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Abstract—Next-generation edge nodes interfacing inno-
vative IT clusters, 5G fronthaul and IoT gateways to the
optical metro/core network will require advanced and dy-
namic online Quality of Service (QoS) per-flow traffic treat-
ment, assuring for example ultra-low latency requirements.
However, current Software Defined Networking (SDN) im-
plementations (e.g., OpenFlow) do not support forwarding
procedures based on network state, profile variations and
the history of flow statistics at the node level. Currently, such
procedures require the intervention of the SDN controller,
leading to scalability issues and additional latency in the
data plane forwarding. Moreover, severe security challenges
are expected to affect such nodes threatening IT resources.
Thus, increasing bandwidths will require direct deep packet
inspection avoiding the involvement of the SDN controller,
as performed currently, or dedicated and costly security
systems.

This paper leverages on the potential of the P4 open source
language, recently introduced by the inventors of OpenFlow,
to program the data plane structure and behavior of an
SDN switch. P4 is able to instantiate custom pipelines and
stateful objects, enabling complex workflows, user-defined
protocols/headers and finite state machines enforcement.
Moreover, P4 allows portable implementations over different
hardware targets, thus opening the way to open source fully-
programmable devices.

Special effort is dedicated to motivate and apply P4 within
a multi-layer edge scenario, proposing the architecture and
the applicability of an SDN P4-enabled packet-over-optical
node. Moreover, three specific multi-layer use cases covering
dynamic TE (e.g., traffic offload and optical bypass) and
cyber security (e.g., DDoS port scan) are discussed and
addressed through P4-based solutions. Experimental evalu-
ations have been conducted over a multi-layer SDN network
exploiting reference P4 software switches (i.e., BMV2) and
Field Programmable Gate Array (FPGA) at 10 Gigabit Eth-
ernet optical interfaces. Extensive results report effective
dynamic TE and cyber security mitigation enforcement at P4
switches without any controller intervention, showing excel-
lent scalability performance and overall latencies practically
in line with current commercial OpenFlow switches.

Index Terms—Edge Node, Traffic Engineering, Flowlet,
P4, SDN, Multi-Layer, Optical Bypass, Token Bucket, Cyber
Security, SYN Flood, BMV2, NetFPGA.

I. INTRODUCTION

The future convergence of next-generation wireless, wired

and IT infrastructure is paving the way to the deployment

of enhanced edge nodes [2] [3]. In particular, edge packet-

over-optical aggregation nodes are emerging to interface het-

erogenous local segments such as 5G Radio Access Networks

(RAN) fronthauling, Internet of Things (IoT) gateways and

IT Cloud/Fog clusters to the Metro-core transport network.
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These innovative technologies and platforms are expected to

provide extreme Quality of Service (QoS) differentiation and

high throughput at the same time, exploiting the Software

Defined Networking (SDN) control plane and the orches-

tration of services and network resources across different

segments, from the access to the optical backbone [4] [5].

However, several issues may affect the utilization of cur-

rent SDN solutions at the edge where a plethora of traffic

flows with high throughput and dynamic profiles will need

advanced Traffic Engineering (TE)-based treatment, due to

stringent QoS constraints. Moreover, besides control and

QoS, edge resources require to be secured against online

cyber security attacks.

To address TE, packet-layer substantial innovations such

as Segment Routing [6] [7] also enabling SDN/NFV Service

Chaining [8] and Network Slicing [9] have been proposed

to automatically steer per-service traffic slices onto Elastic

Optical Networks (EON) lightpaths in the context of a multi-

layer network employing efficient cross-stratum reoptimiza-

tion and maintenance [10] [11]. However, such procedures

rely on flows with bandwidth reserved in the control plane

only. In the data plane, bursty and unpredictable behavior

of traffic forwarded by the edge node may be subject to

different time-dependant profiles and statistical variations,

that may induce bottlenecks, congestion, queue delay, thus

affecting QoS (e.g., ultra-low latency requirements). Indeed,

current SDN implementations do not support such required

stateful-driven forwarding at wire speed directly at the

nodes, whereas the controller is typically involved to react

upon critical events. However, this may pose serious scal-

ability issues at the controller and may noticeably delay

reaction enforcement at the data plane, thus leading to

serious forwarding inefficiencies (e.g., unexpected latency

and jitter increase). In addition, at the data plane level,

dedicated fixed-function hardware is not the best solution

to address SDN flexibility and configurability requirements.

To address cyber security, Network/Security Operation

Centers (NOC/SOC) defend information systems at edge

nodes using dedicated tools and systems like Intrusion De-

tection Systems, firewalls, Security Information and Event

Management tools, enhanced with blockchain-based trust-

worthiness mechanisms as recently proposed for next gen-

eration 5G fronthaul [12]. Usually, detection of attacks or

resource bottlenecks is performed without automated tools

and is based on systems logs, statistics and experience of

operators. In addition, mitigating the attack in decentralized

IT (e.g., fog resources) and edge nodes is not trivial and

may require the reconfiguration of many network devices at

once. Currently, traditional switching solutions are not able

to deal with Distributed Denial of Service (DDoS) attacks

and implement simple access/black list solutions, such as

BGP flow spec traffic redirection [13]. However, they did

not prove to be adequate against cyber attacks at network

edges due to lack of effective context-based security ana-
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lytics. In the standard SDN context, such attacks may be

handled by the centralized controller. However, the default

SDN behavior to re-direct unknown packets to the controller

may be extremely dangerous for the controller itself, being

potentially exposed to attack floodings, out-of-service events

and information update inconsistencies, especially in the

case of stateful applications [14] [15].

