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Summary 

Modern plant breeding can benefit from the allelic variation existing in natural populations of 

crop wild relatives that evolved under natural selection in varying pedoclimatic conditions. In 

this study, next-generation sequencing was used to generate 1.3 million genome-wide SNPs 

on ex situ collections of Triticum urartu L., the wild donor of the Au sub-genome of modern 

wheat. A set of 75,511 high quality SNPs were retained to describe 298 T. urartu accessions 

collected throughout the Fertile Crescent. Triticum urartu showed a complex pattern of 

genetic diversity, with two main genetic groups distributed sequentially from West to East. 

The incorporation of geographic information of sampling points showed that genetic diversity 

did correlate to geographic distance (R2 = 0.19), separating samples from Jordan and 

Lebanon, to samples from Syria and Southern Turkey, to samples from Eastern Turkey, Iran, 

and Iraq. The wild emmer genome was used to derive SNPs physical positions on the 7 

chromosomes of the Au sub-genome, allowing to describe a relatively slow linkage 

disequilibrium decay in the collection. Outlier loci were described on the basis of 

geographical distribution of the T. urartu accessions, identifying a hotspot of directional 

selection on chromosome 4A. Bioclimatic variation was derived from grid data and put in 

relation to allelic variation with a genome-wide association approach, identifying several 

marker-environment associations (MEAs). Fifty-seven MEAs were associated with altitude 

and temperature measures, while 358 were associated with rainfall measures. The most 

significant MEAs and outlier loci were used to identify genomic loci with adaptive potential, 

some already reported in wheat, including dormancy and frost resistance loci. We advocate 

the application of genomics and landscape genomics on ex situ collections of crop wild 

relatives to efficiently identify promising alleles and genetic materials to be incorporated in 

modern crop breeding. 
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Introduction 

The adaptation of agriculture to climate change is among the most urgent challenges of our 

times. Food security in the coming years requires that the crops feeding humanity will be able 

to thrive in new climates (Lipper et al., 2014). Since the last century, breeding efforts have 

been focused on the production of elite cultivars incorporating a combination of desirable 

traits, most notably high productivity. The production and extensive diffusion of these 

cultivars in much of the world’s fields, however, may contribute to the erosion of genetic 

diversity (Jarvis et al., 2008) and to the consequent loss of resilience towards new abiotic 

(Abberton et al., 2016) and biotic stresses (Saintenac et al., 2013; Bebber et al., 2013). Crop 

wild relatives (CWR), having diffused to diverse environments and adapted locally under 

natural selection (Vavilov and Dorofeev, 1992), harbor vast genetic diversity. Their use in 

breeding has long been advocated to provide favorable alleles to crop cultivars (Harlan, 

1976). However, the use of CWR in breeding is hampered by limited knowledge of their 

genetic diversity and by the challenge of combining desirable CWR alleles to elite lines 

background. Nowadays, the increasing availability of genomic tools bears the promise to 

mine wild alleles with increased efficiency, and to use this information to produce improved 

crops (Brozynska et al., 2016). The conservation and classification of CWR is therefore a 

global priority (Maxted et al., 2012; Dempewolf et al., 2017). Although extensive ex situ 

germplasm collections exist, much remain to be done to cover CWR taxonomic and 

geographic diversity (Castañeda-Álvarez et al., 2016), a task made more urgent by the 

alteration of their spatial distribution and availability due of climate change (Jarvis et al., 

2008). 

The molecular, geographic and phenotypic characterization of existing CWR 

collections may provide useful information to support their use in plant breeding. Recent 

approaches in statistics and genomics join genotypic and bioclimatic information to identify 
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genomic loci responsible to environmental adaptation (Rellstab et al., 2015; Rissler, 2016). 

These ‘landscape genomics’ approaches have found application in several research fields, 

including evolutionary studies (Sork et al., 2013), screening of diversity in non-model 

organisms (Dell’Acqua, Fricano, et al., 2014), conservation efforts (Vincent et al., 2013), and 

epidemiology (Schwabl et al., 2017). In an agronomic perspective, landscape genomics may 

be either applied to model species to derive detailed information on candidate genes for 

environmental adaptation (Dell’Acqua, Zuccolo, et al., 2014; Mattila et al., 2016) or be used 

on crop landraces to identify adaptation alleles readily available for breeding  (Pallotta et al., 

2014; Lasky et al., 2015; Russell et al., 2016). Applying landscape genomics approaches to 

natural populations of CWR may provide the double advantage of reducing the gap between 

model and crop species while benefiting of higher allelic diversity than that available in 

landraces (Zhou et al., 2015).  

Modern wheat (Triticum aestivum L. and Triticum durum Desf.) is markedly less 

diverse than its ancestors. A series of demographic and selective bottlenecks occurring since 

the initial domestication of wild emmer reduced wheat allelic diversity (Haudry et al., 2007). 

During the second half of the 20th century, breeding focused on elite germplasm, further 

narrowing variation and increasing field uniformity (Cox et al., 1986). This trend is currently 

slowing down, and possibly reverting, also thanks to the use of landraces and CWR to mine 

alleles of breeding relevance (Reif et al., 2005). Wheat landraces and CWR are indeed 

strategic reservoirs of allelic diversity (Reynolds et al., 2007; Hairat and Khurana, 2015; 

Mengistu et al., 2016), whose breeding value may be unlocked by genomic and landscape 

genomics approaches leveraging environmental adaptation developed during evolutionary 

times. Triticum urartu L. (2n=2x=14; genome AuAu) is the donor of the A sub-genome to 

wild and cultivated tetraploid (2n=2x=28; genome AABB) and hexaploid wheat (2n=2x=42; 

genome AABBDD). Unlike its sister species Triticum monococcum (2n=2x=14; genome 
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AmAm), T. urartu was never domesticated and is still broadly distributed across the Fertile 

Crescent, where it contributed to originate the first wild forms subsequently domesticated 

