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Abstract: Pesticides play a crucial role in regulating crop production by reducing crop losses and
increasing crop yield and quality. However, they may threaten surface and groundwater, a
phenomenon occurring at global scale, potentially causing environmental damage and prohibition
of water use or high treatment costs for drinking water. Assessing spatially-defined aquifer
vulnerability to pesticide is then important, as it may allow defining agricultural areas where
pesticides should be used following well-defined agronomic practices/limitations. In this study,
after a brief review of recent studies on aquifer vulnerability assessment to pesticide, we applied
the Vulnerability Index method to the agricultural area of the Municipality of San Giuliano Terme
(Pisa, Italy) in order to focus on the data needs and discuss the reliability of this method (as an
example of index-overlay methods). The proposed method needs a relatively small number of
parameters compared to other more complex ones. Despite a such a small number of parameters,
some were not easily available in our case study. Thus, some assumptions were made. This led to
vulnerability maps with reduced reliability, no validation with groundwater samples, and little
practical use. This means that to produce robust but static vulnerability assessments, large datasets
are needed. In turn, the cost of data gathering may be high. The value of these data may, however,
be increased, and the cost better justified if the analyses are based on process-based or advanced
statistical methods. While the future for vulnerability assessment methods is the use of
process-based/advanced statistical methods, index-overlay methods, as a preliminary step for
process-based simulation analysis, may still provide initial and relatively quick insights on
potential leaching of pesticides. This in turn may support extension services in delivering timely
and relevant advices on the use of such pesticides to farmers and owners of plant nurseries and
greenhouses.
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1. Introduction

According to the United Nations Organization for Food and Agriculture Organization (FAO)
pesticides are any substance, or mixture of substances of chemical or biological ingredients, which
are meant for repelling, destroying, or controlling any pest, or regulating plant growth [1]. These
agents play a crucial role in reducing crop losses due to weed/pest infestation and increasing crop
yield and quality [2].

However, pesticide occurrence is threatening surface water and groundwater at global scale [3—
6] and, besides potentially causing environmental damage and having health implications [7], may
cause prohibition of water use or high treatment costs, especially when associated with drinking
water [8-10].

Pesticide usage is then one of the cases where the balance between agronomic production
sustainability and ecosystem service protection (i.e., water supply) is a very a fragile one. This holds
especially true for the groundwater resources that, once contaminated, are very difficult to
remediate.

Notwithstanding its importance, the vulnerability of groundwater systems to pesticide has not
often been addressed. The concept of aquifer vulnerability refers to the possibility of contaminants
percolating through the unsaturated zone to the groundwater. While the vulnerability assessment
only refers to the physical factors that may favor, or not, transport processes of substances to the
groundwater table; this is often referred as aquifer sensitivity, natural vulnerability, or intrinsic
vulnerability [11]. We refer in contrast to specific vulnerability, when the vulnerability assessment
exercise includes the physical-chemical properties of the potential pollutant. A spatially defined
aquifer vulnerability assessment to pesticide is important because it may allow outlining
agricultural areas where certain compounds should be used following well-defined agronomic
practices and/or limitations.