The P4 technology has been recently introduced to enable

advanced and configurable packet processing functionalities

of network devices, supporting protocol and target platform

independence [16] [17]. P4 is a high-level, platform-agnostic

language for programming the data plane of SDN network

devices. P4 allows to define customized and sophisticated

switch pipelines, packet forwarding policies and actions,

producing portable implementations over different hard-

ware targets (e.g., network interface cards, FPGAs, software

switches and hardware ASICs). Specifically, the availability

of stateful programming objects, such as counters, meters

and registers enables finite state machines and conditional

behavior implementation directly in the hardware. The nov-

elty and the potentials introduced by P4 has gained signif-

icant attention by many system vendors and the P4 con-

sortium already involves more than 50 industrial partners.

So far, the P4 community has been extremely active in

developing and improving the P4 compiler itself and the

P4 Behavioral Model software switch (i.e., BMV2). However,

limited effort has been reported in the scientific literature

to show potentially disruptive innovations and advantages

of the P4 technology, especially in the context of multi-layer

packet over optical networks.

This paper proposes the adoption of the P4 technology in

an SDN multi-layer packet over optical network to enable

advanced data plane programmability. In particular, the

work proposes an innovative edge node architecture includ-

ing a P4 switch with native support of deep packet inspec-

tion. The P4-enabled node exploits direct stateful processing

at wire speed, not demanded - as in OpenFlow systems

- to the SDN Controller. Then, it proposes dynamic P4-

based TE solutions for multi-layer scenario, such as traffic

offloading and dynamic optical bypass. In addition, aug-

mented firewalling capabilities are envisioned proposing a

P4 DDoS mitigation proof-of-concept to protect internal edge

resources without the need of dedicated firewall hardware.

Finally, the evaluation include the P4 code proposals, along

with their enforcement in a multi-layer edge node over

two different platforms: the reference P4 software switch,

namely BMV2 [18], and the Field Programmable Gate Array

(FPGA) technology employing 10 GE optical interfaces at

full rate [19]. Experimental results report the P4 impact

in terms of latency, its scalability in terms of number of

sustainable flow entries and its effectiveness showing online

TE enforcement and fast detection against cyber-attacks.

With respect to our preliminary study [1], this work intro-

duces the following novel contribution:

1) A presentation of the P4 language, along with related

works, and its potentials in the context of multi-layer

networks;

2) A detailed architecture proposal of the P4-enabled

packet over optical edge node;

3) Extended experimental results including P4 over FPGA

framework exploiting 10 Gigabit Ethernet optical inter-

faces at full line rate.
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header_type ethernet_t {

fields {

dstAddr : 48;

srcAddr : 48;

etherType : 16;

}

}

table m_table {

reads {

ethernet.srcAddr : exact;

}

actions {

m_action; _nop;

}

size : 16384;

}

Fig. 1. Workflow of P4 language compiler and API over pro-
grammable devices.

II. THE P4 LANGUAGE

The P4 (Programming Protocol-independent Packet Pro-

cessors) is a high-level programming language explicitly de-

voted to design the SDN data plane of packet processors [17].

P4 has been conceived in the SDN paradigm, since some P4

proponents are the inventors of the OpenFlow protocol [20].

According to the P4 proponents, such language aims at

becoming the abstract programming language of a general

purpose networking chip performing dedicated packet for-

warding scheme based on the SDN paradigm. Following

the concept of network disaggregation, P4 introduces open

source programmability of network data plane, enabling

own-made development of new proprietary protocols or head-

ers, advanced forwarding and congestion control strategies,

ad-hoc monitoring and telemetry functions without the need

of costly dedicated proprietary devices or time consuming

hardware firmware upgrades.

Compared to the state-of-the-art of packet processing sys-

tems, based on micro-code, P4 provides the configurable

building blocks of an abstract network node, ranging from

Layer0 up to Layer7 functions: parsers (including non-

standard headers), metadata (i.e., data that can be internally

associated to a packet for processing, for example its input

port), conditional controls, tables, along with a primitive set

of actions. In addition, following the abstract forwarding

model imposed by the language, packet-forwarding policies,

algorithms and per-packet custom actions can be imple-

mented producing portable implementations over different

hardware targets (e.g., network interface cards, FPGAs, soft-

ware switches, bare metal switches and hardware ASICs).

The P4 language operates within a high-level view of the

general macro-blocks of the switch, called abstract forward-

ing model. The Protocol Independent Switch Architecture

(PISA) is the current model and represents one of the most

significant results of P4 research team driving the devel-

opment of the P4 language itself. A comparison evaluation

between the P4 implementation and the state-of-the-art of

fixed-function switch hardware has shown that packet pro-

cessing speeds are the same with almost no additional cost

or power [16].

The P4 abstract forwarding model is composed by the

following blocks:

1) a programmable Parser block, responsible of identify-

ing the stack of allowed protocols and fields defined by

the program;

2) a programmable Ingress pipeline, made of a set of

match+actions tables, responsible of conditional packet
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Fig. 2. Packet-over-optical P4-based edge node: internal functional architecture and SDN control/monitoring (a); deployment and
applicability scenario of P4 nodes acting as advanced forwarding devices and online distributed security barrier at the edge of the optical
metro network (b).

processing and field update, egress port and queue

selection;

3) a programmable Egress pipeline, used for per-instance

header modifications after egress port selection.

Figure 1 shows a simple example excerpt of a P4 program

defining the Ethernet header and a table matching the

Ethernet source address. Moreover, it shows the workflow

of P4 programs compilation and hardware enforcement. The

P4 program, written by the user utilizing the architectural

model of the physical target, is compiled providing:

1) a front-end representation (typically a JSON file) used

to drive a back-end target-specific compiler for runtime

data plane enforcement;

2) an auto-generated runtime API to control the driver be-

tween control and data plane (i.e., to directly populate

tables with flow entries following the P4 namespaces).

The P4 language defines a set of stateful objects that can

be used to implement finite state machines and complex

state-based decisions. Stateful elements store variables be-

yond the processing lifetime of a single packet, that may be

read or updated depending on specified control conditions.