(Özkan et al., 2002). Having evolved under natural selection, T. urartu populations may have 

accumulated alleles providing adaptation to local conditions. Resistance genes have been 

already mapped in T. urartu (Qiu et al., 2005) and other diploid A genomes (Chhuneja et al., 

2008). Triticum urartu has been also used as a model to study gliadin alleles (Zhang et al., 

2015), and showed a variety of glutenin alleles of promising use in wheat breeding (Cuesta et 

al., 2015). Recent studies described the genetic diversity of natural populations of T. urartu 

also in relation to agronomic and quality traits, but were limited by the use of few dozen 

microsatellite markers (Wang et al., 2017). The availability of a draft genome sequence for T. 

urartu (Ling et al., 2013) and of the high quality genome sequence of related species such as 

wild emmer (2n=2x=28; genome AABB) (Avni et al., 2017), discloses the possibility to 

extensively characterize the genetic diversity of T. urartu, propelling its incorporation in 

wheat breeding pipelines. Alleles from T. urartu may be then transferred to cultivated wheat 

either by biotechnology approaches, by amphiploids production (Ahmed et al., 2014), or by 

direct hybridization with polyploid (Qiu et al., 2005) and diploid wheat (Fricano et al., 2014). 

Recently, T. urartu alleles were expressed in cultivated wheat to complement their 

homeologs, providing enhanced functionality (Gao et al., 2017). Genome editing approaches 

in wheat (Zhang et al., 2016) bears the promise to accelerate the use of T. urartu and other 

CWR variation in cultivated wheat .  

 In this study, we report the characterization of the most complete ex situ collection of 

wild T. urartu accessions currently available, spanning the entire Fertile Crescent. The use of 

restriction-site associated DNA (RAD) markers allowed the description of the genome-wide 

molecular variation among T. urartu natural populations. Markers were projected onto the 

wild emmer genome sequence to allow incorporating their positional information in linkage 
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and association analyses.  Landscape genomics approaches making use of climatic data at 

sampling points provided insights into the genomic signatures of environmental adaptation, 

leading to the discovery of several loci whose allele frequencies are related to the spatial and 

climatic distribution of this species. 

 

Results 

Genotyping 

The RAD sequencing of 298 T. urartu accessions collected for this study produced more than 

2 billion reads after de-multiplexing (Table S1; Raw sequencing data can be retrieved at 

[European Nucleotide Archive]). After removing reads without the expected cut site 

downstream the barcode (0.46%), the average number of reads per sample was 5,332,961 (σ 

= 1,703,164). Considering the whole set of accessions, the maximum number of reads 

retrieved was more than 9.5 million, the minimum 4,945 (Table S1). Reads were projected on 

the T. urartu draft reference genome (Ling et al., 2013), obtaining a median alignment rate of 

95.8%. Aligned reads were used to call variants and yielded 1,300,216 genome-wide 

polymorphic sites. The list of variants was restricted to biallelic single-nucleotide 

polymorphisms (SNPs) in haplotypes with a maximum length of six, with minor allele 

frequency (MAF) above 5%, retaining 75,511 high-quality markers for downstream analyses. 

The high-quality marker set was distributed on 21,501 scaffolds, the most diverse containing 

48 SNPs, with 3.5 SNPs per scaffold on average.  

 All variants called on the T. urartu genome were projected onto the genome of wild 

emmer wheat (T. turgidum spp. dicoccoides), tetraploid CWR bearing the A and B wheat 

sub-genomes. Among all RAD markers, 1,296,925 (99.7%) were mapped on the wild emmer 

genome, and 713,300 (54.9%) were uniquely aligned. Of the uniquely mapped markers, 

700,949 (98.3%) were placed on the A sub-genome, leaving only 1.2% of the markers 
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(8,353) mapping on the B sub-genome. The remaining 0.6% of uniquely mapped markers 

(3,998) were placed on the unknown chromosome (Chr) of the wild emmer genome 

assembly. Among the subset of 75,511 high-quality T. urartu markers, 56,728 (75.1%) had a 

position on the A genome of wild emmer and were used for map-based analysis. Hereafter, 

when reporting Chr numbers we refer to the wild emmer chromsomes.  

 

Geographic characterization of the collection 

The analyses were conducted keeping track of the geographic origin of the T. urartu 

accessions via GPS coordinates of sampling points. Twenty-five samples not having GPS 

coordinates could be traced to approximate sampling positions using gazetteer notations, 

while 49 did not have any geographic information associated and could not be traced to 

sampling areas. A sampling order was reconstructed via multidimensional scaling (MDS) 

(Fig 1). The sampled area covers a broad region across the Fertile Crescent, spanning across 

Jordan, Lebanon, Syria, Turkey, Armenia, Iraq and Iran. The extreme sampling points West 

to East were more than 1,400 Km apart. Likewise, Northernmost accession were sampled 

more than 700 Km away from most Southern samples. The altitude of sampling points ranged 

from 45 to 2,419 meters above sea level, and all BioClim variables showed broad variation 

across the sampling points (Fig. S1). A principal component analysis (BIO-PCA) performed 

on climatic variation across the collection revealed a relevant structuration (Fig. 2a). When 

the original variables were correlated with the BIO-PC 1 to 3, the contribution of each 

BioClim variables to this structure became apparent (Fig. 2b). BIO-PC1 accounted for 52.2% 

of the original variance, and was positively correlated with temperature indexes and 

negatively correlated with altitude and, to a lesser extent, with rainfall indexes. Western 

samples and Eastern samples are both distributed across a broad range of altitudes and 

temperatures (Fig. 2a). BIO-PC2 (26.9% of the bioclimatic variance), orthogonal to altitude, 
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was faintly correlated with temperature and negatively correlated with precipitations of the 

wettest month (Bio 13), and the wettest (Bio 16) and coldest (Bio 19) quarter. Precipitation 

seasonality was also negatively related with BIO-PC2. This gradient separates the Western 

and the Eastern part of the sampling area (Fig. 2a). BIO-PC3, although explaining only 

12.2% of the original variance, was the sole BIO-PC highly correlated with isothermality 

(Bio 3). Altogether, BIO-PC 1 to 3 accounted for 91.3% of the bioclimatic diversity reported 

by altitude and the 19 BioClim indexes.  

