Connecting ROS and FIWARE: concepts and
tutorial

Raffaele Limosani, Alessandro Manzi, Laura Fiorini,
Paolo Dario, and Filippo Cavallo

The BioRobotics Institute, Scuola Superiore Sant’Anna,
Viale Rinaldo Piaggio, 34, 56026 Pontedera (PI), Italy
r.limosani@santannapisa.it

https://www.santannapisa.it/en/institute/biorobotics/biorobotics-institute

Abstract. Nowadays, the Cloud technology permeates our daily life,
spread in various services and applications used by modern instruments,
such as smartphones, computer, and IoT devices. Besides, the robotic
field represents one of the future emerging markets. Nevertheless, these
two distinct worlds seem to be very far from each other, due to the lack
of common strategies and standards.

The aim of this tutorial chapter is to provide a walkthrough to build
a basic Cloud Robotics application using ROS and the FIWARE Cloud
framework. At the beginning, the chapter offers step-by-step instructions
to create and manage an Orion Context Broker running on a virtual
machine. Then, the firos package is used to integrate the ROS topic
communication using publishers and subscribers, providing a clear ex-
ample. Finally, a more concrete use case is detailed, developing a Cloud
Robotics application to control a ROS-based robot through the FIWARE
framework.

The code of the present tutorial is available at https://github.com/
Raffa87/ROS_FIWARE_Tutorial, tested using ROS Indigo.

Keywords: Tutorial ROS FIWARE Firos

1 Introduction

Nowadays, the ROS framework [1] is considered the “de facto” robotic standard
in academic research and it is widely adopted all over the world [2]. Moreover,
in the last years, the ROS-Industrial project is trying to extend the advanced
capabilities of ROS also to manufacturing automation. Therefore, it is reasonable
to forecast a much intense use of ROS in the near future for developing complex
services involving several interacting robots. However, the ROS framework is
conceived to develop systems that run on machines connected to the same LAN
network. To overcome this limitation, different attempts have been made to
enhance the ROS capabilities through the use of Cloud resources, leveraging
the so-called “Cloud Robotics”. One of the definitions of this concept is “any

2 Connecting ROS and FIWARE

robot or automation system that relies on either data or code from a network
to support its operation, i.e., where not all sensing, computation, and memory
are integrated into a single standalone system” [3].

Several research groups have focused their efforts on cloud robotic challenges:
for example, in [4] authors extended the computation and information sharing ca-
pabilities of networked robotics by proposing a cloud robotic architecture, while
in [5] the key research issues in cloud network robotics are discussed analyzing a
case study in a shopping mall. One of the first application of the Cloud Robotics
paradigm is the DAvinCi [6] project developed in 2010, which focus more on
the computational side rather than in communication between robot and server.
Another example is represented by Rapyuta [7], an open-source Cloud Robotics
platform, developed during the RoboEarth project [8]. Nevertheless, the overall
performances do not differ much from other solutions [9]. Furthermore, cloud
infrastructures have been developed to teach ROS!, focusing on the release of
easy-to-use development instruments.

Despite the aforementioned researches, robotics and cloud technologies still
appear two distinct worlds in terms of standards, communities, instruments,
and infrastructures. Although the robotic field represents an emerging future
market, the Cloud is currently an active business. In fact, most of the big Hi-Tech
companies offer services over the cloud, in the form of Software-as-a-Service, or
Platform-as-a-Service, including the Google Cloud Platform?, the Amazon Web
Services® and the Microsoft Azure?.

The importance of the Cloud technology is also underlined by the European
Union, which founded the universAAL project®[10], and, more recently, the FI-
WARES [11] program, which provides a middleware platform for the development
of applications for Future Internet.

FIWARE provides an enhanced OpenStack-based cloud environment plus a
rich set of open standard APIs that make it easier to connect to the Internet
of Things, process and analyze Big data and real-time media or incorporate
advanced features for user interaction.

Even if a link between ROS and FIWARE has been already implemented”[12],
its use is still difficult due to a lack of tutorials and documentation for users
with different backgrounds (i.e. experts in ROS without previous experience in
FIWARE or vice-versa).

The aim of this tutorial chapter is to provide a step-by-step walkthrough
about the integration of ROS with FIWARE, starting from the creation of a
basic virtual machine over the Cloud. It shows how to handle the communication
using subscribers and publishers introducing the firos package. At the end, a

! http://www.theconstructsim.com/, visited on December 2017
? nttps://cloud.google.com/, visited on December 2017

3 https://aws.amazon.com/, visited on December 2017

4 https://azure.microsoft.com, visited on December 2017

® http://universaal.aaloa.org/, visited on December 2017

5 https://www.fivare.org, visited on December 2017

" http://wiki.ros.org/firos, visited on December 2017

Connecting ROS and FIWARE 3

concrete Cloud Robotics example is provided to control a simulated robot using
the FIWARE framework.
In details, this chapter covers the following aspects:

basic concepts about ROS and FIWARE;

introduction to FIWARE and the firos package;

creation and management of a FIWARE Context Broker;
how to use the FIWARE Context Broker;

how to connect ROS and FIWARE;

how to develop a robot control application through FIWARE.

At the end of the tutorial, despite the initial background, the reader will be
able to manage communication among ROS and FIWARE, allowing to enhance
robotic projects with Cloud capabilities. The final aim is to provide instruments
and documentation that will improve the collaborations between the robotic and
the Cloud worlds.

The remainder of this tutorial chapter is organized as follows. The basic
concepts of the ROS middleware and the FIWARE framework are provided
in Section 2 and in Section 3 respectively. A walkthrough about the creation
and the use of the FIWARE Orion Context Broker and firos aare detailed in
Section 4 and 5, showing a first “Hello world” example. A more complex and
concrete use case is described in Section 6, explaining how to develop a basic
Cloud Robotics application using FIWARE to send a goal and receive data from
a simulated robot. Finally, the Section 7 concludes the chapter and discusses
further developments.

2 ROS concepts

ROS® is an open-source, meta-operating system for robot control and devel-
opment. The term “meta-operating” is used to indicate its similarity with an
operating system, including hardware abstraction, low-level device control, im-
plementation of commonly-used functionality and message-passing between pro-
cesses. On the other hand, ROS is not an operating system in a strict sense; it
currently runs on Unix-based platforms.