In particular, two stateful constructs are available: tables

and extern objects. Tables are read-only for the data plane,

but their entries can be modified by the control plane.

Extern objects have state that can be read and written by

both the control and the data plane. In particular, among

extern objects, registers (storing values), counters (storing

incremental occurrences) and meters (storing rate values)

may be instantiated. These stateful elements and their size

are explicitly declared in the P4 code and allocated during

the instantiation phase. This way, P4 can be used to dedicate

pre-planned and dynamic countable hardware resources to

specific functions and processes. Moreover, P4 enables to

instruct stateful switches data plane with advanced func-

tionalities with respect to standard OpenFlow switches, for

instance implementing user-defined protocols or finite state

machines.

Finally, a P4 program may be designed in a modular

fashion with a baseline code structure and a set of extendible

code pieces. As an example, P4 codes implementing basic

router and switch functionalities have been proposed allow-

ing incremental functions and support of protocols. In gen-

eral, parsers, actions and even tables may be re-used in a P4

code (e.g., merging two P4 programs implementing different

TE techniques), thus enabling a number of alternative or

parallel functionalities within the same switch. However,

stateful objects require per-service instantiation, otherwise

the monitored state may become inconsistent.

A. Related Work on P4

A number of recent work rely on the P4 language to deploy

advanced services such as telemetry, protocol implementa-

tion and stateless firewalling.

In-band telemetry applications of P4 resort to the col-

lection of online network state parameters to be processed

by the management plane [21]. The idea behind in-band

telemetry is to collect flow-based direct measurements in the

data plane (e.g., latency, queue transit time) using packet

manipulation of non-standard headers (e.g., storing a times-

tamp value) that an external knowledge plan is able to

process, also resorting to Artificial Intelligence and Machine

Learning techniques. This allows to derive finer statistics for

feedback-based automatic SDN intervention procedures.

An example of protocol implementation at run-time using

P4 has been presented by the work in [22]. The Bit Index

Explicit Replication (BIER) is a novel SDN-oriented protocol

proposed for multicast routing that requires a dedicated

bit-indexed header encoding the multicast tree links selec-

tion [23]. P4 allows a switch pipeline description implement-

ing the header building and its encoding/decoding procedure.

Applications of P4 have been presented in the context of

SDN security, however mainly limited to stateless firewall

configurations including port/protocol filtering, blacklist and

rate limiter [24]. Stateless P4-based header and packet

header manipulation achieving mitigation techniques such

as anti-spoofing mechanisms have been explored and an-

alyzed [25]. All such approches deal with active stateless

processing of the header, without introducing simple finite

state machines and history-based processing.

The most important work on FPGA and P4 is presented

in [19], in which authors developed an open source compiler

and runtime for P4 over FPGA and evaluated in deep detail
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the performances of some P4 programs in terms of hardware

resource occupancy and latency compared with fixed function

ASIC. Proposed P4 programs rely on L2/L3 forwarding and

complex protocol implementations in the context of market

data and distributed computation agreement.

Finally, stateful SDN data plane programmability by

means of alternative strategies and tools besides P4 have

been proposed and discussed concerning efficiency and se-

curity [26], among which one of the most interesting and

significant proposes the extension of the OpenFlow protocol

supporting finite state machine abstraction compatible with

table-oriented API [27] [28].

This work, differently from previous studies, focuses on the

application of P4 stateful capabilities exploiting advanced

TE and cyber security in multi-layer edge nodes.

III. P4 IN MULTI-LAYER EDGE NODES

This section introduces the application of the P4 lan-

guage to a multi-layer packet-switched (e.g., IP/MPLS or

Carrier Ethernet) over optical-switched (e.g., DWDM or EON

based) edge node with advanced and programmable SDN

forwarding plane. While requested data is becoming closer

to the user (i.e. fog nodes), attached edge nodes connected

to the metro or metro/core network need a more refined

treatment of selected class of traffic requiring QoS and

TE (e.g., strict latency requirements), subject to profile sta-

tistical modifications or high burstiness behavior. The ar-

chitecture of the edge packet-over-optical node encompass-

ing P4 programmable data plane is depicted in Fig. 2-a.

The optical part comprises a SDN-controlled ROADM (e.g.,

disaggregated whitebox) [29] [30] with its tributary cards

attached to a P4 switch (P4S), representing the key packet-

switching element of the edge node. A number of P4S optical

interfaces are connected to the ROADM cards, while the

remaining interfaces connect local or internal resources. The

P4S is hardware-programmed by the P4 language and is

handled by a SDN controller/orchestrator, responsible for

table entries population and service deployment. Multiple

functions may be programmed at the same device, including

TE/QoS features (e.g., latency-aware forwarding, dynamic

offloading or bypass) and security applications (e.g., block,

mitigation, telemetry and anomalies reports to SOC, sus-

pected traffic deviation). Reporting data, statistics, alarms,

telemetry functions to a Monitoring Handler/SOC are also

programmable inside the P4S, enable possible integrated

multi-layer proactive monitoring infrastructure. For exam-

ple, P4 in-band telemetry [21] combined with optical layer

advanced monitoring realized in the context of disaggre-

gated networks [31] may be integrated in a joint multi-layer

telemetry system.

Different potential P4-based edge node deployment scenar-

ios are envisioned, as illustrated in Fig. 2-b. In particular,

such extended node may be placed as Data Center (DC)

gateway, edge node device (e.g., fog node or IoT gateway),

5G fronthaul node (e.g., extended Remote Radio Unit - RRU

supporting Fiber to the Antenna technology). For example,

in the 5G Fronthaul scenario, specific P4 switches may be

employed to perform online traffic telemetry and implement

precise latency-assured traffic forwarding (e.g., dynamically

manipulating the IP/MPLS QoS service flag thus driving

stateful scheduling with priority). In addition, such node

may be employed even at intermediate network nodes (e.g,

aggregation metro node). In this case, traffic engineering

solutions may be enabled not only at the edge but also in

the metro network. In the case of cyber security solutions,

this choice may avoid that security threats reach the edge

and frees resources to better focus on more sophisticated

attacks. The P4 solution allows a unique SDN edge switch

deployment with advanced TE and security functions, de-

tailed in the next sections, avoiding processing burden at

the controller and additional specialized TE and firewall

hardware inside cloud/fog node.

