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Abstract— Robots will become part of our everyday life as 

helpers and companions, sharing the environment with us. Thus 

robots should become social and able to naturally interact with 

the users. Recognizing human activities and behaviors will 

enhance the capabilities of the robot to plan an appropriate 

action and tailor the approach according to what the user is 

doing. Therefore, this paper addresses the problem of providing 

mobile robots with the ability to recognize common daily 

activities. The fusion of heterogeneous data gathered by multiple 

sensing strategies, namely wearable inertial sensors, depth 

camera, and location features, is proposed to improve the 

recognition of human activity. In particular, the proposed work 

aims to recognize ten activities using data from a depth camera 

mounted on a mobile robot able to self- localize in the 

environment and from customized sensors worn on the hand. 

Twenty users were asked to perform the selected activities in two 

different relative positions between them and the robot, while the 

robot was moving. The analysis was carried out considering 

different combinations of sensors to evaluate how the fusion of 

the different technologies improve the recognition abilities. The 

results show an improvement of 13% in the F-measure when 

different sensors are considered with respect to the use of the 

sensors of the robot. In particular, the system is able to recognize 

not only the performed activity, but also the relative position, 

enhancing the robot capabilities to interact with the users. 

 
Index Terms— Sensor fusion, wearable sensors, activity 

recognition, depth camera. 

I. INTRODUCTION 

n future scenarios, robots will permeate our daily lives, 

sharing environments such as houses, streets, and offices. 

Mobile robots can help and support people, but also socially 

interact with them [1]. In this context, it is useful for a robot to 

automatically recognize the activities and intentions of 

humans to cooperate effectively with them. A robot that can 

understand human activities is capable to plan appropriate 

reactions according to the situation. These abilities may then 

lead to more complex robotic services in the fields of security, 
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surveillance, and assistance of elderly people [2]. In addition, 

enabling the robot to recognize common human activities will 

enhance the human-robot interaction, helping the robot to 

understand whether to interact or not with the user and the 

way to do it. In this way, the interactions would be led by the 

current activity done by humans. Also understanding the 

relative position between the robot and the user would 

influence the human-robot interaction allowing to tailor the 

approaches based both on the position and on the activities of 

the person [3]. 

In the last years, significant research efforts have focused on 

activity recognition, in particular, using two approaches, 

namely with external sensors and wearable sensors [4]. The 

former can include the use of sensors placed in the 

environment or directly on the objects, whereas the latter 

concerns devices placed on human body. Smart homes and 

cameras are example of external sensors. In the first case, the 

recognition is based on sensors placed on the objects used 

during the activities, requiring therefore a huge amount of 

sensors and an update of the system when a new object is 

added [5]. In the second case, video analysis is used to 

recognize the activities, in particular, skeleton extraction is 

used when depth-cameras are adopted [6]. This kind of 

sensors, however, are linked to issues like privacy, complexity 

and pervasiveness, which arise from the limitation of the field 

of view of the camera. The user have to stay in front of the 

camera to make the system recognize the activity he/ she is 

performing, limiting the person during his daily life [7].  

In order to overcome these problems, according to the state 

of the art, several strategies were developed and tested. For 

instance, sensors are used to perceive how the body 

movements change the electromagnetic noise coming from 

power lines and electronic devices [8]. In other works, textile 

capacitive sensors are used to measure the capacitance under 

the electrode to recognize the activities that are performed [9]. 

Thanks to the miniaturization and the inclusion of sensors in 

common wearable objects (i.e. smartwatches, smart 

wristbands [10]), the use of inertial wearable sensors, for daily 

activity recognition has been analyzed in several works. These 

sensors allow to receive information directly from the 

movement of the users, detecting also fast and subtle 

movements without forcing them to stay in front of a camera 

[7]. Moreover, wearable sensors are not affected from 
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problems related to illumination variations, background 

change and body occlusions, but  several sensors should be 

used to recognize whole body movements [11]. Recent studies 

have demonstrated that the simultaneous use of inertial 

sensors and depth cameras can improve the recognition of 

daily activities, merging the advantages of heterogeneous 

sensors, while compensating for the limitations [12]–[14].  