As the main feature, ROS provides a robust infrastructure that simplifies
communications among processes. The ROS runtime “graph” is a peer-to-peer
network of processes (potentially distributed across machines) that are loosely
coupled using a common communication infrastructure. ROS implements dif-
ferent styles of communication, including synchronous RPC-style communica-
tion over services, asynchronous streaming of data over topics, and data storage
through the Parameter Server.

8 More information about ROS can be found at http://wiki.ros.org/ROS, visited
on December 2017.

4 Connecting ROS and FIWARE

2.1 ROS Graph

The Computation Graph® is the peer-to-peer network of ROS processes that
are processing data together. The basic Computation Graph concepts of ROS
are nodes, Master, Parameter Server, messages, services, topics, and bags, all of
which provide data to the Graph in different ways.

For the purpose of this tutorial, only details about nodes, Master, messages,
and topics are reported.

Nodes are processes that perform computation. ROS is designed to be modu-
lar at a fine-grained scale; a robot control system usually comprises many
nodes. For example, one node controls a laser range-finder, one node controls
the wheel motors, one node performs localization, one node performs path
planning, one node provides a graphical view of the system, and so on.

Master provides name registration and lookup to the rest of the Computation
Graph. Without the Master, nodes would not be able to find each other or
exchange messages.

Messages are used by the nodes to communicate with each other. A message
is simply a data structure, comprising typed fields. Standard primitive types
(integer, floating point, boolean, etc.) are supported, as are arrays of primi-
tive types. Messages can include arbitrarily nested structures and arrays.

Topics Messages are routed via a transport system with publish/subscribe se-
mantics. A node sends out a message by publishing it to a given topic. The
topic is a name that is used to identify the content of the message. A node
that is interested in a certain kind of data will subscribe to the appropri-
ate topic. There may be multiple concurrent publishers and subscribers for
a single topic, and a single node may publish and/or subscribe to multiple
topics. In general, publishers and subscribers are not aware of each others’
existence. The idea is to decouple the production of information from its
consumption. Logically, one can think of a topic as a strongly typed message
bus. Each bus has a name, and anyone can connect to the bus to send or
receive messages as long as they are the right type.

The Master acts as a nameservice in the ROS Computation Graph. Nodes
connect to other nodes directly; the Master only provides lookup information,
much like a DNS server, allowing nodes to dynamically create connections as
new nodes are run.

Refer to the official ROS website!? for details about the framework installa-
tion.

9 Deeper information on ROS Graph can be found at http://wiki.ros.org/ROS/
Concepts, visited on December 2017.
10 http://wiki.ros.org/R0OS/Installation, visited on December 2017.

Connecting ROS and FIWARE 5

3 FIWARE concepts

The FIWARE platform!'! provides a rather simple yet powerful set of APIs
that ease the development of smart applications in multiple vertical sectors.
The specifications of these APIs are public and royalty-free. Besides, an open
source reference implementation of each of the FIWARE components is publicly
available so that multiple FIWARE providers can emerge faster in the market
with a low-cost proposition.

For the purpose of this tutorial, reader will be leaded to be a user of FIWARE
Lab, which is a non-commercial sandbox environment where innovation and
experimentation based on FIWARE technologies take place. Entrepreneurs and
individuals can test the technology as well as their applications, exploiting Open
Data published by cities and other organizations. FIWARE Lab is deployed over
a geographically distributed network of federated nodes leveraging on a wide
range of experimental infrastructures.

In details, the FIWARE framework contains a rich library of components,
called Generic Enablers (GE), that allow developers to put into effect function-
alities such as the connection to the Internet of Things or Big Data analysis. By
combining them, it is possible to develop modular and complex applications.

The GEs offer a number of general-purpose functions, including:

Data/Context Management to easy access, gather, process, publish, and an-
alyze context information (e.g. Comet, Cygnus, Kurento, Orion).

IoT Services to use, search, and access [oT devices and sensors, handling var-
ious protocols.

‘Web-based User Interface to give tools for 2D /3D graphics, and Geograph-
ical Information System (GIS) Data Provider.

Security to implement security and privacy requirements (e.g. PEP Proxy,
KeyRock, AuthZForce).

Cloud Hosting to provide computation, storage, and network resources (e.g.
Docker, Murano, Bosun, Pegasus).

The deployment of a GE is referred as an instance. FIWARE allows to fully
customize new instances or use a set of pre-configured instances available in
the framework. For the purpose of this tutorial walkthrough, the remainder
will focus on the Orion Context Broker, which is one of the key component of
a FIWARE application. In addition, this section also introduces firos, which
allows to connect a ROS node with Orion.

3.1 The Orion Context Broker

The Orion Context Broker!? is a C4++ implementation of the NGSIv2 REST API
binding developed as a part of the FIWARE platform. The NGSI specification
is an information model that uses the concept of entities to virtually represent

" https://www.fiware.org, visited on December 2017.
2 http://fiware-orion.readthedocs.io/en/master/index.html

6 Connecting ROS and FIWARE

physical objects in the real world. Any information about physical entities is
expressed in the form of attributes of virtual entities!3.

The Orion Context Broker allows to manage all the whole lifecycle of con-
text information including updates, queries, registrations and subscriptions. It
implements an NGSIv2 server to manage context information and its availabil-
ity. Using the Orion Context Broker, the user is able to create context elements
and manage them through updates and queries. In addition, it is possible to
subscribe to context information and automatically receive a notification when
some condition occurs (e.g. a context element has changed).

3.2 Firos

firos [12] represents the link between ROS and FIWARE. In particular, it
is a ROS node that communicates with the Orion Context Broker to publish
and listen robot data. In other words, firos works as a translator between the
robotics field and the cloud world, transforming ROS messages into NGSI to
publish them in the cloud, and vice-versa.

4 Walkthrough: How to Use the Orion Context Broker

As introduced, after a short description of ROS and FIWARE concepts, the aim
of the paper is to provide working tutorial where the reader can understand new
concepts and tools through practical example. Three walkthroughs are presented,
in a sort of growing difficulty:

1. in the first one, the use of Orion Context Broker as “container” of data is
explained, after a detailed step-by-step guide on the creation in FIWARE
platform;

2. in the second one, an “Hello World” example is depicted showing the mech-
anism of communication-based on firos ROS node;

3. in the third one, a more concrete example is presented showing how FIWARE
and ROS can be used to create a cloud-robotic application where commands
(e.g. navigation goals) can be remotely sent by a third party and feedbacks
(e.g. odometry) can be remotely received.