 

Diversity analyses 

The unrooted phylogenetic tree deriving from the set of high-quality SNPs shows three main 

clades (Fig 2a). Samples coming from the Eastern portion of the Fertile Crescent grouped 

together in a loose clade. Samples from the opposite end of the collection, mainly coming 

from Lebanon and Jordan, grouped in a separate clade. A number of samples with no clear 

geographic patterning projected out of this group in a monophyletic clade. A clustering 

analysis performed on molecular data confirmed these samples as a separate group (Fig. 3a). 

This group included the outgroups T. monococcum and T. boeticum, and accessions having an 

intermediate phylogenetic relationship between T. urartu and outgroups. Outgroups were 

removed from further analyses, and a PCA was used to depict the genetic relatedness of T. 

urartu accessions (Fig. 3b). Samples from the Western and Southern sampling grouped 

separately according to PC1, accounting for 9.17% of the molecular variation. Low PC 

loadings confirmed a limited population structure beyond the main geographic separation 

across the East-West gradient: 69 PC are needed to reach 50% of the variation originally 

present in the molecular dataset. Samples without a GPS location group in the vicinity of 

mapped samples in the bottom left corner of the PCA, suggesting a proximate, although 

unrecorded, geographic origin (Fig. 3b). 
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 A Bayesian analysis of the cryptic genetic clusters supported the outcome of the 

phylogenetic analyses (Fig. 4). When considering the entire dataset, the most probable 

number of clusters (K) was two (Fig. S2), separating a West group from an East group (Fig. 

4a). When exploring deeper structures existing within the two main groups, the most 

probable K for Western collections was either three or four (Fig. S2). In both cases, samples 

with contrasting cluster assignment fell in the intermediate sampling areas. Groups of 

samples with low genetic admixture were located at the extremes of the geographic 

distribution (Fig. 4b). The most probable K for the Eastern sample group were either three or 

six (Fig. 4c; Fig. S2). One main genetic cluster characterized intermediate samples with both 

K interpretations. With the lowest K, a geographic structure of genetic diversity was still 

visible. Interestingly, samples furthest apart shared the same genetic membership (K1). When 

setting K to six, at least four linearly ordered groups of samples emerged among those having 

GPS coordinates (Fig. 4c). 

Linkage disequilibrium (LD) was studied deriving marker positions form the wild 

emmer genome sequence. Most of the chromosomes showed higher centromeric LD, even 

though regions of localized higher LD were visible in telomeric regions (Fig. S3). On all 

chromosomes, absolute values of LD were relatively low, but the rate of LD decay was slow. 

The LD decay, measured as halving distance of mean LD, was spanning from 11.2 Mb on 

Chr 1A to 66 Mb on Chr 2A (Fig. S4). Half the amount of initial LD was on all chromosomes 

close to r2 = 0.2, a value generally considered null LD. 

 

Landscape genomics 

To focus on the relation between genetic diversity and geographic diversity, 239 accessions 

(80% of the initial collection) with geographic information were grouped in 19 demes 

according to their geographical distance, and were used to compute population genetics 
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indexes. The genetic distance was related to geographic distance, with an R2 of 0.19 (p << 

0.001) (Fig. 5a). Indeed, a spatial principal component analysis (sPCA) reported that a global 

structure of allelic frequencies was predominant over local structures (Fig. 5b). Three main 

clusters of allele frequencies were linearly distributed from West to East across the sampling 

area (Fig. 5b). The spatial-genetic clusters identified by the sPCA separated samples from 

Jordan and Lebanon, samples from Northern Syria and neighboring Turkey, and samples 

from Eastern Turkey, Iraq and Iran (Fig. 5c).  

Genomic loci under putative selection were detected joining SNPs information with 

the geographic distribution of accessions sorted on a Gabriel Graph (Fig. 5b). The power 

spectrum deriving from the MSOD method, marker-specific, was used to detect SNPs 

significantly deviating from the average power spectrum, defined outlier loci (Table S2). The 

100 most extreme outlier loci were all significant at the p < 0.005 level (Fig. S5) and when 

projected onto the wild emmer sequence were scattered across the 7 chromosomes of the A 

sub-genome (Fig. S5). On Chr 1A, only two markers featured in the most significant 

associations, at 419 Mb and 578 Mb. On Chr 2A, two outliers were detected 5 Mb apart 

around 135 Mb and two additional outliers at around 498 and 528 Mb. Chr 3A featured 25 

outliers clustering in five loci at approximately 60, 280, 470, 610, and 650 Mb.  Chr 4A had 

the highest number of extreme outliers, 36 in total, spread from 163 to 608 Mb. Chr 5A 

reported seven outliers, three of which clustering around 350 Mb. Twelve more outliers were 

found in three clusters on Chr 6A, centering at approximately 30, 260, and 590 Mb. Chr 7A 

featured 13 outliers of which three grouped at 572 Mb and the others interspersed along the 

chromosome. The remaining outlier of the 100 most significant ones mapped on Chr 

unknown.  
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A genome-wide association (GWA) scan was performed to detect marker-

environment associations (MEA) using SNPs and the first three BIO-PC derived from 

BioClim data. Since the association statistics showed some inflation (Fig. S6), a stringent 

significance threshold based on multiple test correction was used. Altogether, the GWA 

analysis on the three BIO-PC reported 535 MEAs reaching the suggestive threshold of FDR 

10-6, of which 63 surpassed the high significance threshold of FDR 10-8 (Table S3). The 

MEAs identified by the GWA scans were scattered on 407 different scaffolds of the T. urartu 

genome assembly, but when were projected on the wild emmer chromosomes they reported a 

limited number of clear significance peaks of multiple MEAs in mutual LD and close 

genomic position (Fig. 6). 