In this context, aim of this work is to combine data from 

inertial sensors worn by the user, from a depth camera 

mounted on a mobile robot, and the information about user 

location in the house given by the robot to recognize ten 

different activities. The use of this combination of sensors 

enables, therefore, to increase the pervasiveness and the 

accuracy of the system to recognize the activities. 

Furthermore, in addition to getting information about fine 

movements, wearable sensors allow to perceive the user 

movements even when the person is not in the field of view of 

the robot. On the other hand, the use of the depth camera 

mounted on the robot gives information about the whole body 

posture, increasing thus the ability to distinguish among 

different activities. Moreover, information from the depth 

camera allows to understand the relative position between the 

user and the robot, enabling it to tailor the approaches 

according to the relative position. The information obtained by 

the system (i.e. the activity of the user and the relative 

position) could be used to adapt the behavior of a mobile robot 

platform, as expressed and remarked in [3], [15]. The merging 

of the information enhance the ability of the robot: even when 

sharing the same environment, the user can be out of the field 

of view of the robot and other complications may occur (as 

occlusions of key elements of user gestures), but the sensors 

worn by the person allow to have information about the 

activities carried out. The integration of Robotics, Internet of 

Things and Artificial Intelligence is, therefore, an interesting 

approach, called “Internet of Robotic Things”, which gives the 

possibility to design and develop new frontiers in human- 

robot interaction, collaborative robotics, cognitive robotics, 

etc. [16]. 

The rest of the paper is organized as follows. In Section 2 

we describe the related works, while the system used and the 

experimental setup, and the methodology are described 

respectively in Section 3 and 4. Section 5 provides results and 

Section 6 a discussion about them. Finally, in Section 6 

conclusions are described. 

II. RELATED WORKS  

As can be seen from literature evidence (see Table 1), 

different works have analyzed the combination of depth 

cameras and inertial wearable sensors. Among the works 

found in literature, Tao et al. [14] presented a comparative 

study on a database [17] of 13 common home actions acquired 

in a realistic setting. Chen et al. [13] based their study on the 

Berkeley-MHAD (Multimodal Human Action Database) 

dataset, which recorded the actions in a controlled setting 

TABLE 1 
REVIEW OF STUDIES ON ACTIVITY RECOGNITION (DT= DECISION TREE, MLP= MULTI-LAYER PERCEPTRON, RF=RANDOM FOREST, SVM= SUPPORT VECTOR 

MACHINE, KNN= K-NEAREST NEIGHBORS, HMM= HIDDEN MARKOV MODEL) 

Ref. Sensor Position Activities Machine Learning Results 

[14] 

Static RGB-Depth camera 

Accelerometers placed on the 
wrist and on the waist 

13 full body daily activities (database 

[7]) 
SVM 

Recognition rate: 
only accelerometers: 56.57% 

only visual features: 71.52% 

fusing information: 73.99% 

[13] 

Static Kinect camera in front of 

the subject 

Accelerometers on the wrist and 
opposite hip 

11 actions: general activities that 
involve both arms or full body 

activities (Berkeley-MHAD dataset) 

SVM, Sparse and 

Collaborative 

Representation Classifier, 
kNN, HMM 

 Feature-level and 

Decision-level fusion 
approach 

Recognition Rate: 

only Kinect: > 63.81%  
both accelerometers: >86% 

Feature-level fusion approach: 99.13% 

Decision-level fusion approach: 98.87% 

[18] 

Static Kinect in front of the user 

Inertial sensors placed on the 

wrist or on the thigh according 
to the action 

27 daily activities (UTD-MHAD 

dataset): 21 actions involving arms 
with inertial sensor on right wrist and 

6 full body activities with inertial 

sensor on right thigh 

Collaborative 

Representation Classifier 

Feature-level fusion 
approach 

Accuracy = 79:1% in the fusion 

approach 

[19] 

Static Kinect 

Inertial sensors on the wrists, 
ankles and back. 