4.1 First step: create a FIWARE Lab account

The first step to begin the walkthrough is to become a FIWARE Lab user,
therefore create an account at https://account.lab.fiware.org. Mark the
option “I want to be a trial user”. This procedure will create a trial account
lasting 14 days. Check the provided e-mail and confirm the account. To proceed
with the tutorial, we need to upgrade the trial account to be able to instantiate
the required GE. Hence, log in, go to the account settings and click on Account
Status. Here it is possible to request a Community Account upgrade.

13 More information can be found at http://aeronbroker.github.io/Aeron

Connecting ROS and FIWARE 7

Community Account Request

FIWARE Lab
FIWARE Lab is a working instance of FIWARE available for experimentation. .

OF cortoct i hlpsk. war--hopatas are o
You will be able to setup the basic virtual infrastructure needed to run applications that make w0 FIWARE Ghock htos:/cevelopor Swaro.orgfo doas!

use of the APIs provided by FIWARE Generic Enablers deployed as a Service either globally or

by you (as private instance).
@ need Help? > (® ourGes >

| | Request Community Account upgrade ‘

Ask a question See our Catalogue.
<€ FIWARE Lab nodes > @ FIWARE Academy >
Learn about FIWARE Ops. Train yourself. =3 -

For the purpose of this tutorial, the reader can select the default quota on the
relative upgrade form. It is worth to mention that the account upgrade process
is not immediate and can require up to two days.

4.2 Create a Orion instance

This section covers the creation of a Orion Context Broker instance. The FI-
WARE catalog contains a set of pre-configured instances to easy deploy specific
Virtual Machine (VM) on the Cloud. The use of pre-configured instances is not
mandatory and the user can also manually create its own personalized instance.
The present tutorial will use a pre-configured Orion instance, which automati-
cally creates a Virtual Machine (VM) equipped with the Context Broker running
on a centOS machine.

Create the instance To create the new Orion instance, move to the Cloud tab
on the FIWARE GUI and click on the Launch New Instance.

Instances

ol * Terminate Instonces IR RS

Choose an Orion Context Broker image from the list (orion-psb-image-R5.4)
and launch it.

Images

Nome © Type v Status v Visioility = Container Format » Disk Format © Actions
wirecloud fiware:apps active public BARE Qacow2
marketplace fiware:apps active public BARE QCow2
wirecloud-image-R5.2 fiware:apps active public BARE Qcow2
repository-image-R3.2 fiware:apps active public AMI AMI
wirecloud-img fiware:apps active public OVF Qcowz
wstore-img fiware:apps active public OVF Qcow2
SpagoBl fiware:apps active public BARE Qcow2
stream-oriented-GE-image-R4.2.3-5.1.1 fiware:data active public BARE Qcow2
ckan_2.5 fiware:data active public BARE Qcow2
orion-psb-image-RS.4 fiware:data active public BARE Qcow2 ‘
orion-psb-image-RS.2 fiware:data active public BARE Qcow2
Stream-oriented-kurento-6.6.0 fiware:data active public BARE QCcow2
domibus3.2_r5.4 fiware:dota active public BARE Qcow2

8 Connecting ROS and FIWARE

After that, a Launch Instances window related to its settings will appear. First
of all, provide the instance details, choosing a name and selecting its flavor (i.e.
resources of the VM). For the aim of this tutorial, it is enough to choose the
ml.small option, which allocates a VM with 1 CPU, 2Gb RAM, and 20 Gb of
disk space:

Launch Instances

Instance Nome * Description
Specify the detais for launching an instance. The chart
Oron._torial elow shows the resources used by this project in
relation to the project’s quotcs.
Flavor Details
Nome mismall
vepus 1

. Root Disk 2068
Instance Count Ephemeral Disk 0
; Totol Disk 28
RAM 2048 M8

Project Quotas
Instance Count (0)

VCPUs (0)

Memory (0Mg)

* Mondatory fecs corce (D

After that, you can switch to the Access € Security tab to generate the key-pairs
needed for the secure SSH remote access to the instance. By clicking on Create
Keypair the VM will be configured for the remote connection and the relative
key-pair will be download from the host computer:

Create Keypalir Create Keypair

KeypoirName * Description Keyporr Nome * Description

Keypoirs are ssh credentlals which are injected into Keypoirs are ssh credentials which are injected into

images when they are launched. Creating new key pair (Orion keypeir images when they are launched. Creating o new key pair

Togitors the pLtii key 6nd downioads 1he prvote Key Togiters the putii key and downioods the privote Key
(o "pem fie) [Bomessremer] (o "pem fie)

the key a8 you wor ssh Protect ond use the key 08 you would any normal ssh
private key. private key.

* Mandatory fields. * Mondatory fields.

* Mondatory fields. Bock Next * Mondotory fields. «

Use the new created keypair and check the default option in the Security Group
field:

Launch Instances

1. Details 2. Access & Security SEESSINetworking TR 4. Post=Creation TEee

Keypair Description
Control access to your instance via keypairs, security

Orion_keypair M groups, and other mechanisms.
[Create new Keypair]
Security Groups
v/default B
[Add new Security Group]

* Mandatory fields. Back

Connecting ROS and FIWARE 9

Afterwards, use the Networking tab to assign a network by moving the created
instance from Available Networks to Selected Networks:

Launch Instance

Details * Access & Security working * Post-Creation Advanced Options
Selected networks Choose network from Available networks to Selected
networks by push button or drog and drop, you may
&R node-int-net-01 change NIC order by drag ond drop os well
¢ [|

Avoiloble networks

([]n(UI

Eventually, continue through the final steps Post-Creation and Summary to
launch the new instance. For the purpose of the tutorial, in these steps is not
needed any additional information.

Connecting to the instance To remotely connect to the newly created in-
stance, first a public IP must be assigned. Therefore, move to the Security tab
and click on Allocate IP to Project button:

Security
Floating IPs
IP Address v Instance v Fixed Address = Floating IP Pool =

Now, use the default public-ext-net-01 option for Pool and click on Allocate
IP:

Allocate Floating IP

Pool Description

Al f P f .
publicextnet-01 . llocate a floating IP from a given floating ip pool

Project Quotas
Floating IP (0) ble
S |

Cancel Allocate IP

Finally, you can associate the IP with the instance selecting it and clicking on
Actions: Associate IP

10 Connecting ROS and FIWARE

Security

FlootingIPs Security Groups Keypairs

Allocate IP toPProject Actions ~

IP Address v Instonce v Fixed Address = Floating IPPool v | AssociatelP

27.172.12.142 - - public-ext-net-01
Release Floating IPs

After the confirmation, the created VM is accessible from the Internet. In the
remainder, we provide the detailed instruction to connect to the instance using
an SSH client for Linux-based operating system!4.
1. Open the Terminal
2. Locate the key-pair associated to the instance when launching it
(e.g. Orion_keypair.pem)
3. Modify the key-pair permissions to make it not publicly viewable:

$ chmod 400 Orion_keypair.pem
4. Connect to the instance using its public IP:

$ ssh -i Orion_keypair.pem username@public_ip

Now, you have the remote access to the instance, and in the next, the tutorial
will cover the necessary steps on how to use the Orion Context Broker.