In multi-layer optical networks, TE techniques such as

optical bypass are possible through instantiation of optical

paths and steering of traffic based on policies that can be

configured by a SDN controller using specific flow entries.

However, such TE techniques and traffic steering configu-

rations are typically enforced with static or stateless match

conditions. When traffic conditions change such policies are

typically modified by the controller. However, this requires

the deployment of complex monitoring and telemetry tech-

niques at the controller, possibly incurring in severe scala-

bility issues in the case of high volume traffic, e.g., as in the

case of DC gateway. The availability of a programmable data

plane enables the deployment of advanced traffic engineering

solutions (e.g., stateful TE) at SDN devices without requiring

the intervention of a controller. In addition, the presence of

a stateful SDN device capable of providing complex moni-

toring/telemetry information and alerts may drastically help

the SDN controller for both scalability (i.e., reduced number

of monitoring polling messages) and operation performance

(i.e., accurate and fast detection of anomalies) and new

type of networking statistics such as min/average/max la-

tency spent in queue). Telemetry data may be elaborated

by an external telemetry collector interacting with the SDN

controller, allowing the latter to react immediately without

being overwhelmed by excessive monitoring messages.

Several use cases may strongly motivate the adoption of a

stateful P4 switch in the architecture of an edge node:

• Advanced Traffic Engineering (e.g., dynamic traffic-

based routing, massive load balancing in segment rout-

ing applications);

• Cyber Security mitigation and intrusion detection;

• QoS precise forwarding (e.g., ultra-low latency for 5G,

lossless Ethernet, automatic packet reordering);

• Advanced monitoring solutions (e.g., active probe gen-

eration for fast failure detection or forecasting, in-band

telemetry);

• Packet header customization and manipulation for on-

line service differentiation (e.g., mice and elephant flows

header differentiation in DC scenarios).

In the next sections, advanced traffic engineering and

cyber security mitigation use cases in the context of a multi-

layer edge node will be presented targeting the P4 technology

as candidate solution.

IV. STATEFUL TRAFFIC ENGINEERING WITH P4

Fig. 3 shows an inter-data center connectivity use case,

where DC1 and DC2 are connected by a packet-switched

path and by an additional packet-over-optical path exploiting

optical bypass. Traffic originated by DC1 and destined to

DC2 follows the flow rules installed in the S1 switch. State-

less flow rules may be enforced to a standard SDN switch

(e.g., OpenFlow switch), based on specific packet attributes.
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Fig. 3. Advanced traffic engineering use case: data center gateways
equipped with P4-based edge node performing dynamic TE.

As an example, latency-sensitive traffic (e.g., matched on pro-

tocol/application type) may be steered to the optical bypass.

However, forwarding dictated by dynamic traffic conditions

and profiles (i.e., stateful TE) is not feasible using a standard

OpenFlow switch, without the active involvement of the

controller. Programmable data plane enables stateful TE.

Two examples are provided in the following subsections:

dynamic traffic offloading and dynamic optical bypass based

on stateful traffic conditions.

A. TE: Traffic offloading

In the first TE use case, traffic offloading is implemented.

An incoming traffic rate threshold TH is considered. The

objective is to dynamically reroute just the portion of traffic

beyond the rate threshold along an alternative path, i.e.

implementing traffic shaping and limiter and avoiding con-

gestion. To enforce such use case, a P4 program is exploited

to build the forwarding plane of the switch. The program first

defines the required packet headers (i.e., Ethernet and IP

headers), then relies on a pipeline of two Ingress flow tables

and on a stateful structure provided by P4, the Meter. As

defined in [32], Meters are three state markers (i.e., output

states are red, yellow and green) based on the definition of

two rates, the Committed Information Rate (CIR) and the

Peak Information Rate (PIR). Marker is set to red if rate

exceeds the PIR, to green if rate is below the CIR, to yellow

if rate is between CIR and PIR.

The traffic offloading P4 code key sections are reported

in Fig. 4. First, packets are parsed to check the protocol

stack. In this case Ethernet frames are checked and Eth-

ernet fields saved by the parser (not shown in the figure).

Then packets enter the ingress section, designed by the

control tag, where the tables pipeline is defined. Two tables

are defined: the m_table and the m_filter. In the m_table,

packets are inspected by their source MAC address (i.e.,

ethernet.srcAddr) and, in case of match, the m_action is exe-

cuted. In the P4 program, an array of meters is declared and

instantiated (my_meter). The m_action triggers the related

meter identified by the meter_idx index and saves the result

in a packet metadata field. Metadata fields are defined to

carry out specific information related to the packet. Standard

metadata are already defined in P4, such as the packet

output interface (i.e., standard_metadata.egress_spec). The

program defines an additional metadata providing the meter

execution result (i.e., meter_tag). Then, the packet is passed

to a second flow table (m_filter) which applies a token-bucket

behavior according to its current Meter value, selecting

between either the default or the alternative output port

(i.e., through the steer_port action). In both cases, forwarding

[PARSERS]

…………………………………

header_type meta_t {

fields {

meter_tag : 32;

}

}

metadata meta_t meta;

meter my_meter {

type: packets;

static: m_table;

instance_count: 16384;

}

action m_action(meter_idx) {

execute_meter(my_meter, meter_idx, meta.meter_tag);

}

action steer_port(steerport) {

modify_field(standard_metadata.egress_spec, steerport);

}

table m_table {

reads {

ethernet.srcAddr : exact;

}

actions {

m_action; _nop;

}

size : 16384;

}

table m_filter {

reads {

meta.meter_tag : exact;

}

actions {

steer_port;_drop; _nop;

}

size: 16;

}

control ingress {

apply(m_table);

apply(m_filter);

}

……………..