Several methods have been developed to assess both intrinsic and specific aquifer vulnerability;
comprehensive reviews on the subject may be found, i.e., in [12-14]. Liang et al. (2019) [15] divided
the methods to compute aquifer vulnerability roughly into three types: statistical, process-based,
and index-overlay. According to these authors, the index-overlay method is the most widely used
method, mainly because of its simplicity, lower data requirement, and clarity in description of
vulnerability. In fact, most of the published examples of assessments of groundwater vulnerability
to pesticide are based on index-overlay methods performed using Geographic Information System
(GIS) desktop applications, modified from methods to evaluate intrinsic vulnerability. The
emergence and rapid diffusion of GIS during the last 20 years facilitated the assessment of
groundwater vulnerability through mapping, even since its first appearance [16]. However, a search
at hand run on the SCOPUS database for the years 2000/2020 using the words pesticide and
groundwater and vulnerability found only 31 relevant records, with slowly increasing interest in the
topic since 2015. Among these, Saha & Alam (2014) [17] estimated vulnerability to pesticide using a
modified version of the DRASTIC model (probably the best-known method for assessing aquifer
intrinsic vulnerability at global scale [18]), the pesticide DRASTIC, which was applied to an intense
agricultural area of the Gangetic plains in India. Bartzas et al. (2015) [19] evaluated the pesticide
DRASTIC and susceptibility index (SI) methods within a GIS framework, to assess groundwater
vulnerability in the agricultural area of Albenga (northern Italy). The results indicated “high” to
“very high” vulnerability to groundwater contamination along the coastline and the middle part of
the Albenga plain, for almost 49% and 56% of the total study area for the two methods, respectively.
Still in India, Duttagupta et al. (2020) [20] made a first attempt to evaluate the groundwater
vulnerability to insecticides and herbicides pollution due to anthropogenic activities across the
Western Bengal basin using an index-overlay method. They found that the area under investigation
is highly susceptible to pesticide pollution. Douglas et al. (2018) [21] evaluated the ability of intrinsic
(DRASTIC) and specific (attenuation factor; AF) vulnerability models to define groundwater
vulnerability areas by comparing model results to the presence of pesticides from groundwater
sample datasets. They found that, compared to the DRASTIC model, the AF model more accurately
predicted the distribution of the number of contaminated wells within each vulnerability class.
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All the above-mentioned methods require many parameters. Schlosser et al. (2002) [22]
developed a simplified method to assess aquifer vulnerability to pesticide contamination at
sub-regional scale incorporating relevant hydrologic and pesticide transport parameters. In this
study, after introducing the vulnerability index (VI) model [22], we present and discuss an
application to the agricultural area of the Municipality of San Giuliano Terme (Pisa, Italy) in order to
focus on the data needs and discuss the reliability of this method (as an example of index-overlay
methods).

2. Material and Methods

2.1. The Vulnerability Index Model

The vulnerability index (VI) model is based on the steady state advective transport of the
pesticides through the vadose zone, including sorption and degradation processes. It is a modified
version of the leaching potential index vulnerability model [23].

The VI method defines a vulnerability index, for a given area of land, derived from the
following relationship:

ZOOKGFC t1/2
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where: K is the saturated hydraulic conductivity in the porous medium [L/T]; Orc is the water
content at field capacity [L3/L?]; z is the thickness of the considered soil layer [L]; ov is the bulk
density [M/L3]; (%OM) is the percent organic matter content in the soil (in %, dimensionless); ti2is
the half life time [T]; Koc is the pesticide organic-carbon partitioning coefficient [L3/M]; Focw is a
factor to account for the depth to water table (dimensionless). The index obtained for an area is
assigned to one of the vulnerability classes according to the values reported in Table 1.

Table 1. Vulnerability Classes According to the VI Value.

VI Value Vulnerability Class

0-9 Low
9-99 Medium
>99 High

The authors [22] successfully validated the method by comparing the identified vulnerability
classes with analytical results on the presence (or not) of active ingredients (Al) in groundwater.

2.2. The Case Study Area

The San Giuliano Terme agricultural area is located few kms north-west of Pisa and it is part of
the Pisa plain, in central-western Tuscany, along the Ligurian coast (Figure 1).

In 2011, we surveyed a total of 25 farms using the methodology presented in Silvestri et al.
(2012) [24] in the plain area of the San Giuliano Terme municipality covering 2175 ha of utilized
agricultural area (UAA), including about 20% of the farms in the area, and about 50% of the UAA
(ARTEA, 2010) [25]. Among the farms surveyed, cereal-industrial cropping systems prevailed, even
if there were small areas where vegetable and woody crop cultivation was dominant. The two most
widespread crops (Table 2) in the surveyed area were durum wheat (29.9%) and corn (23.4% of the
UAA), followed by sunflower (11.9%) and rapeseed (9.7%). Tomatoes (2.4%) prevailed among
vegetables, and olive trees (2.1%) and alfalfa (1.8%) among woody and fodder crops, respectively.
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Figure 1. Geographical setting of the investigated area.
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Table 2. Size of Areas of Different Crops for the Surveyed Farms.
Duru Chi Ra Alf Fiel Comm Wi

Far m pe a d Fruit  Sunflo Mai Olive Barl Pota Toma Hra Herba Ryegr Set-asi Soy Spina Sweet-V Clov Flow ne Tot

m Whe ck See Alf Bea Trees wer ze Tree ey to to ss ge ass de Bean ch etch er ers Yar al
at Pea d a n Wheat d

- ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha
1 9% - - 5 - - 30 - 95 - - 5 10 - - - 15 - - - - - - 250
2 - - - - - - - - 45,0 - - - - - - 15 - - - - - - 60
3 5 -5 - - - 2 - 3 - - - - - - - - - - - - - - 13
4 43 - 8 - 80 - 64 22 52 - - - - - - - 14 8 - - - - - 219
5. 20 - 6 - - - 20 - 15 - - - - - - - - 12 2 - - . -
6 50 - 42 - - - 17 50 3l - - - - - - - - 35 - - - - - 25
7 - - - - - - 1 1 - - - - - - - - - - - - - -2
8 - - -1 - - - 1 1 - - - - - - - - - - - - - -3
9 5 - - 15 - - - 10 35 - - - - 10 - - - - . . - y - 120
10 - - - -2 - - 2 2 - 2 - - - - - - - - - - - -8
1 - - - - - - - - - - - - - - - - - - - 2 3
12 34 - 13 - - - 11 - 14 - - - - - - - - 21 - - - - - 93
13 - - - - - 12 - - - - - - - - - - - - - - - - - 12
14 10 - 10 - - - 12 - 13 - - - - - - - - - - - - - - 45
15 2 - . - 1 - 2 - - - - - - - - - - - - 10 - 15
16 8 - 30 10 - - 30 - 40 - - - - - - 6 - - - - - - 220
7 1 - - - - - 11 - - - - - - - - - - - - - - - -2
18 15 - . - 10 - 10 - - - - 4 - 3 - - - 2 - - - 44
19 31 - - 4 - - - - 7 - 2 - 1 - 11 - - - - - - - - 56
20 2 - -4 - 2 - - - - - - 2 - - - - - 4 - - - - 14
210 45 38 8 - - - - - 29 - - - 30 - - - - - - - - - - 150
2 100 - 60 - - - 20 20 35 - - - - - - - - 25 - - 10 - - 270
23 2 - - - - - - 2 - - - - - - - - - - - - - - 4
24 1 - - - - - 1 - - - - - - - - - - - - - -2
25 6 - 30 - - - 30 - 120 - - - 10 - - - - - - . . . - 250
tot 651 38 212 39 10 14.0 258 106 509 45 4 5 53 38 11 3 50 101 6 2 10 10 2 27
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Data on Al use were retrieved by interviewing farmers. We identified 33 different Als used in
the area (Table 3). Herbicides were the most used pesticides (31 Als), while only two pesticides were
used to control insects (flonicamid) or cryptogams (ziram) (Table 3).

Table 3. List of Used Active Ingredients Within the Investigated Domain.

Active Ingredient Type Dose
(g/ha)
2,4-D Herbicide 400
Acetochlor Herbicide 4200
Aclonifen Herbicide 537
Clodinafop-propargyl Herbicide 96
Cloquintocet-mexyl Herbicide 60
Cycloxydim Herbicide 500
Dicamba Herbicide 188
Flonicamid Insecticide 75
Glyphosate Herbicide 1118
Imazamox Herbicide 47
Iodosulfuron-methyl-sodium Herbicide 8
Lenacil Herbicide 320
Linuron Herbicide 108
MCPA Herbicide 1114
Mefenpyr-diethyl Herbicide 36
Mesosulfuron-methyl Herbicide 13
Metazachlor Herbicide 910
Metribuzin Herbicide 175
Metsulfuron-methyl Herbicide 5
Nicosulfuron Herbicide 52
Oxadiazon Herbicide 380
Oxyfluorfen Herbicide 157
Pendimethalin Herbicide 154
Propaquizafop Herbicide 100
Quizalofop-P-ethyl Herbicide 70
Rimsulfuron Herbicide 11
S-metolachlor Herbicide 1198
Terbuthylazine Herbicide 813
Thifensulfuron-methyl Herbicide 8
Triasulfuron Herbicide 7
Tribenuron-methyl Herbicide 7
Ziram Fungicide 1000

The large use of herbicide to weeding of the agricultural areas was justified by the
above-mentioned predominance of commodities (cereals and industrial crops) and by the
consequent limited spread of vegetables and fruits, which usually require a large use of insecticides
and fungicides.