4.3 Orion Context Broker Example Case

Before discussing how to integrate FIWARE with robotics, let’s introduce an
Orion example case'® to fully understand its capabilities.

This section will show how to manage the context information of a building
with several rooms using the Orion Context Broker. The rooms are Room1, and
Room2 equipped with two sensors: temperature and (atmospheric) pressure.

The Orion Context Broker interacts with a context producer applications
(which provide sensor information) and a context consumer application (which
processes that information, e.g. to show it in a graphical user interface). We will
show how to act both as producer and consumer.

Starting the broker Start the broker (as root or using the sudo command) on
the FIWARE instance:

$ sudo /etc/init.d/contextBroker start

On normal behavior the output is:

14 Windows user can use the PuTTY client or similar, please refer to the relative
documentation.

15 Taken from http://fiware-orion.readthedocs.io/en/master/user/
walkthrough_apiv2/index.html

Connecting ROS and FIWARE 11

Starting...
contextBroker (pid 1372) is running...

In case you need to restart the broker, execute the following:

$ sudo /etc/init.d/contextBroker restart

Issuing commands to the broker To issue requests to the broker, this tutorial
uses the curl command line tool, because it is often present in any GNU/Linux
system and simplifies the explanation. Of course, it is not mandatory, and the
reader can use any REST client tool instead (e.g. RESTClient). Indeed, in a real
case, a developer will probably interact with the Orion Context Broker using a
programming language library implementing the REST client.

The basic patterns for all the curl examples in this document are the fol-
lowing:

POST

curl localhost:1026/<operation_url> -s -S [headers]’ -d @- <<EQOF
[payload]
EOF

PUT

curl localhost:1026/<operation_url> -s -S [headers] -X PUT -d @- <<EOF
[payload]
EOF

PATCH

curl localhost:1026/<operation_url> -s -S [headers] -X PATCH -d @- <<EOF
[payload]
EQF

GET
curl localhost:1026/<operation_url> -s -S [headers]

DELETE

curl localhost:1026/<operation_url> -s -S [headers] -X DELETE

Regarding the headers, it is possible to include the following ones:

Accept header, to specify which payload format you want to receive in the
response. User should explicitly specify JSON:

curl ... --header ’Accept: application/json’

Content-Type header, when a payload is needed for requests (i.e. POST, PUT
or PATCH). Also in this case, user should explicitly specify JSON:

12 Connecting ROS and FIWARE

curl ... --header ’Content-Type: application/json’

Regarding the aforementioned commands, please take into account the fol-
lowing remarks:

e most of the time we are using multi-line shell commands, using EOF to mark
the beginning and the end of the multi-line block;

e in some cases (GET and DELETE), we omit -d @- as they don’t use payload;

e we assume that the broker is listening on port 1026. Adjust this in the curl
command line in case of different setting;

e to pretty-print JSON in responses, we use the json.tool from the json
Python module:

(curl ... | python -m json.tool) <<EOF

EOF

Context Management At this step, we are ready to create both producer
and consumer applications, using the Orion Context Broker. At the beginning,
the broker starts in an empty state. Therefore, we need to make it aware of the
existence of certain entities. In particular, we are going to create the entities
for Room1 and Room2, each one with two attributes (temperature and pressure).
We create the entities using the POST /v2/entities operation. First of all, we
declare the Room1 entity with 23°C and 720 mmHg of temperature and pressure
respectively:

curl localhost:1026/v2/entities -s -S --header ’Content-Type: \
application/json’ -d @- <<EQOF
{
"id": "Rooml",
"type": "Room",
"temperature": {
"value": 23,
"type": "Float"

1,

"pressure": {
"value": 720,
"type": "Integer"

}

}
EOF

The entity is defined with an id and a type, and contains 2 attributes with a
value and a type field. It is important to know that the Orion Context Broker
does not perform any type check. In other words, it will accept a temperature
value either if it is formatted as a float like 25.5 or as a string like hot. This
means that the developer has to take care of the correctness of the data types

Connecting ROS and FIWARE 13

during the implementation. Upon receipt of this request, the broker will create
the entity in its internal database, it will set the values for its attributes and it
will respond with a 201 Created HT'TP code.

In the same way, we create the Room2 entity, setting temperature and pressure
to 21°C and 711 mmHg respectively:

curl localhost:1026/v2/entities -s -S --header ’Content-Type: \
application/json’ -d @- <<EOF

{
"id": "Room2",
"type": "Room",
"temperature": {
"value": 21,
"type": "Float"
>s
"pressure": {
"value": 711,
"type": "Integer"
}
}
EOF

Now, we can act as a consumer application, wanting to access the context
information stored by the Orion Context Broker to do something interesting with
it (e.g. show a graph with the room temperature in a graphical user interface). In
this case, we use the GET /v2/entities/{id} request. To retrieve the context
information of the Room1 use the following command:

curl localhost:1026/v2/entities/Rooml?type=Room -s -S \
--header ’Accept: application/json’ | python -m json.tool

Actually, you don’t need to specify the type, as in this case there is no
ambiguity using just the ID, so you can also do:

curl localhost:1026/v2/entities/Rooml -s -S \
--header ’Accept: application/json’ | python -m json.tool

In both cases, the response includes all the attributes belonging to Room1:

"id": "Rooml",

"pressure": {
"metadata": {},
"type": "Integer",
"value": 720

},

"temperature": {
"metadata": {},
"type": "Float",
"value": 23

14 Connecting ROS and FIWARE

}:
"type ". "Room"

It is also possible to use the keyValues option in the request:

curl localhost:1026/v2/entities/Rooml7options=keyValues -s -S \
--header ’Accept: application/json’ | python -m json.tool

which produces a compact response, including just the attribute values:

{
"id": "Rooml",
"pressure": 720,
"temperature": 23,
"type": "Room"