[EGRESS]

Metadata

Meter definition

Actions

Flow tables

Pipeline control

Fig. 4. TE: dynamic traffic offloading P4 code based on meters and
token-bucket.

rules are dynamically applied according to actual traffic con-

ditions, with no Controller intervention. Indeed, P4 dictates

the general switch behavior abstracting from the entries of

the flow tables. This means that the behavior of the switch

can be applied to different matching conditions just updating

the flow entries of the P4 switch, without the need of re-

programming it. For example, the steer_port action identifies

the output port of the packet using the steerport parameter.

Thus, in the case of topology changes (e.g., an additional

ROADM is added with the possibility of implementing two

rates meter), the update of the output port for yellow and red

traffic may be simply re-adapted by modifying at runtime

the flow entry of table m_filter. In addition, the meter TH

threshold is configured as configuration entry of the meter at

runtime, therefore it can be tuned by network administrator

or by the controller during the switch functioning. It is

worth to note that the whole P4 program, including parsers,

meters, actions, tables and pipeline control sections, is less

than 100 lines of P4 code.

B. TE: Optical bypass

In the second TE use case, the edge node implements

dynamic optical bypass. An incoming traffic rate threshold

TH is considered. When DC1-DC2 traffic rate remains below

threshold TH, traffic is forwarded along the P4 switches

chain in the packet-switched layer. Conversely, when traffic

exceeds the threshold, all the matching packets are auto-

matically steered to the optical node R1 which injects traffic
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along the pre-established optical path between R1 and R2. To

implement such use case, a P4 program builds the internal

structure and describes the forwarding workflow of the edge

node.

The key sections of the P4 program are illustrated in

Fig. 5. The program defines a metadata flowlet_meta_t with

two fields to store the timestamps of the input interface of

the switch related to the packet itself and the previous one.

In addition, an array of registers flowlet_reg are defined and

instantiated. The control relies on a pipeline of two flow

tables of type Ingress (m_flowlet and m_bypass), however, in

this case, the pipeline is not static but subject to conditions.

The first table is always executed to match the considered

traffic flow according to configured parsing conditions (e.g.,

source/dest MAC/IP etc, in this case source MAC address). In

addition, when matching conditions apply, the flowlet_action

action is performed. Four commands are executed in the

action: the timestamp of the previous matched packet is

read from the register and saved in the packet metadata

(previous_ts field); the current packet timestamp is saved

in the metadata (current_ts field); the current timestamp

is written and stored in the register; the default output

interface is selected (e.g., port towards S2). Therefore, the

P4 stateful register is used to store in a vector previously

collected timestamps. This way, frame rate and traffic profile

(e.g., flowlet) can be assessed driving to specific forwarding

conditions. This is obtained by defining a pipeline control

behavior subject to internal matching conditions. In particu-

lar, a P4 Control condition is set to either exploit the second

ingress flow table m_bypass in the case of flowlet match (i.e.,

the interarrival time between matching packets is below TH,

the constant FLOWLET_INTERVAL defined in the code),

which applies the steer_port action, changing the output port

value. This activates optical bypass forwarding of matched

frames towards R1, or maintaining the default output port

towards S2. Also in this case the whole P4 program is less

than 100 lines of code.

Note that the optical bypass outgoing port is selected by

the parameter of the steer_port action. Such value is stored

as flow entry of the m_bypass table and can be modified

at any time (e.g., by the P4 switch command line interface

or by the SDN controller). This means that optical bypass

selection itself may be adapted to traffic conditions or net-

work status. For example, the SDN controller may decide

to steer traffic to another available optical bypass, thus just

requiring a single entry update at the P4 switch. Moreover,

thanks to P4 stateful objects and internal telemetry, based on

steered traffic statistics, the P4 switch might trigger, through

the SDN controller, a lightpath adaptation request to the

optical control plane (e.g., elastic operations to an active

stateful Path Computation Element in the case of additional

bandwidth requirement [33] or predictive analytics on traffic

flows [34], physical parameter adaptation in the case of poor

QoS [35]).

V. CYBER SECURITY MITIGATION WITH P4

The same network scenario shown in Fig. 3 and the node

architecture of Fig. 2-a are also exploited to show how

the P4 technology can be efficiently used to react against

cyber-attacks. As an example of cyber threat, a distributed

denial-of-service (DDoS) attack exploiting address/port scan

is considered. All possible TCP/UDP ports of a target IP

[PARSERS]

…………………………………………………

header_type flowlet_meta_t {

fields {

current_ts : 48;

previous_ts : 48;

}

}

register flowlet_reg {

width: 48;

instance_count : 100;

}

………………………………………………………………………….

action flowlet_action(offset, steerport) {

register_read(meta.previous_ts, flowlet_reg, offset);

modify_field(meta.current_ts, intrinsic_metadata.ingress_global_timestamp);

register_write (flowlet_reg, offset, intrinsic_metadata.ingress_global_timestamp);

modify_field(standard_metadata.egress_spec, steerport);

}

table m_flowlet {

reads {

ethernet.srcAddr : exact;

}    actions {

flowlet_action; _nop;

}

size : 16384;

}

table m_bypass {

reads {

ethernet.srcAddr : exact;

}

actions {

steer_port;_drop; _nop;

}

size: 16;

}

control ingress {

apply(m_flowlet);

if (meta.current_ts - meta.previous_ts < FLOWLET_INTERVAL){

apply(m_bypass);

}

}

[EGRESS]

……………..