BIO-PC1, the most important component of climatic variation, reported 57 significant 

associations (Table S3). This environmental measure is positively correlated with 

temperature measures and negatively correlated with altitude and rainfall measures (Fig. 2). 

Three MEAs were detected on Chr 1A at 40, 50, and 533 Mb. One MEA was detected on Chr 

2A at 134 Mb, and seven MEAs clustered between 406 and 463 Mb. These MEAs were 

originally mapped on seven unordered scaffolds on the T. urartu genome assembly. Two 

MEA appeared on Chr 3A at 703 and 750 Mb. Several MEAs mapped on Chr 4A, five 

individually mapping at 116, 178, 361, and 415 Mb, and 415, and 17 clustering from 487 to 

506 Mb. On Chr 5A, one MEA mapped at 111 Mb and five MEAs co-mapped between 639 

and 641 Mb. Of these, one surpassed the high significance threshold (Fig. 6). Seven MEAs 

mapped in scattered positions on Chr 6A, and ten MEAs were found between 504 and 586 

Mb. 

BIO-PC2 reported 358 MEAs, 23 of which surpassing the most stringent threshold 

(Table S3; Fig. 6). This variable is mainly contributed by rainfall measures (Fig. 2). Among 

highly significant MEAs, five appeared on Chr 1A at 350 and 527 Mb. On Chr 2A, three 
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highly significant MEAs clustered at around 635 Mb, while a single MEA appeared at 678 

Mb on Chr 3A. Three highly significant MEAs were located on a clear association peak on 

Chr 4A at around 503 Mb (Fig. 6). This peak is contributed by 32 MEAs surpassing the 

suggestive threshold from 472 to 515 Mb, previously mapping on 24 unordered scaffolds on 

T. urartu sequence (Table S3) and overlapping a signal from BIO-PC1. Three highly 

significant MEAs were found in close vicinity on Chr 5A at 80, 105, 134 Mb, and an 

additional one mapped at 661 Mb. On Chr 7A, highly significant MEAs individual mapped at 

123, 151, 234, and 270 Mb, and three clustered from 508 to 526 Mb. 

The GWA on BIO-PC3, the least significant bioclimatic component mainly 

accounting for temperature seasonality (Fig. 2), generally provided lower significance and 

higher background noise (Fig. 6). The GWA scan in this case identified 149 MEAs, mostly 

scattered across the genome, one surpassing the high significance threshold at 204 Mb on Chr 

7A (Table S3). Notable significance peaks appeared on Chr 2A and 3A, where multiple 

significant MEAs mapped around 690 Mb and 150 Mb, respectively (Fig. 6). 

The outliers and most significant MEAs were used to identify candidate genes 

considering the chromosome-specific LD halving distance as confidence interval. Outlier loci 

targeted 1,680 unique gene models, 91 of which identified by more than one outlier locus 

(Table S4). The high significance MEAs identified a comparable number of 1,418 unique 

genes, often targeted by multiple associations (Table S5). Among those, 642 were identified 

by between 2 and 10 MEAs, and 69 were identified by more than 10 MEAs each. 

Approximately one third of the candidate genes (530) was jointly targeted by outlier loci and 

MEAs. 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Discussion 

The high number of SNPs showed elevated genetic diversity within the T. urartu collection. 

By reducing the set of molecular markers to those deriving from reads having haplotypes 

shorter than six SNPs some information was lost, but the reliability of the retained SNPs 

increased. The rationale of removing long haplotypes is that the occurrence of multiple SNPs 

in cis in relatively short RAD reads (110 bp) may derive from the misalignment of such reads 

in multiple, repeated regions of the T. urartu genome. The slow LD decay in T. urartu (Fig. 

S4), similarly to that of wheat (Crossa et al., 2007) and related species (Sela et al., 2014), 

allows to represent most haplotype blocks without the need of an exceedingly dense 

genotyping. Since at the time of writing the genome sequence of T. urartu was a draft 

arranged in scaffolds with N50 only slightly above 60 kb (Ling et al., 2013), we used the high 

quality genome assembly of wild emmer (Triticum turgidum spp. dicoccoides ) (Avni et al., 

2017) to derive chromosomal position of SNPs. Wild emmer originated by the hybridization 

between T. urartu and the B genome ancestor, a close relative of Aegilops speltoides, some 

500,000 years ago (Peng et al., 2011). Since the close phylogenetic relationship, it may be 

expected high sequence homology and collinearity of the A sub-genomes in the two species. 

This is confirmed by the high specificity of T. urartu sequences to the A sub-genome of wild 

emmer, with only 1.2% of the SNPs univocally matching the B sub-genome. The high 

confidence mapping of T. urartu sequences on the B sub-genome may be contributed by 

intergenomic invasions already observed in wild emmer, where they may contribute to 

stabilize allopolyploidy (Nevo, 2014). As expected, several T. urartu markers (45.1%) could 

not be mapped univocally on the T. turgidum spp. dicoccoides genome. This is due to the 

stringent filters employed in the alignment procedure, and to the several polymorphisms 

present in some of the T. urartu scaffolds. This figure was drastically reduced (24.9%) when 

we focused on the subset of high-quality markers later used for the analyses, confirming the 
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goodness of the quality filtering. Once an improved version of the T. urartu genome will be 

available, it will be possible to assign these markers to one of the seven T. urartu linkage 

group, further improving the characterization of the genomic landscape of T. urartu diversity. 