Iy

A third way consists in requesting specific attributes using the values option
plus a list of attribute name. To do so, use the attrs URL parameter to specify
the order. For instance, using this command (temperature first, pressure second):

curl ’localhost:1026/v2/entities/Rooml?options=values&attrs=temperature,
pressure’ -s -S \
--header ’Accept: application/json’ | python -m json.tool

produce the following response:

23,
720

Finally, note that requesting a non-existing entity will produce the following
error:

{
"description": "The requested entity has not been found. \
Check type and id",
"error": "NotFound"
}
The same happens for non-existing attribute:
{
"description": "The entity does not have such an attribute",
"error": "NotFound"
}

Another useful way to get all the context information is to list all the entities
omitting the id in the GET command:

curl localhost:1026/v2/entities -s -S \

Connecting ROS and FIWARE

—-header ’Accept: application/json’ | python -m json.tool

which, in our case, return both Room1 and Room2:

[
{
}’
{
}
]

At this step, we are able to produce and consume information using the Orion

"id": "Rooml",

"pressure": {
"metadata": {},
"type": "Integer",
"value": 720

1,

"temperature": {
"metadata": {},
"type": "Float",
"value": 23

1,

"type": "Room"

"id": "Room2",

"pressure": {
"metadata": {},
"type": "Integer",
"value": 711

},

"temperature": {
"metadata": {},
"type": "Float",
"value": 21

},

"type": "Room"

15

Context Broker. In the next, this tutorial will focus on the integration between
ROS and FIWARE.

5 Walkthrough: Connecting ROS and FIWARE

The link between ROS and FIWARE is represented by the firos package [12].

For the aim of this tutorial, we refer to our fork version of the original pack-
age available at https://github.com/Raffa87/ROS_FIWARE_TutoriallS. The
forked package contains a simplified version of the code with utilities already set

16 The original firos package is available at https://github.com/Ikergune/firos

16 Connecting ROS and FIWARE

for the present tutorial. At the end, the reader will be able to send and receive
data using ROS topics and the FIWARE Orion Context Broker.

5.1 Install Firos

First of all, clone the repository into your ROS workspace

$ git clone https://github.com/Raffa87/ROS_FIWARE_ Tutorial
build the package

$ catkin_make

The firos package is now installed and needs to be configured according to
the specific application.

5.2 Configuring FTIROS

The configuration files are located at the src/firos/config folder. Open the
config. json file and fill the following parameters:

address: the public IP of the FIWARE instance (e.g. 217.123.12.123)
port: the port used by the Orion Context Broker (default: 1026)
interface: the network interface used by the PC (e.g. wlan0, ethO)

Open the file robots.json to declare the ROS topics that will be used by
firos. For instance, using the following configuration file:

{
"end_end_test":{
"topics": {
"pi": {
"msg": "std_msgs.msg.String",
"type": "publisher"
3,
"s1": {
"msg": "std_msgs.msg.String",
"type": "subscriber"
}
}
I;

will configure firos to transmit the data received on the s1 topic to the
specified Orion Context Broker and to republish on the corresponding topic the
change of information on pl of end_end_test entity.

5.3 Run FIROS

To execute the firos node:

Connecting ROS and FIWARE 17

$ rosrun firos core.py

The output of a running node with the previous configurations will be like
the following:

Initializing ROS node: firos
Initialized

Starting Firos setup...

Generating Message Description Files
Successfully generated

Starting Firos...

Getting configuration data
Generating topic handlers:
-end_end_test

_p1

-s1
Subscribing on context broker to ROBOT end_end_test and topics:]
Connected to Context Broker with id 59ba8a5bb05d744325f22525
Subscribed to end_end_test’s topics

Press Ctrl+C to Exit

Serving HTTP on 0.0.0.0 port 10100 ...

5.4 From ROS topic to Orion Context Broker

At this step, we can check the connection between the firos node and the Orion
Context Broker by publishing on the specified s1 topic:

$ rostopic pub /sl std_msgs/String "hello world" __ns:=end_end_test

After that, the firos node modifies the attribute of the entity end_end_test
in the Orion Context Broker. We can verify it by querying Orion in the following
way:

curl contextbroker_ip:1026/v2/entities/end_end_test -s -S \
--header ’Accept: application/json’ | python -mjson.tool

The response will look like as:

"COMMAND": {
"metadata": {},
"type": "COMMAND",
"Vallle": nn

},

"id": "end_end_test",

"Sl"! {

18 Connecting ROS and FIWARE

"metadata": {},
"type": "std_msgs.msg.String",
"value": "{J27firosstamp’27: 1505398290.893342,
%27dataj27: %27hello world%27}"
1},
"type": "ROBOT"

As we can see from the response, the communication between ROS and FI-
WARE was successful. In particular, the use and configuration of firos auto-
matically create a new entity of type ROBOT that has an attribute named as the
subscribed topic whose value is automatically set and updated according to the
data flowing on the topic.

5.5 From Orion Context Broker to ROS topic

In a similar way, we can use firos to gather data from the context broker to
ROS topics. The robots.json configuration file already specifies a subscriber for
the p1 topic in the end_end_test namespace. However, although the firos node
automatically creates subscriber attributes for the specified entity, it does not
do the same for publishers. Therefore, we have to add a publisher attribute to
our entity in the Context Broker:

curl conteztbroker_4ip:1026/v2/entities/end_end_test/attrs -s -S \
--header ’Content-Type: application/json’ -d @- <<EOF

{
"pit: {
"metadata": {},
"type": "std_msgs.msg.String",
"value": "test"
}
}
EOF

Now, to verify the communication, open another terminal on the machine
where firos is running and echo the topic:

rostopic echo /end_end_test/pl

After that, modify the value of p1 attribute on the Orion Context Broker
using the PATCH command:

curl conteztbroker_ip:1026/v2/entities/end_end_test/attrs -s -S \
—--header ’Content-Type: application/json’ -X PATCH -d @- <<EOF
{
"pit: {
"metadata": {},
"type": "std_msgs.msg.String",
"value": "{}27data%27: %27 ‘echo $RANDOM®Y,27}"

Connecting ROS and FIWARE 19

1,
"COMMAND": {
"type": "COMMAND",
"value": ["pi"]
}
}
EQF

The new value will be printed in the rostopic echo terminal. At this point,
we have demonstrated how to connect ROS with FIWARE, both on subscription
and publication side. However, concerning the subscription case, it is worth to
note that the Orion Context Broker has to be able to reach the IP address of
the machine running the firos node. In other words, the robot has to be on the
same network of the cloud resource. This, of course, represents a huge limitation,
and the remainder will face this visibility issue.