Metadata

Register definition

Flow tables

Pipeline 

control

Flowlet action

Fig. 5. TE: dynamic optical bypass P4 code based on registers and
flowlet switching.

destinations are attacked from multiple infected IP source

nodes. Such type of attack can not be simply blocked by ac-

cess/black lists, since this could affect also legitimate remote

connections. That is, such type of attacks can not be blocked

by using traditional OpenFlow switches where just basic

stateless permit/deny flow matches are practically available.

Conversely, the stateful nature of P4 provides innovative

solutions to address such critical threats directly within the

network nodes, by detecting attacks by means of deep packet

inspection and packet sequence correlation at runtime. The

designed P4 program, besides including TE solutions, also

relies on P4 Registers to store header information (e.g., IP

dest and TCP/UDP port along with the related timestamp)

for a number N of previously received packets. Then, P4

Control conditions can be configured to analyze the retrieved

data and identify possible ongoing port scan attacks. This

way, packets normally directed to the default output port can

be temporarily blocked, successfully dropping such attempts

for a configurable amount of time, or re-directing suspected

traffic to dedicated stateful firewalls thus implementing at-

tack mitigation. Such functions are implemented directly at

the switch, as before, without involving the SDN controller

with excessive amount of packets, which typically happens

in DDoS attacks impacting controller’s stability and func-

tioning.
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A. P4 application: DDoS

The proposed P4 switch edge node is implemented as

proof of concept against the TCP SYN flood attacks [36],

enforced on both software switches and programmable hard-

ware functionalities of FPGA. Fig. 6 depicts the related P4

workflow. The parser section of the program defines the

rules to parse incoming packet. All ingress frames received

at a given interface, coming from external hosts are first

parsed to detect the protocol stack. In particular, Ethernet

framing, (optional) IP parsing and (optional) TCP parsing

are performed in cascade. After this step, forwarding is

applied by checking a Forwarding Table (defined in the P4

program) and the physical egress port is assigned, based

on the destination address of the current packet. Based

on these fields, the switch detects whether a packet comes

from a suspicious host or it belongs to a suspected traffic

profile (IP match table may be populated by a centralized

security controller). Then, the program enters the control

section and checks if the packet is a valid TCP SYN and, if

not, forwards it. Otherwise, it parses the TCP port to detect

anomalous behaviour. To check anomaly, stateful evaluation

of the session is performed. In particular, if TCP destination

port is incremented compared to the previous TCP port of

the same session (i.e., the basic TCP SYN flood mechanism)

a stateful object is updated accordingly to store and keep

updated the session state.

In this case, two register variables are allocated per IP

Match Table entry. The first variable stores the TCP port

received by the last packet belonging to the session, whereas

the second variable stores the number of attempts matching

the TCP SYN Flood basic behavior. The two registers are

continuously updated upon each new packet processing. If

the number of detected attempts (i.e., the second register)

becomes greater than a pre-defined threshold (e.g., 10 at-

tempts), the packet is discarded. Otherwise, registers are

updated and the packet is forwarded following the standard

P4 egress section.

VI. EXPERIMENTAL EVALUATION

The proposed P4 programs enforcing TE and cyber secu-

rity have been implemented and experimentally evaluated

in a multi-layer network testbed reproducing the network

depicted in Fig. 3. The P4 switch has been evaluated in two

different hardware versions, showing the P4 capability to be

target-independent:

1) the reference software switch used in the P4 frame-

work, namely the Behavioral Model version2 (BMV2)

implemented in a Linux PC;

2) the NetFPGA-Sume board, a FPGA dedicated to net-

working applications.

A. Behavioral Model Version 2 soft switch

In this experimental evaluation section, the edge multi-

layer node includes a P4 switch realized with a BMV2

software switch connected to a Reconfigurable Add-Drop

Multiplexer (ROADM). In particular the optical bypass is

implemented through 100G commercial muxponder, handled

by a local agent connected to a optical-layer SDN controller

running NETCONF as southbound API [30]. Five servers

(CPU 3.40GHz, 4 GB RAM, Ubuntu 14.04 kernel 4.4.0-31-

generic), equipped with multiple 1 and 10 Gigabit Ethernet

Store the current TCP 

port in the port register

The TCP port is 

incremented compared 

to the previous TCP 

port? 

Increment occurrences 

register

The occurrences are 

greater than a defined 

threshold?

Forward packet Discard packet

Stop

Start

Parse ingress packet

Is a TCP SYN packet?

Deparse egress packet

YES

NO

YES

NO

YESNO

Apply Forwarding Table

Parser

Match-Action

Pipeline

Deparser

AllFF:FF:FF:FF:FF:FF

408:44:44:44:44:08

08:22:22:22:22:08

08:33:33:33:33:08

Fwd port

2

3

dst MAC

Forwarding Table

........

12.138.254.3312.138.254.42

15.68.230.13

13.45.250.22

IP dst addr

15.68.230.56

13.45.250.44

IP src addr

IP match Table

Apply IP match Table

 IP src address and IP 

dst address match?
NO

YES

Parse TCP Port

Fig. 6. Cyber security: P4 program workflow targeting mitigation
on TCP SYN flood attacks.

interfaces, are operated with the BMV2 software switch and

configured with the three P4 version 14 programs presented

in the previous sections. Traffic is generated and received by

two Linux PC servers running Python-based traffic genera-

tors and receivers based on the scapy library.