11 daily activities: Read, Sleep, Sit 

idle, Dress, Undress, Brush teeth, 

Clean a table, Work at the computer, 
Tidy up the wardrobe, Pick 

something up, and Sweep the floor 

Multiple MLP 

kNN 

F1 score median value = 0:75 (min. 

median value for sensors fusion 
approach) 

[20] 
Static Kinect in front of the user 

Inertial sensor on the wrist 
Ten single hand gestures 

multi-HMM 
Decision-level fusion 

approach 

Recognition rate = 91% 

[21] 
Static Kinect in front of the user 

CyberGlove 

12 upper body gestures: be confident, 
have question, object, praise, stop, 

succeed, shake hand, weakly agree, 

call, drink, read, and write 

Energy-based LMNN 

classifier 
Accuracy = 91% (min. value) 

Our 

work 

Depth camera on a moving 

robot 2 relative positions 

between the robot and the user 
IMUs on the wrist and on the 

index finger 

10 common daily activities in 3 

different rooms 

SVM and RF 

Decision-level fusion 
approach 

Accuracy = 77% in the best 
configuration, namely fusion of depth 

camera, IMUs on wrist and index finger 

and location (see first row of Table 4) 
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without the presence of external noise. In [18], the authors 

analyzed 27 daily activities (UTD-MHAD dataset), while 

Delachaux et al. [19] proposed a system composed of a fixed 

Kinect and five Inertial Measurement Units (IMU) to 

recognize eleven daily activities. Other works focused on the 

recognition of hand gestures fusing information from a Kinect 

camera with an inertial sensor on the wrist [20] or a 

CyberGlove [21]. In particular, Xiao et al. [21] recognized 

twelve upper body gestures to improve the natural interaction 

with robots. Nevertheless, all these works (see Table 1) were 

conducted using a fixed camera in a controlled environment, 

limiting the practical use in real cases. Considering the future 

presence of robots in daily life, it will be possible to exploit 

mobile cameras placed on it, instead of placing several 

cameras in the environment. However, the use of robots 

introduces additional noises related to moving sensors, which 

can affect the quality of the images, and human-robot relative 

positions, which can be sub-optimal for activity recognition 

tasks. 

Therefore, the present work aims to go beyond the state of 

the art by combining data from a depth camera mounted on a 

mobile platform, able to self-localize in the environment, and 

from a custom wearable device (SensHand [22]), equipped 

with inertial sensors. In particular, differently from the 

aforementioned works, skeleton data extracted from the RGB-

D camera were collected while the robot was continuously 

moving and combined with data from inertial sensors placed 

on the user’s hand. Furthermore, a localization system, using a 

static map of the environment, was used to gather the location 

(kitchen, bedroom, living room) where the activity was 

performed. Merging these information it is possible to 

recognize actions, which are a combination of hand gestures 

and full-body postures, overcoming occlusion problems and 

using only two IMUs. Hence, this work focuses on the 

investigation of a multi-modal sensor approach to enhance the 

recognition of common activities using a robot that could 

monitor people at home and also tailor its action according to 

the activity the user is performing. 

III. STUDY DESIGN  

In this section, we describe the components of the system 

and the experimental protocol carried out to test the ability to 

recognize the chosen activities. 

A. System Description  

The aim of the system is to exploit multiple sensors 

strategies to enhance the recognition of common daily 

activities. The architecture depicted in Fig. 1 consists of two 

devices: 

• Mobile Robot able to safely navigate through an indoor 

environment and featuring an RGB-D camera that 

provides human skeleton information; 

• SensHand, a custom wearable inertial system, able to 

provide inertial data (accelerations and angular 

velocities) from multiple sensors. 