6 Walkthrough: How To control a Robot through
FIWARE

So far we have seen how to practically use the FIWARE Context Broker (Section
4) and how to use the firos package to simply integrate FIWARE with ROS
using publishers and subscribers (Section 5). In this section, we go a step forward
providing a more concrete Cloud Robotics example. We will see how to send a
goal command to a robot, and look at the odometry data passing through the
FIWARE Orion instance. To be close to a real Cloud Robotics application, we
propose a system in which the control station is not in the same network of
the FIWARE cloud resource (i.e. we do not setup a dedicated VPN). To solve
the visibility issue between different machines over the Internet, we implement
a specific module on the robot that periodically asks for commands to execute
(polling-mode).
In details, the following step will be implemented and explained:

e create a new entity in the Orion Context Broker to store new commands for
a mobile platform through the PUT and PATCH commands;

e use Gazebo to simulate a Clearpath!” Husky mobile platform equipped with
a navigation stack to move in the environment;

e use firos to update odometry information in the Orion Context Broker;

e implement a python script to periodically poll new command from the Orion
Context Broker through the GET command;

e retrieve updated odometry data from the Orion Context Broker through the
GET command.

In the following, we provide a detailed walkthrough that details the proposed
system.

'7 https://wuw.clearpathrobotics.com, visited on December 2017.

20 Connecting ROS and FIWARE

6.1 Create a new entity to store robot commands

First of all, let’s create a new bare entity on the Orion Context Broker where to
store the commands for the robot:

curl contextbroker_ip:1026/v2/entities -s -S \
--header ’Content-Type: application/json’ -d @- <<EOF
{
"id": "Husky_fiware_command",
"type": "Robot_command",
"command": {
"value": "test",
"type": "String"
}
}
EOF

We have created a Husky_fiware_command entity having a command attribute
which is defined through a value and type field. We will see later, how the
value field will contain the information for a goal command, formatted as a
ROS message, while the latter will contain the ROS message type.

6.2 Simulate a Husky mobile platform

In our example, we will use a simulated Husky platform using the Gazebo soft-
ware. We decided to use it because it is well documented!'® and easy to reproduce.
Hence, for simulating the robot we use the husky_gazebo and husky_navigation
packages. In this walkthrough, we use the husky_fiware namespace, so our tu-
torial repository, already contains the launch files for those packages that refer
the ROS topics to our specific namespace. Therefore, start the pre-configured
Husky simulation environment where ns is already specified, also as argument of
the gazebo_ros/spawn node to keep consistency between simulated robot and
running ROS nodes.

$ roslaunch fiware_polling_command husky_playpen_fiware_demo.launch

and the husky navigation stack in the husky_fiware namespace:

$ roslaunch husky_navigation move_base_mapless_demo.launch __ns:=husky_fiware

The Gazebo simulator will open showing a Husky robot ready to execute
commands.

The rationale beyond the use of namespace is related to the firos imple-
mentation: firos node could be used to simultaneously manage several robots:
for each robot, a different entity and topics are published and subscribed using
the specified namespace.

'8 http://wiki.ros.org/husky_navigation/Tutorials, visited on December 2017.

Connecting ROS and FIWARE 21
6.3 Update the odometry on Orion Context Broker

To update the odometry information on the Orion Context Broker, we have
to change the firos config file, as we did in Section 5.2. Hence, modify the
robots. json file to specify that the odometry/filtered topic has to be for-
warded to the Orion Context Broker. The modified file looks like:

{
"end_end_test":{
"topics": {
"pit: {
"msg": "std_msgs.msg.String",
"type": "publisher"
I
"s1": {
"msg": "std_msgs.msg.String",
"type": "subscriber"
}
}
1,
"husky_fiware":{
"topics": {
"odometry/filtered": {
"msg": "nav_msgs.msg.0dometry",
"type": "subscriber"
}
}
}
}

We declare a subscriber on the odometry/filtered topic expecting a ROS
nav_msgs.msg.0dometry message. Now, you can run the firos node:

$ rosrun firos core.py

To complete the robot side programs, run the fiware_polling command.py
script that periodically request (through a GET) the value of the command at-
tribute of the Husky_fiware_command entity. The script also parses the com-
mand, publishing it on the relative navigation stack topic. The code of the script
is the following;:

#!/usr/bin/env python

import time

import requests

import json

import rospy

from move_base msgs.msg import MoveBaseGoal
from geometry msgs.msg import PoseStamped

10

12

14

16

18

20

22

24

26

28

30

22 Connecting ROS and FIWARE

def fiware_polling():
context_broker_ip = IP_ADDRESS
pub = rospy.Publisher(’ /husky_fiware/move_base_simple/goal’,
PoseStamped, queue_size=10)
rospy.init_node(’ fiware_polling.goal’, anonymous=True)
rate = rospy.Rate(l) #lhz
while not rospy.is_shutdown():
headers = {
"Accept’: ’'application/json’,
}
r

= requests.get('http://’ + context broker ip +
7:1026/v2/entities/Husky _fiware_command’, headers=headers)

j = json.loads(r.text)

if ("PoseStamped" in j[’command’][’type’]):

try:
msg = PoseStamped()
msg.header. frame_id = j[’command’][’value’][’header’][’ frame_id’]
msg.pose.position.x = j[’command’][’value’][’pose’][’position’][’x"]
msg.pose.position.y = j[’command’][’value’][’pose’][’position’][’y’]
msg.pose.position.z = j[’command’][’value’][’pose’][’position’][’z’]

msg.pose.orientation.x = j[’command’][’value’][’pose’][’orientation’]['x"]
msg.pose.orientation.y = j[’command’][’value’][’pose’][’orientation’][’y’]
msg.pose.orientation.z = j[’command’][’value’][’pose’][’orientation’][’z"]
msg.pose.orientation.w = j[’command’][’value’][’pose’][’orientation’]['w’]

34

36

38

40

42

44

46

48

a0

pub.publish(msg)

rate.sleep(Q)
except TypeError:

continue

headers = {
"Content—Type’: ’application/json’,
data = ’{"command": {"value": "none", "type": "String"}}’
r = requests.patch(’http://’ + context broker ip + ’:1026/v2/entities/
Husky_fiware_command/attrs’, headers=headers, data=data)

if _name == ’_main_’:
try:
fiware_polling()
except rospy.ROSInterruptException:
pass

In details, it implements a ROS node, which instantiate a publisher for the
navigation stack of the robot (line 12). Then, it continuously asks the Context
Broker about the command attribute through a GET request (line 20). Then, it

Connecting ROS and FIWARE 23

checks if the type field is equal to the expected PoseStamped (line 23). After
that, it parses the retrieved value and fills a new geometry msgs/PoseStamped
message that is published on the /husky_fiware/move_base_simple/goal topic
(lines 25-34). At the end, it reset the command attribute on the Orion Context
Broker using PATCH (line 43).