The SNP markers revealed a complex pattern of genetic diversity across the Fertile 

Crescent. Accessions are highly differentiated and poorly structured, as indicated by the long 

edges and deep relations in the phylogenetic tree (Fig. 3a). The outgroup samples may be 

contributed by ex situ erroneous taxonomic assignment or by hybridization events. Triticum 

urartu can cross with T. monococcum producing fertile progeny (Baum and Bailey, 2013; 

Fricano et al., 2014; Nasernakhaei et al., 2015) and the diversity of these samples may indeed 

report such occurrence in our collection. Previous studies considering smaller collections and 

using less advanced molecular markers already reported high variability among T. urartu 

natural accessions (Castagna et al., 1997; Mizumoto et al., 2002; Wang et al., 2017), 

however this is the first time that a genomic approach is used to characterize a collection 

representative of the whole geographic distribution of T. urartu. The extensive, genome-wide 

molecular characterization of ex situ collections of CWR supports their potential employment 

in crop breeding (Henry, 2014; Brozynska et al., 2016). When merged with the geographic 

characterization of the accessions’ sampling points, this information may improve the 

efficiency in selecting CWR germplasm to be prioritized in breeding schemes (Jones et al., 

2013). In our T. urartu collection, the cryptic genetic clusters (Fig. 4) overlapped the 

grouping emerged from the phylogenetic analysis (Fig. 3), and clearly separated Western 

from Eastern accessions. Five accessions (1.6%) showed unexpected genetic clustering based 

upon their sampling locations (Fig. 4). A parsimonious interpretation makes us speculate that 

such outliers could be due to human error rather than to complex evolutionary forces into 

play. Indeed, while we carefully checked both seed lots and wet lab practices, we cannot 

completely rule out a contamination either at the genebank or at the DNA level. This limited 
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number of outliers, however, may also represent T. urartu lineages migrated to the collection 

area from elsewhere. Indeed, the collection here analyzed does not derive from a continuous 

transect, but rather represents a sparse sampling of natural accessions, and it cannot provide a 

full representation of the geographic structuration of T. urartu diversity. New sampling 

campaigns are required to fill gaps in the current ex situ collections of T. urartu, even though 

the precarious political situation in the Fertile Crescent hampers similar efforts at the time of 

writing. 

The pattern of genetic diversity is consistent with an isolation by distance model 

(Wright, 1943), in which the geographically distant populations tend to be more genetically 

different than the nearby ones (Fig. 5). The sampling area is twice as long from the East to 

the West than from the North to the South, hence the geographic separation across longitudes 

may be more evident. However, allelic frequencies are also separated on a latitudinal 

gradient, as reported by the sPCA analysis based on individual GPS coordinates (Fig. 5). 

These partitions may be contributed by geographic segregation as well as by climatic 

specificities of sampling locations. Triticum urartu is an autogamous species, with infrequent 

cross-pollinations. The autogamy of this species is reflected in the slow LD decay that was 

observed when anchoring markers on the wild emmer genome sequence (Fig S5). Our 

collection features haplotypes spanning tens of Mb, suggesting relatively rare recombination 

events. Localized regions of high LD (Fig. S3) may be due to genomic regions with 

suppressed recombination similarly to what observed in modern wheat (Darrier et al., 2017), 

and are likely contributed by some degree of approximation introduced by the cross-mapping 

of markers using the wild emmer sequence. Once a high quality genome sequence of T. 

urartu will be available, these SNPs may better characterize LD features of this collection. 

The recombination landscape of T. urartu is very relevant in relation to its possible use in 
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wheat breeding, and could be further studied with the production of ad hoc segregant 

populations.  

The dispersal strategy of T. urartu is focused on efficient seed germination in the 

vicinity of the mother plant rather than on long distance hauling of seeds (Elbaum et al., 

2007). The similarity found across distant populations (Fig. 4, Fig. 5c), however, suggests a 

leveling role of gene flow. Selection overlaps the geographic separation in counteracting the 

homogenizing effect of gene flow, reducing allelic diversity at loci that improve fitness in 

specific climatic conditions (Garant et al., 2007). The sampling scheme underlying our T. 

urartu collection is not optimal for outlier detection approaches, as demes of individuals are 

not uniform in spatial distribution and membership (Lotterhos and Whitlock, 2015). In our 

case, the choice of the maximum distance to group individuals in demes depended on the 

uneven coverage of the sampling in the region. A denser sampling would allow to compute 

diversity indexes with higher confidence. For this reason, when studying outlier loci, we 

decided to employ the MSOD outlier detection method (Wagner et al., 2017). This approach 

has advantage of explicitly dealing with spatial relations among individuals in a graph form, 

thus relying on individual-based information.  

In this work, we aimed at describing outstanding allele frequencies in relation to the 

spatial distribution of the ex situ collection. Using individual sampling positions rather than 

on geographic or genetic clustering of individuals allows us to put in relation outlier loci with 

bioclimatic variation at the accession level. Both the MSOD and GWA analyses reported 

several significant markers at the lower significance threshold (Table S2 and Table S3). In 

both analyses, we decided to focus on a subset of highly significant markers, so to reduce 

Type I errors while discussing loci potentially involved in environmental adaptation. It is 

likely that many more loci are indeed under selection, and that the stringency used did not 

allow us to report them. Still, the highly significant outlier loci and MEAs reported several 
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notable genomic regions and candidate genes, often overlapping (Table S4 and Table S5). 

Although there is no univocal correspondence between the cM position of the many wheat 

QTL reported in literature with the Mb positions derived in this study, it is possible to 

speculate about the occurrence of shared molecular mechanisms on the basis of the 

approximate chromosomal positions of signals. 

A notable concentration of outlier markers meeting the significance criteria are visible 

on Chr 4A (Fig. S5), spanning for several Mb in the central part of the chromosome. This 

position is compatible to that of major peaks observed in the association analysis with BIO-

PC1 and BIO-PC2 on Chr 4A at around 500 Mb (Fig. 6). Several studies reported the 

presence of a major seed dormancy locus, Phs1, on the long arm of Chr 4A of modern wheat 

(Torada et al., 2008; Torada et al., 2016). Previous studies on a wild emmer x durum wheat 

population identified on the homeologous Chr 4B a major QTL influencing grain size and 

spikelet germination uniformity (Nave et al., 2016). This QTL maps in a pericentromeric 

position compatible to our peak and was likely fixed during wheat domestication. It is likely 

that in the T. urartu collection the allele at this gene is associated to an environmental 

gradient related with altitude and temperature (BIO-PC1), as well as with rainfall regimes 