The components of the system are integrated through a data 

processing module that handles communication, and 

synchronization of data, and the recognition algorithms. The 

modularity of the system allows the evaluation of the 

classification performance of different configuration of 

sensing technologies that were adopted during the analysis. 

1) Mobile Robot 

 The system integrates the DoRo robot ([23]), which is an 

indoor mobile robot (Fig. 1) , based on the Scitos G5 platform 

(Metralabs, Germany). The robot module gives both location 

and skeleton data. In particular, a static map of the home 

environment was previously built using its laser scanner and a 

simultaneous localization and mapping (SLAM) based 

algorithm [24]. The navigation stack, which employs 

advanced algorithms for obstacle avoidance and path planning 

included in the commercial Cognidrive software uses the static 

map and laser scanner data to localize itself within the 

environment and to avoid obstacles while moving. The 

navigation system, using the 2-D coordinates of the 

localization software, infers the area in terms of location 

(which is limited, in our case, to kitchen, living room, and 

bedroom). The mobile platform mounts an Asus Xtion depth 

camera that provides images and depth maps. A software 

tracker [25] allows the extraction of useful information about 

the human skeleton. Specifically, it provides a skeleton model 

of 15 joints, expressed as 3-D Cartesian coordinates, at a 

sample rate of 10 Hz. Hence, the robot module gives both 

skeleton and location data.  

2) SensHand 

The system integrates inertial data acquired with the 

SensHand (see Fig. 1) , which is a custom device made of four 

nine-axis inertial sensor units used to perceive the movement 

of the hand [26]. In particular, the four units are placed on the 

wrist (similar to current smartwatches) and on three fingers (as 

rings), typically thumb, and index and middle fingers. The 

wrist module, which coordinates the other units through the 

Controller Area Network standard, collects and sends the data 

to the Control PC via Bluetooth at 50 Hz. On the device, a 

fourth-order low-pass digital filter with a cutoff frequency of 5 

Hz is implemented to remove high-frequency noise. The 

SensHand has a modular architecture, which allows one or 

more finger units to be unplugged according to the data 

required.  

 
Fig. 1. Overall software architecture of the system. 
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3) Data Processing Module 

The data processing module is implemented on a PC, which 

is connected via Bluetooth to the SensHand, and via WiFi to 

the robot to perform activity classification. In particular, the 

module retrieves skeleton data from the depth camera 

mounted on the robot and inertial data from the SensHand. 

The communication is established using the Robot Operating 

System (ROS) framework [27]. Since the data are published at 

different frequencies, an ad-hoc synchronization mechanism 

was developed. Particularly, for each measurement of the 

inertial system, poses of skeleton joints were computed as 

interpolations between the closest data acquired by the depth 

camera. This procedure considers the relationship between the 

different coordinate frames and uses the tf library [28] to 

compute the transformations between frames in time. 

Regarding the SensHand, the receiving time of data is used as 

the timestamp of the acquired information; the delay 

introduced by the Bluetooth communication is thus considered 

negligible according to this specific application. Moreover, the 

data processing module runs the activity recognition 

algorithms used for the classification. Further details on their 

implementation are given in Section 4. 