Fig. 7 shows the BMV2 P4 S1 switch behavior (see Fig. 3)

when the P4 program of Sec. IV-A is applied for traffic

offload. Traffic is received by the P4 switch interface con-

nected to the generator. In this case the m_table flow-

entry matching the traffic subject to meter measurement

is the source MAC address of the packet generator, thus

the meter is applied to all the generated traffic. Note that

with the same program it would be possible to meter and

tune forwarding for specific traffic flows. When aggregated

traffic rate exceeds TH (set to a value of 300 packets/s), the

second m_filter flow table applies the configured P4 rule,

correctly identifying for forwarding towards the alternative

port only the portion of traffic exceeding TH. In particular,

the flow entries configured steering traffic to the IP iface
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Traffic burst ON Traffic burst OFF

Meter threshold TH= 300 p/s

IP iface

OPT iface
Average latency: 165us

P4 S1

m_table m_filter

P

a

r

s

e

r

my_meter E

g

r

e

s

s

m_actiona) 250 p/s

a) 250 p/s

to ROADM

to P4 S2

Traffic

generator

steer_port

b) 500 p/s

b) 300 p/s (shaping)

b) 200 p/s

a) b) a)

meters

OPT

IP

Fig. 7. BMV2 results: TE traffic offload behavior (packets/s versus
experiment time [s]).

IP iface

OPT iface

Interarrival time TH=10ms

Traffic burst ON Traffic burst OFF

Average latency: 175us

P4 S1

m_flowlet m_bypass

P

a

r

s

e

r

flowlet_reg E

g

r

e

s

s

flowlet_actiona) 20 p/s

a) 20 p/s

to ROADM

to P4 S2
Traffic

generator

steer_port

b) 600 p/s

b) 600 p/s

(optical bypass)

YΔt< 

TH?

N

registers

IP

OPT

a) b) a)

Fig. 8. BMV2 results: TE optical bypass behavior (packets/s versus
experiment time [s]).

port (i.e., the port connected to switch S2, in the packet-

switched layer) if meter result is set to 0 (i.e., traffic is

lower the threshold, see Fig. 7 case a), or steering traffic

to the OPT iface optical port (i.e., the port connected to

the muxponder) if meter is not 0 (see Fig. 7 case b, during

the traffic burst injection). Results show that upon a traffic

burst of 600 packets/s, the switch applies a shaper on the IP

port limiting the output to the threshold, while exceeding

traffic is automatically re-directed to the optical domain.

Such solution allows to keep controlled the profile and the

burstiness of the packet switched layer, avoiding possible

congestion. With this program, the measured latency of the

P4 BMV2 switch is 165us. The meter rate TH does not

influence latency results, since the number of operations

inside the switch and the amount of instantiated resources

is the same for any constant value.

Fig. 8 shows the same P4 switch S1 behavior when the P4

program of Sec. IV-B is applied for optical bypass. First, a

traffic flow at rate below TH is considered (see Fig. 8 case

a). The first flow table used for matching purposes (i.e., table

m_flowlet) identifies the metadata timestamp to be stored

in the P4 stateful register. The P4 Control condition is not

met and traffic is forwarded along the default output port

(to S2) towards B. When incoming traffic increases with

a traffic burst (see Fig. 8 case b), exceeding TH, (i.e., the

inter-arrival time decreases below the FLOWLET_INTERVAL

constant, set to 10ms) the control condition imposes an

additional flow table transit (i.e., m_bypass), successfully

Fig. 9. BMV2 results: Wireshark capture of TCP SYN Flood port
scan received and blocked after three attempts by the cyber security
P4 program.
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Fig. 10. BMV2 results: scalability performance of the cyber security
P4 program in different attack rate scenarios.

enforcing for packet forwarding the optical bypass, i.e. select-

ing the optical output port. This means the whole matching

traffic is re-directed to the optical pipe. As shown in the

figure, when traffic burst terminates and rate decreases

below TH, matching traffic is rerouted again to S2 at the

packet layer. Note that, hysteresis-based conditions relying

on two thresholds can also be easily implemented to im-

prove network stability. In this case the measured average

switching latency is 175us, again with no dependance on the

selected TH values.

Cyber security P4 program of Sec. V-A has been imple-

mented over the BMV2 (at switch S5) and evaluated. Fig. 9

shows the capture collected at switch S5 related to a simple

cyber security attack use case. A DDoS block of port scan

with incremental Dest TCP Port is implemented (1 packet/s

rate). In particular (see P4 program workflow in Fig. 6), for

each matching flow, a port register stores the TCP port of the

last matched frame, while an additional occurrences register

stores the number of consecutive scan condition occurrences.

If scan is detected, a threshold of N=3 packets is allowed to

be forwarded by the switch while the subsequent ones (Port

>83) are dropped, successfully blocking the considered cyber-

attack.

The cyber security program has been evaluated with more

complex attack scenarios. Fig. 10 shows the scalability analy-

sis as a function of the P4 program size in terms of configured

matching and forwarding conditions. Up to 1000 flow entries

of table IP_Match (matching IP source and destination) have

been configured on switch S5. Then, three types of traffic

flows are considered. In the rand case, the switch is loaded
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Fig. 11. NetFPGA results: latency as a function of the traffic
throughput.

TABLE II
P4-NETFPGA HARDWARE RESOURCE UTILIZATION

NetFPGA Resource Reserved by P4 program (%)

LUTs used 23.18
Flip-Flop used 16.76

MUX used 0.43
DSP used 0

RAM blocks used 37.04

with random traffic with no attacks; the att case includes

only packets referring to the attack; the mix case includes a

50:50 combination of both. Results show that very constant

latency performance of around 200us is achieved at the

increase of P4 flow table entries, while latency variations (up

to 40us) are experienced as a function of the actual internal

P4 operations according to traffic conditions. In particular,

the attack case requires a longer workflow execution with

respect to non-attack scenario, impacting the BMV2 total

processing time of a packet in the two different scenarios.