(BIO-PC2) (Fig. 2). The role of seed dormancy in adaptation is well known (Vidigal et al., 

2016), and may contribute in dampening environmental variability on fitness and dispersal 

(Venable and Brown, 1988). Linkage drag deriving form selection at this locus may have 

originated the several outlier signals across the pericentromeric region of Chr 4A, whose 

allele frequencies are influenced by the direct selection exerted on the locus. Several other 

outstanding candidates from MSOD and GWA analyses may be put in relation with previous 

literature on wheat. The highly significant MEAs identified on Chr 5A by the BIO-PC1 scan 

may correspond to the vernalization and frost resistance QTL identified in the distal portion 

of Chr 5AL in polyploid (Galiba et al., 1995; Zhu et al., 2014) and diploid (Vágújfalvi et al., 
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2003) wheat. Indeed, BIO-PC1 accounts for most of the temperature variance across the 

sampling points (Fig. 2). This locus is not reported by outlier loci analysis; it is not always 

the case that geographic segregation of alleles overlaps the distribution of environmental 

measures. The distal signal emerging on Chr 1A in outlier loci analysis (Fig. S5) is close to 

highly significant MEAs reported by BIO-PC2 (Fig. 6), a measure mostly accounting for 

seasonality of rainfall (Fig. 2 and Table S8). Previous literature reported in this position a 

thermo-sensitive locus for earliness in diploid wheat (Bullrich et al., 2002), that may be put in 

relation with climatic conditions at sampling points. The highly significant MEA detected by 

BIO-PC3 on Chr 7A (Fig. 6 and Table S5) may be related to several agronomic QTL for 

phenology and productivity (Gahlaut et al., 2017) as well as for meta-QTL for drought and 

heat stress (Acuna et al., 2015).  

At present, the wild emmer gene models detected in the vicinity of association signals 

may relate to a multitude of molecular functions, including transporters and transcription 

factors (Table S4 and Table S5). The predicted availability of a high quality reference 

sequence for T. urartu will increase the discrimination power of these analyses, and, together 

with the production of high quality sequences for durum and bread wheat, it will contribute to 

the genomic revolution in wheat breeding. The further characterization of the significant 

signals falls beyond the scopes of this study. The methods here employed aim at a synthetic 

description of CWR diversity and adaptation potential. The loci hereby reported may be 

validated by targeted re-sampling and even by phenotypic characterizations of the collection. 

We can anticipate that we are developing a multiparental population following a nested 

association mapping (NAM) crossing scheme (McMullen et al., 2009), putting together the 

diversity of a selected subset of the accessions into an interlinked segregating population. 

Once the NAM population will be completed, it will represent a useful resource to push 

forward discoveries made on T. urartu. 
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In this study, we have shown that T.  urartu is highly diverse, and that the study of its 

natural populations might provide important information on genomic loci involved in 

environmental adaptation. Leveraging these modern genomic approaches, T. urartu could 

play again a key role in producing better wheats, even some 500,000 years after originally 

hybridizing with the B genome of modern wheat.   

 

Experimental procedures 

Plant materials and DNA extraction 

The plant materials used in this study (Table S6) were 298 accessions of Triticum urartu L. in 

the U.S. Department of Agriculture (USDA) National Plant Germplasm System, USA, and 

the Consiglio per la Ricerca e la Sperimentazione in Agricoltura e l'Analisi dell'Economia 

Agraria (CREA), Italy. The collection assembled for this study represents the entirety of T. 

urartu accessions available from ex situ germplasm banks at the time of the experiment. One 

accessions of Triticum monococcum L. (var. MONLIS) and two accessions of Triticum 

boeoticum L. (ID 1094 and ID 948 from CREA genebank) were included as outgroups. Five 

seeds per accession were germinated in individual petri dishes, and green tissues were pooled 

and used to extract genomic DNA with a GeneElute Plant Genomic DNA Miniprep Kit 

(Sigma-Aldrich, St Louis, MO) following manufacturer instructions. DNA was checked for 

quality and quantity using agarose gels and spectrophotometry. 

 

Genotyping 

Genomic DNA was shipped to IGA Technology Services (Udine, Italy) to perform 

genotyping using a custom double-digestion RAD sequencing (Baird et al., 2008) protocol. 

To define the enzymes to be used in the genomic DNA digestion and size selection, 

restriction simulations were carried on the reference genome, as available from 
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EnsemblPlants (GCA_000347455.1.26 build), using custom scripts. The combination of SphI 

and BstYI enzymes together with a size selection of fragments in the range of 230-330 bp 

predicted to generate loci in the order of 100,000. For each sample 250 ng of genomic DNA 

were digested in a 30 µL reaction with 2U of each SphI and BstYI enzymes (New England 

Biolabs) in SmartCut buffer for 1 h at 37 °C, followed by 1 h at °60 C and heat inactivation at 

65 °C for 15 min. One and a half volumes of AmpureXP beads (Agencourt) were added to 

the reaction mix and put on a magnetic rack. Beads pellet was washed twice with 70% 

ethanol and DNA was re-suspended in 20 µL of Tris-HCl 10 mM (pH 8.5). For each sample 

10 µL of restriction product were mixed with 2 and 5 pmoles of adapters P1 and P2 

respectively (Table S; variable length inline barcodes on both sides) and 200 U of T4 DNA 

ligase (New England Biolabs) in a final reaction volume of 30 µL and incubated for 1 h at 23 

°C and 1 h at 20 °C. Purification was done as described above. Samples were pooled in 24-

plex by means of P1 inline barcodes and concentrated using a SpeedVac centrifuge. 400 ng of 

ligated DNA were loaded on 1X low-melting agarose gel. For each pool a gel band in the 

range of 300-400 bp was cut and purified in a QIAquick column (QIAGEN). Recovered 

DNA was amplified in the following PCR reaction: 3 min at 95 °C, 8 cycles at 95 °C (30 sec) 

– 60 °C (30 sec) 72 °C (45 sec), 2 min at 72 °C using custom primers (Table S7) to 

incorporate flowcell hybridization sequences with inter-pool barcodes (Illumina i7 index). 