B. Experimental Protocol 

Ten activities were chosen from the Cornell Activity 

Dataset [29], extracting the ones that could be more useful to 

monitor daily actions considering the correlation between 

changes in behavior and onset and worsening of cognitive 

problems in elderly people [30]. Furthermore, two eating 

activities were added to include also food habits. The Table 2 

lists the ten performed activities. Each activity is performed in 

one or more rooms. Twenty young healthy participants, 8 

females and 12 males (19 right-handed and one left-handed), 

whose ages range from 22 to 37 (29.8 ± 4.2) were involved in 

the experimental session. The experiments were conducted in 

the DomoCasa Lab (described in Fig. 2), a fully furnished 

apartment located in Peccioli, Pisa. This realistic setting was 

chosen to minimize unnatural movements coming from a 

laboratory setting. Considering the results obtained in [26], the 

SensHand was used only with the wrist and index finger 

sensor units. Users were asked to wear it on the wrist, and on 

the intermediate phalange of the index finger. Each activity 

was performed for 1 minute in two different modalities to 

acquire data from two different points of views. In the first 

case the action was done in front of the robot, while in the 

second case, the person performed the activity sideways, thus 

having the dominant hand on the opposite side with respect to 

the mobile robot, increasing the complexity for vision-based 

system due to the occlusion problems. No instructions were 

given to the users about how to perform the activities, they 

were, indeed, left free to grab the objects and act in the way 

they preferred. During the acquisition, each activity was 

labeled manually by an operator using an ad-hoc web 

interface.  

During the experimentation the robot was continuously 

moving, hence considering noise linked to the movement of 

the robot while reaching the person. Therefore, DoRo moved 

forward and backward continuously between two goal 

positions using its autonomous navigation system. The two 

positions were chosen to maintain the user in the field of view 

of the depth camera, to be able to get the skeleton data during 

the entire experimental session, as the topic of this work was 

not related to people detection and tracking.  

IV. ACTIVITY RECOGNITION 

This section describes the activity recognition process, 

which is the core of the system. It employs the use of 

supervised machine learning algorithms to perform 

classification of the activities. The first phase involved the 

extraction of the features from the sensors, namely the 

location, skeleton, and inertial data. These features were then 

used to train two independent classifiers for the skeleton and 

inertial data. Indeed, a fusion-at-decision-level approach [31] 

was implemented, and an additional classifier was trained on 

the outputs of the aforementioned independent classifiers (see 

Fig. 3). All the processes described in this section were 

TABLE 2 

ACTIVITY DESCRIPTION WITHIN LOCATIONS (B: BEDROOM, L: 

LIVING ROOM, K: KITCHEN). 

Activity Description Room 

CH: Chop 
Chop some vegetables 

continuously 
K 

DK: Drink with a glass 
Take a glass from the 

table, drink and put it back 

on the table 

B, L, K 

EH: Eat with a hand 
Take biscuits from a dish 
and eat them continuously 

K 

ES: Eat with a spoon 
Eat some yogurt with a 

spoon repeatedly 
K 

OP: Open a pill container 
Open a pill container by 

unscrewing the cap 
B, K 

PH: Talk on the phone Talk on the cellphone B, L 

RD: Read a book 
Read a book on the chair 

(and turn pages) 
B, L 

RC: Relax on the couch 
Sit comfortably on the 

couch and relax 
L 

ST: Stir 

Stir a liquid in a pot with a 

wooden spoon 

continuously- 

K 

TC: Talk on the couch 
Sit on the couch and talk 

with another person 
L 

 

 
Fig. 2. Representation of the experimental setting. It includes the DoRo robot, 

and the SensHand. We considered only kitchen, bedroom, and living room. 
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implemented using Weka Workbench [32]. 

A. Feature Extraction 

Three different types of features are used by the classifiers: 

location of the user, skeleton activity, and inertial features. 

User Location: The location of the user is provided by the 

navigation module of the mobile platform (see Section 2.1). 

The localization system of the DoRo robot can infer the 

current location using the Cartesian coordinates given in the 

environmental map. In our case, the locations were the 

kitchen, living room, and bedroom (see Fig. 2). 

Skeleton Activity Features: The activity features used by the 

classifier were extracted from the raw skeleton data after 

processing steps that involve the use of clustering and 

supervised machine learning algorithms. The employed 

method is based on the approach presented in [33]; it describes 

an activity using several sequences of few basic informative 

postures. The raw skeleton data describe a human skeleton 

with 15 joints that are represented as three-dimensional 

Cartesian coordinates. Only a subset of joints is actually used 

for the extraction of the features i.e. the head, hands, and feet. 