B. P4-based NetFPGA

To evaluate the impact of P4 over real programmable

hardware devices, the P4 switch implementing cyber security

program has been also implemented on a NetFPGA-Sume

board [19] [37]. The board is based on the Xilinx Virtex 7

FPGA capable to support 4x10 Optical 10 Gigabit Ethernet

interfaces SFP+ ports. The board is equipped with 8 GB of

DDR3-SODIMM RAM and a x8 Gen3 PCIe that allows to

control the NetFPGA from an external host. In this case,

the board can be plugged as a standard Network Interface

Card (NIC) to the PC, with the possibility of reconfigur-

ing the hardware. The NetFPGA hardware is re-configured

by means of the Vivado, SDK Toolkit and Xilinx SDNet

software toolkits. P4-based hardware enforcement resorts to

proprietary drivers interpreting the JSON files produced by

the P4 compiler (p4c version 16). Two NetFPGA SFP+ 10G

optical interfaces are connected by means of optical fibers

to the Spirent SPT N4U traffic generator and analyzer. The

generator is equipped with the MX-10G-S8 card providing

up to 8 SFP+-based 10G optical Ethernet interfaces, with

traffic profiles obtained by setting different values of the

total transmitted throughput. Besides generic TCP traffic

profile, specific attack profiles were created emulating TCP

SYN Flood attack sequences with configurable percentage of

the total throughput.
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Fig. 12. NetFPGA results: zoomed version of Fig. 11 in the 1-9Gbps
range.
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Fig. 13. NetFPGA results: latency as a function of installed flow
entries.

Fig. 11 reports the P4-NetFPGA latency in the worst case

scenario (i.e., 10 K entries in the IP Match table and 100%

attack scenario, in this specific case the discard action has

been disabled to measure the latency) as a function of the

optical 10 Gigabit Ethernet traffic throughput. Results show

an average latency of 5us, practically constant, with constant

and very low variance (i.e., min and max latencies differ of

around, 50ns) and independent on the traffic throughput in

the range 0-9.6Gbps. Latency increases up to 110us in the

range 9.6-10Gbps upon quasi full-rate condition when NICs

typically introduce significant packet loss. Similar latency

(i.e., 4.8us) has been measured on the commercial HP3800

SDN switch at 10Gpbs (exploiting dedicated ASIC), where

traffic was simply filtered in a static and stateless configu-

ration, using a standard OpenFlow 1.3 rule in the hardware

table matching the TCP port. Thus, this comparison proves

that the P4 processing is enforced without introducing sig-

nificant latency degradation with respect to dedicated ASIC.

Fig. 13 shows the latency as a function of the moni-

tored IP sessions in the worst case (9Gbps, 100% attack).

Excellent scalability performance is provided, achieving a

quasi-constant profile of average (5.01us at 10k entries),

min and max values. This result, from the point of view of

the SDN framework, is particularly noticeable. The reason

behind the quasi-constant latency resides in the usage of

fully-associative Content Addressable Memory (CAM) within

the NetFPGA [38]. In fact, tables with flow entries are

instantiated as CAM tables. Unlike Random Access Memory

(RAM) that receives an input address and returns data word

associated to that address, a CAM memory receives a data
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TABLE I
P4-NETFPGA LATENCIES IN ATTACK AND NON-ATTACK SCENARIOS

TCP SYN attack rate (f/s) TCP non-attack rate (f/s) Throughput (Gbps) Min latency (us) Average latency (us) Max latency (us)

100 751202 9.134 5.01 5.023 5.05
752188 100 9.146 5 5.024 5.05

word in input and searches the entire memory in a parallel

fashion to detect at which memory offset the input data

word is stored. The NetFPGA implements CAM memory by

means of its on-chip Block RAM (BRAM), enabling massive

paralleling search [19]. This means that, given the maximum

size of flow entries that may be stored in a table, the

time needed to perform a memory look up is kept constant

and therefore, the performance of a P4 SDN device over

the NetFPGA is practically independent on the number of

installed flow entries, thus enabling processing over a large

amount of flow sessions.

The impact of attack events on latency is shown in Tab. I,

in which the first (second) row reports results at 9Gbps al-

most all regular (attack) traffic, respectively. The additional

impact of attack attempts results in around 1ns average,

blocking all attack profiles. This means that the full P4

workflow processing takes few additional ns with respect to

the only parser and deparser sections.

Finally, Tab. II reports the NetFPGA hardware resources

utilized by P4, consuming around 23% of programmable

logic, expressed as LookUpTable (LUT) rate and 37% of

memory (RAM). Such results show that a single NetFPGA

can support more complex P4 programs, e.g. multi-profile or

parallel workflows, thus validating the P4 effectiveness for

NetFPGA in the cyber security framework.

VII. CONCLUSION

The P4 language has the potential to become a disruptive

instrument to program and customize the data plane of SDN

network devices. Multi-layer networks with special focus on

the edge segment will be required to assure high level of QoS

connecting heterogeneous platforms, therefore they will be a

candidate target over which P4 implementations may gain

consensus.

A P4-based architecture of a edge packet-over optical node

was presented, along with P4 solutions suitable multi-layer

networks, designed and implemented to provide dynamic

TE enforcement of optical bypass and traffic offloading. In

addition, P4 was also exploited to effectively react against

DDoS cyber-attacks requiring stateful capabilities, acting as

an active cyber security barrier.

The P4 solutions have been experimentally validated on

BMV2 P4 switches and NetFPGA boards, showing impres-

sive scalability performance with the size of the P4 program

and in terms of switch latency to perform P4 operations,

especially in the NetFPGA implementation. For example,

only 5us overall switch latency were experienced running

the cyber security P4 code, with no performance degradation

using even 10
4 flow entries, thanks to the NetFPGA parallel

architecture. Noticeably, results show no significant perfor-

mance degradation with respect to fixed function commercial

switches while gaining a remarkable degree of flexibility

and open source programmability. All dynamic TE and cy-

ber security solutions have been successfully implemented

within the P4 switch without involving the SDN controller

for modifying flow rules during networking operations.

This work demonstrated P4 scalability and flexibility in

key multi-layer edge node use cases, thus opening the road

to innovative and disruptive open-source traffic forwarding

and manipulation procedures to be programmed in the data

plane of next-generation converged networks.
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