After purification, libraries were validated on Agilent Bioanalyzer 2100. Sequencing was 

performed on an Illumina HiSeq2500 platform with 125 bp paired reads. 

 

Bioinformatics analysis and SNP calling 

A first de-multiplexing step - to divide pools by means of Illumina i7 index - was carried 

using the CASAVA software 1.8.2 (Illumina). Each pool (pair of “fastq” files) was then de-

multiplexed at sample level by means of inline barcodes using the stacks package v1.08 
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(Catchen et al., 2011) with a maximum of 1 bp mismatch per inline barcode. After removal 

of the leading barcode sequences, all reads were trimmed to the first 110 bp by removing 3’-

ends. Alignments to the T. urartu draft genome (Ling et al., 2013), assembly 

GCA_000347455.1.26, were performed using Bowtie2 (Langmead et al., 2009) and filtered 

for a minimum mapping quality of 10. Aligned reads were processed with the stacks pipeline, 

including the following steps: pstacks (min. 2 reads, bounded SNP model with 

upper_bound=0.10 and alpha=0.05), cstacks, ssstacks and rx_stacks. In the latter, a minimum 

average likelihood threshold of -15 was imposed to filter low quality sites. The populations 

module was used to generate the genotype matrix, requiring a minimum of two reads 

supporting the genotype with a minimum individual likelihood of -15. Polymorphic sites 

were retained only when calling requirements were met for at least 75% of the samples. A 

working set of SNPs was obtained after further filtering to reduce the number of molecular 

markers but increase their reliability. Haplotypes longer than 6 SNPs were discarded as 

possibly contributed by mis-alignment of sequencing reads. Markers with a MAF lower that 

5% were also removed from the dataset. A reduced set of markers to be used for genome-

wide surveys of diversity was obtained by random sampling of 20,000 SNPs from the 

working set. Data management and filtering were performed in R 3.3.2 (R Core Team, 2013). 

 

Physical map of markers 

Molecular markers developed on the T. urartu panel were ordered using the recently 

published reference sequence of the wild emmer (T. turgidum spp. dicoccoides) genome 

(Avni et al., 2017), to which T. urartu contributed the A sub-genome. The nucleotide 

sequence 100bp upstream and 100bp downstream of each marker was derived from the T. 

urartu genome sequence (Ling et al., 2013) by means of a Python script available upon 

request. Sequences were transformed into single-end reads in fastq format using the 
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fasta_to_fastq.pl Perl script publicly available (https://github.com/ekg/fasta-to-fastq). These 

synthetic reads were then mapped on the wild emmer genome. Since reads were longer than 

70 bp, they were mapped by means of the bwa mem aligner with default parameters (Li, 

2013). Reads with low mapping quality (MAPQ<10) secondary alignments, and/or reads with 

multiple hits on the T. turgidum ssp. dicoccoides genome were filtered out using samtools (Li 

et al., 2009) applying the following command line. samtools view -q 10 -F 4 -F 256 -F 2048. 

Only markers mapping on the A sub-genome were retained. 

 

Geographic characterization 

The available passport data associated to the accessions were used to retrieve geographic 

information of sampling points (Table S6). The GPS coordinates of samples only having 

gazetteer information were manually derived at the highest precision possible from Google 

Maps (Google Maps, 2017). Sampling points with native or derived GPS coordinates were 

analyzed with a geographic information system (GIS). Bioclimatic (BioClim; Table S8) 

variables for the sampling area were obtained from Worldclim 30 arc-seconds data (Hijmans 

et al., 2004) projected in QGIS 2.4 (QGIS Development Team, 2017). Altitude and 19 

BioClim variables were assigned to each accession based on sampling coordinates. In order 

to reduce redundancy in the dataset, we reduced the environmental variables with a principal 

component analysis (BIO-PCA). The most significant BIO-PCs were retained for further 

analysis. Accessions having spatial information were organized in demes (also referred as 

populations) by grouping all samples collected within a 25 Km radius using R/raster 

(Hijmans and van Etten, 2012). Geographic position of demes was obtained from the average 

of the sampling coordinates of the samples they contained. Demes containing only one 

sample were not considered in diversity and landscape genomics analyses. 
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Diversity analyses 

Diversity analyses were conducted on the reduced set of SNPs, considering samples 

regardless of their geographic origin. A consistent color-coding representing samples position 

across the Fertile Crescent, used in all graphical outputs, was derived from MDS of the 

latitude and longitude values of sampling points. A neighbor joining (NJ) phylogeny 

including outgroups was produced with R/adegenet (Jombart and Ahmed, 2011). Outlier 

samples were detected with the find.clusters() function in R/adegenet, and were removed 

from further analyses. A PCA was performed to check the structure existing within the T. 

urartu dataset, and to survey the existence of spatial segregation of genetic groups. The 

software Structure 2.3.4 (Pritchard et al., 2000) was used with the reduced marker set to 

assign individuals to cryptic genetic clusters following a Bayesian procedure detecting the 

number of clusters best describing the data. Structure was run with standard settings (length 

of burn-in 10,000, and number of MCMC reps 100,000) and admixture model. The number 

of clusters tested was from K=1 to K=20, with 10 replications each. The method from 

Evanno (Evanno et al., 2005) implemented in Structure Harverster (Earl and vonHoldt, 2012) 

was used to identify the most probable number of clusters. Once the most probable clusters 

were identified by the global analysis, Structure was run again with the same setting within 

each of the clusters. 

 Linkage disequilibrium (LD) was calculated among all markers having a position on 

the A sub-genome of wild emmer according to the parameter reported above. The R package 

LDheatmap (Shin et al., 2006) was used to calculate pairwise r2, a measure accounting for 

allele frequency at loci. A custom R script available upon request was used to join pairwise 

LD measures with physical distances of markers within each chromosome. LD decay was 

studied interpolating the Hill and Weir equation to LD measures as a function of genetic 

distance (Marroni et al., 2011; Mengistu et al., 2016), and LD halving distance for each 
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chromosome was recorded. For each chromosome, pairwise LD measures were averaged for 

markers falling within LD halving distance and plotted in a rolling window of size 100 

markers to display LD evolution along chromosomes. A custom R script, available upon 

request, was used to conduct the analysis.  