These data are normalized on the torso joint frame and scaled 

with respect to the distance between the neck and the torso. 

After this normalization step, the X-means clustering 

algorithm is used to find the centroids of the skeleton, which 

can be seen as the most informative postures for the input 

stream. Then, a sequence of posture transition is generated 

from the original input, considering the obtained clusters. 

Finally, a sliding window, composed of five elements, is 

applied to the compressed sequence, generating new instances 

that represent the activity features for the current input 

sequence. The choice of these parameters (i.e. the six skeleton 

joints and the sliding window with a length of five) follows 

the experiments conducted in [33]. 

Inertial Features: In this analysis, we considered only the 

wrist and index finger sensors, according to the results 

obtained in [26]. Hence, using the acceleration norm, the 

following features were extracted for both sensors: mean, 

standard deviation, variance, mean absolute deviation, root 

mean square, energy, and IAV (integral of the magnitude of 

the acceleration vector). These features were used to model 

the whole activity sequence. 

B. Classification 

To investigate the use of multi-modal sensors in recognizing 

commons activities, we evaluated our system following six 

configurations according the considered sensors (see Table 3). 

In particular, the modularity of the system allowed to test 

different combination of features starting from data of the 

independent systems, robot on one side and SensHand on the 

other one, to the final combination where all the sensors were 

considered. A leave-one-subject-out cross-validation protocol 

(LOSO) analysis was carried out, where 19 participants were 

used for training and the left-out one for testing. The results 

are, therefore, an average of the performance for each user 

used as a test set. This type of analysis is useful to assess the 

recognition ability of the classification system in case of 

unseen data. 

Classification with Skeleton and Localization Data: The 

location and skeleton activity features extracted as described 

in Section 3.1.1 and 3.1.2 were used to train a supervised 

machine learning classifier. Since we were interested in 

recognizing the relative position of the person, the total 

number of output classes was 20 (Fig. 3). We adopted a 

multiclass Support Vector Machine (SVM), trained with 

Sequential Minimal Optimization (SMO). The multiclass 

version was implemented by combining several binary SVMs 

using a one-versus-one strategy. 

 Activity Classification with Inertial Data: The inertial data 

were classified by training a random forest; this method 

provides the best performance with this type of data [34]. 

Initially, only the features extracted from the wrist sensor were 

considered (Fig. 3). Next, we included in the classification 

process the location information as well (Fig. 3). As final 

setup step, we evaluated the entire system, inputting into the 

random forest the features extracted from the wrist and index 

fingers plus the location. In all these cases, the classifier was 

trained to recognize the classes without the relative position of 

the user, because the sensor itself does not have the 

information to discriminate the user position. Hence, the 

number of activities to be recognized is 10. 

Fusion at Decision Level: To combine the outcomes of the 

two aforementioned independent classifiers, we adopted a 

fusion-at decision-level scheme [35]. Thus, we trained a 

random forest that takes as input the outputs of the 

independent models and classifies the activities in both front 

and side position (Fig. 3). 

TABLE 3 
DESCRIPTION OF THE ADOPTED CONFIGURATIONS. 

Configuration Description 

S&L: Skeleton & Location 
Classification using only features from 

the robot, namely skeleton and location. 

W: Wrist 
Classification using only features from 

the wrist sensor. 

W&L: Wrist & Location 
Classification using features from the 
wrist sensor and location. 

(S&L)+W: Skeleton & 
Location plus Wrist  

Decision-level fusion of the 

classification outcomes obtained 
independently from the robot and the 

wrist 

(S&L)+(W&L): Skeleton & 

Location plus Wrist & Location   

Decision-level fusion of the 
classification outcomes obtained 

independently from the skeleton and the 

wrist, including location in both cases. 