6.4 Store robot commands on the Context Broker

New commands can be set by a third-party application (e.g. user interface)
through a PATCH message, modifying the value of the command attribute of the
Husky_fiware_command entity. A possible message looks like the following:

curl contextbroker_ip:1026/v2/entities/Husky_fiware_command/attrs -s -S \
—--header ’Content-Type: application/json’ \
-X PATCH -d @- <<EOF

"command": {
"value": {
"header" : {
"seq" : 1,
"time" : 0.0,
"frame_id" : "base_link"
I
"pose" : {
"position" :
{
"x" : 0.0,
"y' i -1.0,
"z" : 0.0
I
"orientation" :

{

£ N < X

= O O O
o O O o

}
})
"type": "PoseStamped"

Iy
EOF

Here, we define a goal point which is at 1 meter on the right from the current
robot pose (i.e. referred to the base_link frame). In particular, the value field
is formatted like the PoseStamped ROS message.

24 Connecting ROS and FIWARE

6.5 Demo Execution

At this point, everything is ready for the execution of the demo. The reader can
send the PATCH command explained before. Looking at the Gazebo window, the
robot will start to move to the given point. Naturally, we can also check the
odometry value that is continuously updated by the firos node. This informa-
tion can be easily retrieved by querying the Orion Context Broker, as shown in
Section 5.4. Nevertheless, the value of the odometry_filtered attribute is quite
complex compared to the previous example. In fact, it contains several data,
such as position, twist, and relative covariance matrix. Hence, it is not so easy
to read by humans. For this purpose, our repository contains a utility python
program that parses this odometry message and outputs only the data relevant
to this example case (i.e. x and y position). So, launch the program using:

$ rosrun fiware_polling_command get_odometry_x_y.py

In this way, the reader can easily check the updated odometry values'®. We
have demonstrated a basic Cloud Robotic infrastructure
to control a ROS-based robot using the FIWARE framework. In our example,
we used command line tools to control the robot to provide a deep insight of the
adopted technologies. Obviously, a real Cloud Robotic application which aims
to control a robotic system will have a graphical user interface that can be easily
implemented using web technologies (e.g. HTTP-based) or with pre-configured
FIWARE instances (see Section 3).

7 Conclusion and Future Works

Nowadays, the importance of the Cloud technologies is attested by the wide
adoption of this technology in our everyday life. All the main Hi-Tech companies
provide a cloud-based solution in the form of Software-as-a-Service, Platform-as-
a-Service, and Infrastructure-as-a-Service. On the other hands, robotics is one of
the future emerging markets. Despite this, a clear solution that links these two
distinct worlds is not clearly affirmed yet.

The present chapter proposes the use of the FIWARE framework for the
development of Cloud Robotics applications using ROS-based robots. In partic-
ular, it plainly shows how to integrate this Cloud technology through detailed
walkthrough tutorials. The chapter presents the steps to create and use a FI-
WARE Orion Context Broker running on a VM in FIWARE platform, and its
integration with the ROS framework using the firos package. The reader has
the possibility to follow the walkthrough developing a simple Hello World exam-
ple. Finally, a more concrete Cloud Robotics application to control a simulated
robot sending a goal and reading odometry data is presented.

The use of the FIWARE framework allows to easily build modular Cloud ap-
plication, enhancing the proposed system with additional features, the so-called

19 A video demonstration of this tutorial is available at https://youtu.be/
czhD-krCRZc, visited on December 2017.

Connecting ROS and FIWARE 25

FIWARE Generic Enablers. Among this, a developer can extend the system with
a powerful web-based user interface, employ tools for analyzing context infor-
mation, and modules designed for addressing security and privacy requirements.
In addition, FIWARE can represent a common infrastructure between IoT and
robotics.

Furthermore, another aspect that emerges from this chapter is the well-know
visibility issue between machines connected on different networks across the In-
ternet. This problem can be addressed in several ways as, for instance, setting
a dedicated VPN. However, it can be painful and needs to be configured for
every machine acting on the system. The solution detailed in this tutorial pro-
poses the development of a polling node, which periodically queries the Cloud
resource asking for commands. Clearly, this method can be suitable for most of
the IoT devices that typically perform simple actions. More realistically, Cloud
Robotics applications need a different and optimized mechanism. A viable op-
tion is represented by the modern web-based communication technologies such
as WebSockets that implements a low-latency, bidirectional communication layer
between clients (web browsers) and servers. Concerning ROS, the Robot Web
Tools (RWT) [13] project already offers a ROS interface for the WebSocket trans-
port layer through the rosbridge_suite package. A practical use case example
of the RWT adoption in a Cloud Robotics teleoperation system can be found at
[14].

An extension of the FIWARE framework with the development of a mod-
ule that integrates the rosbridge_suite will concern our future works. It will
enhance a FIWARE robotic application with real-time capabilities, allowing to
optimize the streaming of a huge amount of data.

Acknowledgement

This work was supported by the ACCRA Project, founded by the European
Communitys Horizon 2020 Programme (H2020-SCI-PM14-2016) - grant agree-
ment No. 738251.

1]

[10]

[11]

[12]

Bibliography

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating
system. In ICRA workshop on open source software, volume 3, page 5. Kobe,
2009.

Tully Foote. Community Metrics Report.
http://download.ros.org/downloads/metrics/metrics-report-2017-07.pdf.
Accessed on December 2017.

Ben Kehoe, Sachin Patil, Pieter Abbeel, and Ken Goldberg. A survey of
research on cloud robotics and automation. IEEE Transactions on automa-
tion science and engineering, 12(2):398-409, 2015.

Guogiang Hu, Wee Peng Tay, and Yonggang Wen. Cloud robotics: archi-
tecture, challenges and applications. IEEE network, 26(3), 2012.

Koji Kamei, Shuichi Nishio, Norihiro Hagita, and Miki Sato. Cloud net-
worked robotics. IEEE Network, 26(3), 2012.