 

Landscape genomics 

Landscape genomics analyses focused on samples having spatial information. R/adegenet 

was used to compute Nei’s distance (Nei, 1972) among demes. A linear regression was used 

to study the relation between molecular and geographic distance among demes. A sPCA 

(Jombart et al., 2008), implemented in R/adegenet, was used to characterize the pattern of 

allelic variation in relation to spatial data and to survey global and local structures of 

genotypic diversity. Maps of genetic clines were obtained interpolating the three principal 

sPC across the sampling area.  

Putative outlier loci, i.e. genomic loci subjected to directional selection, were 

discovered sorting all georeferenced samples on a Gabriel graph and using the Moran spectral 

outlier detection (MSOD) method (Wagner et al., 2017). The MSOD is aimed at detecting 

SNPs loci responding to directional selection on a geographic base, whilst accounting for the 

spatial structure of allelic distribution reported by the graph. The subset of the high quality 

SNPs with a position on the A sub-genome of wild emmer was used. Custom R script were 

used to produce plots and numerical outputs, and only the most extreme 100 markers are 

discussed. 

In order to test association between markers and environmental variation, molecular 

diversity data was input in the R package Genome Association and Prediction associated 

Tools (GAPIT) (Lipka et al., 2012). In this analysis, the subset of the high quality SNPs 

mapping on wild emmer A sub-genome was used. The GWA scan was run with a mixed 
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linear model on the first three BIO-PC derived from BioClim variables as phenoytpes. The 

GWA was run using 1 to 10 principal components derived from molecular data in fixed part 

of the model. A kinship matrix calculated with the VanRaden method was fitted in the 

random part of the model. R/GAPIT with the SUPER method (Wang et al., 2014). Quantile-

quantile plots were visually evaluated to determine the goodness of fit of the model with 

varying PCs, and to choose the best run to be discussed in the main text. Multiple test 

correction was performed with the R package q-value (Dabney et al., n.d.) according to 

Storey’s method (Storey, 2002). Arbitrary thresholds at 1 x 10-6 (suggestive) and 1 x 10-8 

(high significance) were chosen to discuss the most relevant associations to minimize type I 

errors. 

The wild emmer wheat annotation WEWseq_PGSB_v1 (Avni et al., 2017) was used 

to derive genes models for outlier loci and MEAs surpassing the high significance threshold. 

The chromosome-specific LD halving distance was used as window size upstream and 

downstream each significant marker, and gene models were searched in that window with a 

custom R script available upon request.  
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Figure Legends 

Figure 1. Geographic distribution of the T. urartu collection. The map of the sampling area is 
reported in shades of gray representing altitude according to the bar on the side (m.a.s.l.). Longitude 
and Latitude values in WGS84 degrees are reported on the x-axis and y-axis, respectively. Sampled 
accessions are represented by circles colored according to their position on the Fertile Crescent. 
Accessions without GPS coordinates are not shown. 

Figure 2. Bioclimatic variation at sampling points. (a) Principal component analysis (PCA) of altitude 
and the 19 BioClim variables. Sampling points are represented by circles colored according to Fig. 1. 
(b) Correlation between altitude (alt_17) and the original BioClim variables (bio_1 to bio_19) and the 
derived PC axes 1 to 3. The direction and intensity of correlations is shown by circle color (according 
to legend on the right) and size, respectively. 
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Figure 3. Molecular diversity of the world collection of T. urartu. (a) Phylogenetic tree deriving from 
SNP data. Samples bottom left, marked with an asterisk, are recognized as outgroup according to a 
clustering analysis. Samples are colored with the same color code used in Figure 1, unmapped 
samples are reported in gray. Some samples are overlapping on the phylogeny. (b) Principal 
component analysis of the molecular diversity within the collection, excluding outgroups. Samples 
are colored with the same color code used in Figure 1, unmapped samples are reported in gray. 

Figure 4. Structure analysis of the world collection of T. urartu. (a) Bar plot representing accession 
ancestries according to the most probable model. Each individual is represented by a vertical bar 
with colors proportionally to their ancestry to one of the K genetic clusters according to legend to 
the right. Accessions are ordered by their position on the transect, reported on the x-axis with colors 
according to Fig. 1. (b) Cryptic genetic structure in the Western portion of the collection (K2 in panel 
a). The two most probable K arrangements are shown. (c) Cryptic genetic structure in the Eastern 
portion of the collection (K1 in panel a), depicted as in panel b. 

Figure 5. Relation among genetic and geographic features of the world collection of T. urartu. (a) 
Linear regression of geographic distance (Km, y-axis) over genetic distance (Nei’s distance, x-axis) 
shows that distant demes are more diverse than demes in close proximity. (b) Eigenvalues resulting 
from a spatial PCA (sPCA). The genetic diversity is better explained by global structures (Global, red 
color) than by local structures (Local, blue color). The Gabriel Graph summarizing the spatial relation 
among samples is shown as insert. Nodes represent accessions and are colored according to the 
combination of sPC 1 to 3 values. (c) Spatial representation of sPC 1 to 3 interpolated across the 
sampling area (from yellow to blue shades, decreasing sPC values). Accessions are represented by 
gray dots. 

Figure 6. Outcome of the GWA scan on climatic variation. Each dot represents a SNP marker tested 
against BIO-PC1 to BIO-PC3. Markers are ordered according to their physical position on the A sub-
genome of wild emmer, with alternating colors for chromosomes 1A to 7A. Chromosome unknown is 
reported at the end of the graphs. The y axis represents the negative logarithm of the FDR value of 
the tests; the suggestive (10-6) and high significance (10-8) thresholds are depicted in blue and red 
color, respectively. 
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