(S\&L)+(I\&W\&L): Skeleton 

& Location plus Index& Wrist 
& Location 

Decision-level fusion of the 

classification outcomes obtained 

independently from the robot, and 
inertial sensors (wrist and index) 

including location. 

 

 
Fig. 3. Software architecture of the activity recognition system. Two 
independent classifiers are trained on location, skeleton, and inertial data. A 

decision level fusion approach is used to merge the information.  
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Fig. 4. The confusion matrix using only the robot (i.e. skeleton and location features). F= Front, S= Side. 

V. RESULTS 

Our results show that the fusion-at-decision-level approach 

improves the classification accuracy compared to the use of 

the independent classifier. Table 4 reports the obtained 

performances in terms of accuracy, F-measure, precision, and 

recall of all six configurations. Using only the features 

provided by the robot (i.e. skeleton and location data), the 

overall accuracy is 0.64 and the F-measure is 0.64. In 

particular, if we consider both front and side cases, the 

activities, relax on the couch (RC) and talk on the couch (TC), 

have good recognition rates (see Fig. 4), while among the 

lowest are drink (DK), and eat with hand (EH). Also the 

stirring (ST) activity has low accuracy values because the arm 

is moving too close to the body, and the classifier has 

difficulties using only skeleton data. 

The classification performance obtained with the wrist 

features are comparable to the ones of the robot (accuracy 

equals 0.61 and F-measure equals 0.54). However, these 

results are not directly comparable since the classifiers trained 

with inertial data gives as output the activities without 

considering the user relative position (10 classes instead of 

20). At this stage, the location feature is not used, because it is 

our aim to evaluate the wrist features separately from the 

robotic system.  

The results obtained combining the above classifiers (i.e. 

skeleton plus location and wrist) with a decision-level fusion 

approach lead to an improvement of 7% in accuracy. These 

results show that the fusion of the two sensors improves the 

recognition rate of the selected activities. Therefore, on the 

basis of these results, the location features were added to the 

wrist ones in the independent classifier. Moreover, in order to 

consider the robotic system and the SensHand as an unique 

system, the features were merged at a fusion level (i.e. 

skeleton plus location and wrist plus location) obtaining 

accuracy equals to 0.71 and F-measure equals to 0.69.  

Finally, our last configuration consists of the introduction of 

the index finger feature into the system. The final values of 

accuracy and F-measure are 0.77 and 0.76, respectively. Even 

if the use of the index sensor implies an increase in the 

number of sensors to be worn by the user, it improves the F-

measure of 13% with respect to the robot feature only and of 

6% with respect to the fusion scheme without the index finger, 

thus justifying the use of an additional sensor.  

VI. DISCUSSION  

In this work, we proposed a combination of depth camera 

and wearable sensors to enhance the capability of a robot to 

recognize some human activities. Six different configurations 

were tested to recognize ten activities, i.e. features from 

skeleton and location of the user (robot features), features 

from the wrist sensor only, fusion at a decision level of 

features from the robot and from the wrist, features from the 

wrist and location, fusion at decision level of features from the 

robot and from the wrist and location, and fusion at decision 

level of features from the robot and from the wrist and index 

sensors and location. This last configuration (Fig. 5) increases 

the recognition rate of drink (DK), talk on the phone (PH), eat 

with the hand (EH), and stir (ST). Therefore, this final 

configuration can recognize quite well the proposed activities, 

even very similar ones such as eat with the hand (EH) and eat 

with the spoon (ES). 

Results show how the proposed system is able to 

distinguish among daily activities, employing a mobile depth 

camera and only two inertial sensors, whereas other works are 

not focused on daily routine activities [13], [18] and use fixed 

cameras [14] and/or a higher number of inertial sensors [19]. 

