), while
all the other parameters (ei, θi2, θi1, αi and βi) are set equal to all agents. Because
of this heterogeneity, agents acting as singleton have different costs and utilities for
option 1 (table A2).

p1 10
p2 5

θi1=θi2 0.5
ei 1000
αi 0.5
βi 0.5
S 175
I 200

Table A1: Initial parameters

For graphic purposes, the example represents eight agents only, that are located
in a regular lattice. Each of them has four spatially limited potential links in his or
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Agent 1 2 3 4
di 30 55 35 45
ci1 300 550 350 450
Ui1 145 157 151 157

Table A2: Agents’ parameters

her own neighbourhood. Figure A2 below shows an initiator agent in the population
and his or her neighbours.

1

Figure A2: Initiator (in black) and the regular network structure

Every time step, the initiator ties a link with one of his or her neighbours, which
is not linked yet. Therefore, (s)he chooses randomly another agent among spatially
limited links. Links formed are bidirectional. The contacted agent becomes active,
and (s)he is also informed of the opportunity to make the common investment. In
this example, as shown in Figure A3, agent-1 contact agent-2 and they establish a
link.

In this moment, agent-1 is the initiator while agent-2 is not. Both agents, as well
as all the other agents in the population, satisfy their demand via external provider
that supplies the requested services. This status is defined as singleton and equations
1 and 3 are needed to calculate cost and utility of this option for each agent. Only
the initiator (agent-1 in the example) can start the process of coalition formation.

Before doing so, (s)he first has to choose which product (s)he wants to purchase
and for which (s)he will try to form a coalition (in this example only one product
is available). Once the product has been chosen, the process of coalition formation
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1

2

Figure A3: Step 1: initiator ties link with agent-2

can start. The initiator contacts one of the linked agent. In the example in figure
A3, agent-1 contacts agent-2 and they evaluate the joint investment in coalition,
needed to buy the product chosen earlier by the initiator (equation 2 and 4). Once
agent-1 and agent-2 have evaluated the opportunity to invest in coalition, they make a
conditional decision among the option to invest in coalition or to remain as singleton.
The option that makes an agent better off is stored as optimal. When all coalitions
have been evaluated (in the example only coalition (1-2) is currently available to
these two agents), all agents announce their optimal conditional decision.

Now, assuming that the coalition (1-2) is not established because it does not
satisfy all the stability conditions, the two agents can contact more neighbours and
tie more links, thereby improving and enlarging their network. This activity can be
performed only by initiators. Nevertheless, at the start of the new time step, all active
agents check, through equation 5, if their level of awareness is enough to become
initiators. Let’s assume that also agent-2 becomes initiator. In the current situation,
therefore, both agents can, firstly contact one more neighbour each, secondly choose
a product, and thirdly start the process of coalition formation. As shown in figure
A4, while agent-1 contacts and forms a bidirectional link with agent-3, agent-2 does
the same with agent-4. After that the two initiators choose the product they want
to buy jointly with others, they start the process of coalition formation as explained
before.

The coalition formation starts from initiators. First agent-1 and later agent-2
begin this process by contacting one linked neighbour. They firstly evaluate coalition
size 2 and then, depending on the available links, evaluate bigger coalitions. In
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34

Figure A4: Step 2: Initiators tie one link each

this case, the full coalition, size 4, is the largest they can form. Table A3 below
summarises all possible coalitions that can be formed and can be evaluated in this
network of agents. There are three coalitions size 2 (1-2, 1-3 and 2-4), two coalitions
size 3 (1-2-3 and 1-2-4) and one coalition size 4 (1-2-3-4).

Agent Agent
Coalition 1 2 3 4

∑
xi ≥ I

∑
di ≤ S 1 2 3 4

1-2 xi 101 72 173 x 85 X stop
1-3 xi 97 89 186 x 65 X stop
2-4 xi 78 88 166 x 65 X stop
1-2-3 xi 138 76 127 341 X 120 X continue decision

ci2 288 351 302 ci2<ci1 X X X
Ui2 163 169 164 Ui2>Ui1 X X X

1-2-4 xi 142 84 108 334 X 130 X continue decision
ci2 292 359 333 ci2<ci1 X X X
Ui2 167 173 171 Ui2>Ui1 X X X

1-2-3-4 xi 161 81 145 113 500 X 165 X continue stop
ci2 311 365 320 338 ci2<ci1 x X X X
Ui2 163 169 164 167 Ui2>Ui1 X X X X

Table A3: Coalitions evaluated

The three coalitions size 2 do not satisfy condition in equation 7, that is the
total monetary contribution added up by the participants is not enough to cover
the investment cost. Consequently, these three coalitions are not feasible and they
do not provide any optimal conditional decision for the agents involved. Agents
stop evaluating these coalitions. Then, agents evaluate the two coalitions size 3.
These satisfies both conditions in equation 7 and equation 8, so agents continue
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the evaluation process and consider their individual cost and utility in coalition
(equations 9 and 10). All agents are better off in these two groups, therefore, the
two coalitions size 3 are subject to further negotiation in the final decisional step.
In the option of the full coalition, size 4, even if it satisfies both initial conditions,
agent-1 does not experience improvement compared to the singleton option (cost
in coalition is higher). Therefore, (s)he does not agree to form this coalition, which
implies that it is not a feasible solution. Consequently, the full coalition is not further
considered by agents.

The four agents involved in the final decisional step have their own optimal con-
ditional decision. Agent-1 and agent-2 want to establish coalition (1-2-4) since their
utility is higher than in coalition (1-2-3). On the one hand, agent-3 has coalition
(1-2-3) as the only available option to improve individual utility. Agent-4, on the
other hand, has coalition (1-2-4) as the only available option to improve individual
utility. Based on these considerations that agents make explicit, coalition (1-2-4)
is established. This implies that these three agents have coordinated their efforts,
agreed on the monetary contribution and that they jointly purchase the common
good. Coalition is established, and it means that they are out of the game, making
agent-3 isolated in the network. Figure A5 shows how network in figure A4 evolves
after adoption. The three agents in the established coalition (1-2-4) break the ex-
isting links, those already formed (e.g. link 1-3) and those potentially available in
their spatial geography (e.g. links 2-3, 3-4, etc.). Agent-3, then, remains isolated.
Since (s)he is an active agent, in the next time steps (s)he will check whether or not
could become initiator (equation 5). If so, agent-3 can continue the process with the
remaining agents in the population.

1

2

34

Figure A5: Step 3: coalition established and agent-3 isolated
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Annex III

Figure A6 shows a cumulative adoption curve where uncertainties are added at the
beginning of the simulation. For the initial times steps, utility in coalition is slightly
reduced by means of a coefficient representing a lower utility for early adopters.
This produces a lower degree of cumulative adoption in the first stages of the process
compared to the case without uncertainties (dotted line, equal to that in figure
2. However, a slower adoption implies that contacts among agents increase, since
more agents are in the game. And, as explained in both sections 4.4 and 4.5, more
communication implies higher adoption, as indicated by the higher final share in
figure below.

����_����������

�������_����������

� �� ��� ��� ���
���

���

���

���

���

���

���

���
����� �� ��������

Figure A6: S-shaped diffusion curve
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