Rajesh Arumugam, Vikas Reddy Enti, Liu Bingbing, Wu Xiaojun, Krish-
namoorthy Baskaran, Foong Foo Kong, A Senthil Kumar, Kang Dee Meng,
and Goh Wai Kit. Davinci: A cloud computing framework for service robots.
In Robotics and Automation (ICRA), 2010 IEEE International Conference
on, pages 3084-3089. IEEE, 2010.

G. Mohanarajah, D. Hunziker, R. D’Andrea, and M. Waibel. Rapyuta: A
cloud robotics platform. IEFE Transactions on Automation Science and
Engineering, 12(2):481-493, April 2015.

Markus Waibel, Michael Beetz, Javier Civera, Raffaello d’Andrea, Jos El-
fring, Dorian Galvez-Lopez, Kai Haussermann, Rob Janssen, JMM Montiel,
Alexander Perzylo, et al. Roboearth. IEEE Robotics & Automation Maga-
zine, 18(2):69-82, 2011.

Dominique Hunziker, Mohanarajah Gajamohan, Markus Waibel, and Raf-
faello D’Andrea. Rapyuta: The roboearth cloud engine. In Robotics and
Automation (ICRA), 2013 IEEE International Conference on, pages 438
444. TEEE, 2013.

Sten Hanke, Christopher Mayer, Oliver Hoeftberger, Henriette Boos,
Reiner Wichert, Mohammed-R Tazari, Peter Wolf, and Francesco Furfari.
universaal-an open and consolidated aal platform. In Ambient assisted liv-
ing, pages 127-140. Springer, 2011.

T. Zahariadis, A. Papadakis, F. Alvarez, J. Gonzalez, F. Lopez, F. Facca,
and Y. Al-Hazmi. Fiware lab: Managing resources and services in a cloud
federation supporting future internet applications. In 2014 IEEE/ACM 7th
International Conference on Utility and Cloud Computing, pages 792-799,
Dec 2014.

F Herranz, J Jaime, I Gonzélez, and A Hernandez. Cloud robotics in fi-
ware: A proof of concept. In International Conference on Hybrid Artificial
Intelligence Systems, pages 580-591. Springer, 2015.

Connecting ROS and FIWARE 27

[13] Russell Toris, Julius Kammerl, David V Lu, Jihoon Lee, Odest Chadwicke
Jenkins, Sarah Osentoski, Mitchell Wills, and Sonia Chernova. Robot web
tools: Efficient messaging for cloud robotics. In Intelligent Robots and Sys-
tems (IROS), 2015 IEEE/RSJ International Conference on, pages 4530—
4537. IEEE, 2015.

[14] Alessandro Manzi, Laura Fiorini, Raffaele Limosani, Peter Sincak, Paolo
Dario, and Filippo Cavallo. Use case evaluation of a cloud robotics teleop-
eration system (short paper). In Cloud Networking (Cloudnet), 2016 5th
IEEE International Conference on, pages 208-211. IEEE, 2016.

Authors Biographies

Raffaele Limosani received the Master Degree in Biomedical Engineering
at University of Pisa on July 2011 and received the PhD in Biorobotics (cum
laude) from the Scuola Superiore Sant’Anna in November 2015. During his PhD,
he was a visiting researcher at the ATR (Advanced Telecommunications Research
Institute International) Laboratory, Japan. Currently he is a post-doc at the
BioRobotics Institute of the Scuola Superiore Sant’Anna. His research fields
are Robotic Navigation, Human Robot Interaction and Mobile Manipulation,
especially in unstructured environments.

Alessandro Manzi received the MSc in Computer Science from the Uni-
versity of Pisa, Italy in 2007, and received the PhD in BioRobotics (cum laude)
from the Scuola Superiore Sant’Anna in 2017. Currently, he is a post-doc at the
BioRobotics Institute of the Scuola Superiore Sant’Anna. His research interests
include machine learning, computer vision, data processing from depth cameras,
robotic navigation, and perception.

Laura Fiorini received the Master Degree (with honours) in BioMedical
Engineering at University of Pisa on April 2012 and the PhD in Biorobotics (cum
laude) from the Scuola Superiore Sant’Anna in February 2016. Currently she is
a post-doc at the BioRobotics Institute of the Scuola Superiore Sant’Anna. She
was a visiting researcher at the Bristol Robotics Laboratory, UK. Her research
interests include Ambient Assisted Living, Cloud Service Robotics, ICT system
for cognitive activation, pattern recognition, signal processing and experimental
protocol.

Paolo Dario received his Dr. Eng. Degree in Mechanical Engineering from
the University of Pisa, Italy, in 1977. He is currently a Professor of Biomedical
Robotics at Scuola Superiore Sant’Anna in Pisa. He has been Visiting Profes-
sor at prestigious universities in Italy and abroad, like Brown University, Ecole
Polytechnique Federale de Lausanne, Waseda University, University of Tokyo,
College de France, Zhejiang University. He was the founder and the Coordinator
of the BioRobotics Institute of Scuola Superiore Sant’ Anna, where he supervises

28 Connecting ROS and FIWARE

a team of about 120 researchers and Ph.D. students. He is the Director of Polo
Sant’Anna Valdera. His main research interests are in the fields of BioRobotics,
medical robotics, micro/nanoengineering. He is the coordinator of many national
and European projects, the editor of special issues and books on the subject of
BioRobotics, and the author of more than 200 scientific papers.

Filippo Cavallo MScEE, Phd in Bioengineering, is Assistant Professor at
BioRobotics Institute, Scuola Superiore Sant’Anna (Pisa, Italy), focusing on
cloud and social robotics, ambient assisted living, biomedical processing, wire-
less and wearable sensor systems. He participated in various National and Euro-
pean projects, being project manager of Robot-Era, AALIANCE2 and Parkinson
Project. He was visiting researcher at the the EndoCAS Center of Excellence,
Pisa; at the Takanishi Lab, Waseda University, Tokyo; at Tecnalia Research
Center, Spain. He was granted from the International Symposium of Robotics
Research Committee as Fellowship Winner for best PhD thesis in Robotics;
from the Regional POR FSE 2007-2013 for a 3-years Research position at The
BioRobotics Institute; from the ACCESS-IT 2009 for the Good Practice La-
bel in Alzheimer Project; from the Well-Tech Award for Quality of Life with
the Robot-Era Project. He is author of various papers on conferences and ISI
journals.