TABLE 4 

CLASSIFICATION RESULTS ACCORDING TO DIFFERENT FEATURES IN TERMS OF ACCURACY, F-MEASURE, PRECISION AND RECALL 

WITH LOSO ANALYSIS(S=SKELETON, W=WRIST, L=LOCATION, I=INDEX) 

 S&L W (S&L)+W W&L (S&L)+(W&L) (S&L)+(I&W&L) 

Accuracy 0.64 0.61 0.71 0.72 0.71 0.77 

F-measure 0.64 0.54 0.70 0.66 0.69 0.76 

Precision 0.64 0.54 0.70 0.66 0.70 0.76 

Recall  0.65 0.55 0.70 0.66 0.68 0.75 
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Indeed, our dataset was made of activities, which involved the 

use of the hands, that often were moved to the head to 

complete the action, e.g. eating or drinking. These actions 

were quite complicated and difficult for the camera to 

recognize. Additionally, the activities were recorded both in 

front of the robot and sideways, occluding the dominant arm; 

therefore, the problem of occlusion that can affect the depth 

camera was considered.  

In contrast to other works, we mainly focused on real 

operative conditions, where the users were free to perform the 

activities in the way he/she preferred. 

The system can also distinguish between the different points 

of view of the robot, and therefore can give information about 

the position of the user with respect to the robot that could use 

this detail to approach the user in the best way possible. The 

robot, moving around the house, could be able to perceive 

what the user is doing, whether he is eating or drinking or 

talking to somebody, or simply sitting alone on the sofa 

becoming bored. In this way, it could approach the user in a 

proper manner, choosing a tailored way to get closer to the 

person and to interact with him/her, becoming thus more 

social. It could also suggest proper things to do according to 

the activities performed during the day and according to the 

mood of the persons, trying also to improve it in case the user 

looks sad or bored. 

Thanks to the developed interface, the training dataset was 

easily created. It was necessary, in fact, for a person to 

observe the user and simply press a button to label the ongoing 

activity. Moreover, the proposed system is easily usable in 

different conditions, since the whole system can adapt to 

different situation: the robot can simply learn new map and the 

wearable sensors can be used everywhere. 

Even if the use of the SensHand device could be perceived as 

invasive for daily use, in this experimental work, it was useful 

to demonstrate the technical feasibility and advantages of 

integrating hand movement data when the person is not in the 

field of view of the robot, thus making the system as a whole 

more ubiquitous. Anyway, due to the limited wearability of 

SensHand at this stage, during the experimental sessions 

subjects were always asked if they had some problems with 

the sensors in terms of obstrusiveness and/or impairments in 

performing exercises. We are confident that this issue will be 

soon overcome, thanks to the recent growing interest for smart 

jewelry [36], where sensors can be part of already used 

objects, becoming thus more acceptable. Considering this 

trend, further development of the SensHand is already in 

progress with a wireless version made of a bracelet and a 

small ring [37]. In this way, the system can become less 

invasive and cumbersome and more usable in daily activities. 

Furthermore, considering the increasing interest in robots as 

part of daily life, it is reasonable to find a good trade-off 

between robotic and wearable technologies to exploit the 

advantages of a heterogeneous system and to improve the 

abilities of the robot to understand the user activities and adapt 

its behavior according to the person. 

VII. CONCLUSION 

This work demonstrates that the fusion of data coming from a 

depth camera, placed on a mobile robot, and inertial sensors 

placed on the users’ hands, could improve the recognition 

accuracy. The ability to distinguish among the activities is 

improved when the system is considered as a whole, thus 

complementing the camera with the information about the 

location of the user and the features of the wrist and index 

sensor. The movement of the robot and the realistic 

environment, while adding noise to the acquired data, make 

the dataset come closer to a real application. Despite the added 

complexity of considering realistic conditions, these results 

suggest that multiple sensing strategies can recognize the 

different activities and the position of the robot with respect to 

the user, thus enhancing the capabilities of the robot to interact 

with the user. Future works will explore also other daily 

activities and more complicated realistic scenarios with the 

use of more miniaturized ring-shaped wearable sensors. 
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