About the average amount of spraying, the acetochlor displayed the largest dose (4200 g/ha),
followed by glyphosate, MCPA (2-methyl-4-chlorophenoxyacetic acid), metazachlor, s-metolachlor,
and ziram (all around 1000 g/ha). The doses of the other Als were generally lower, in 14 out 33 cases
under 100 g/ha. Oxadiazon (tiz = 502 gg), lenacil (ti2 = 179 gg) and aclonifen (ti2 = 117 gg) are the
compounds with longer half-life time. All the other active ingredients show half-life time lower than
100 days and 12 molecules lower than 10 days.‘

Figure 2 shows the soil map [26] for the investigated area. Three main types of soil (FABI,
GRE1, and STS1; Table 4) occupy most of the area of interest. The plain hosts many water-wells with
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depths varying from a few meters to nearly 250 m, which tap a multilayered confined aquifer made
up of Pleistocene sands and gravels [27]. In the shallowest levels, unconfined aquifers are present
[28], generally constituted by fine alluvial sediments (sand passing to silt and clay), brought by the
Serchio and Arno rivers. These aquifers show a shallow water-table (up to 4 m depth; Figure 3).
Because of this, a large part of the area is mechanically drained to prevent waterlogging. The
groundwater hosted in these aquifers, although not used for drinking purposes, is often used for
irrigation and domestic purposes [29].
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Figure 2. Soil map within the boundaries of San Giuliano Terme municipality (from [26] modified). The main soil types shown in the map (FAB1, GRE1 and STF1)

are detailed in Table 4.
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Figure 3. Interpolated depth to water table and groundwater head contours (data March 2009 [30]).
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Table 4. Soil Type in the investigated area (from [31]).

Soil Name Soil Taxonomy Classification
FABI1 Typic Haploxerepts, coarsesilty, mixed, thermic
GRE1 Typic Haplusterts, fine, mixed, thermic
STF1 Typic Xerofluvents, coarsesilty, mixed, calcareous, thermic

We reasonably assumed homogeneity of the climatic characteristics (as regards to the
distribution and intensity of rain events) and of the agronomic practices (doses and distribution
methods) in the investigated domain.

2.3. Application of the VI Method

In the investigated area, pesticide use showed a large variability in space and time, being driven
by crop rotation on farmland, by the type of weed (or other target organism) community
(composition and numerosity), and by practical considerations (costs, market availability, farm
stocks, etc.). Therefore, we should have prepared 33 different maps, one for each Al detected within
the case-study area. Rather than this, we used an approach based on grouping the active ingredients
into classes, in agreement with Schlosser et al. (2002) [22]. This way, we simplified the data
processing to achieve an overall analysis of the specific vulnerability of the shallow aquifer to
pesticides. These classes were defined based on the leaching ratio (LR) of each active ingredient. The
LR, embedded in the VI model, expresses the potential leaching for each compound throughout the
soil and is based on transport properties of an active principle (such as biochemical degradation and
sorption). The LR is defined as:

tl /2
LR=——— )
ocC

Therefore, the leaching ratio constitutes an estimate of the susceptibility of each Al to be
biodegraded and to be sorbed to the soil organic matter. The longer the half-life, the less degradation
the compound will undergo moving through the soil, and a larger mass of active principle will
therefore be expected in groundwater. Pesticides with a high ti2 will result in a higher LR and will
determine a greater vulnerability for the area where they are used. On the other hand, compounds
with a high Koc will exhibit a larger tendency to sorption. Therefore, they will require more time to
reach the water table, consequently allowing longer times for degradation and, finally, a lower
expected mass in groundwater.

The 33 Als presented in the previous section, were divided into three leachability classes
(respectively low, medium, and high) based on the LR ratio (Tables 5 and 6). Following [22], Als
with a ratio lower than 0.01 were assigned to the "low" class, with a ratio between 0.01 and 0.1 to the
"middle" class, and those with a ratio greater than 0.1 to the “high” leachability class. For each of
these three classes, a specific vulnerability map to pesticides was then produced.

The analysis carried out was performed within the municipal boundaries only for the domain
where piezometric data were available.
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Table 5. Properties, leaching ratio and attribution to leachability class for the active ingredients used
in the investigated domain (data from [32]). Ktc: organic-carbon normalized Freundlich distribution

coefficient.
Active Ingredient Koc(mL/g) Ktoc (mL/g) t12(d) Leaching Ratio  Class
Cloquintocet-mexyl 9856 NA 5 0.001 Low
Clodinafop-propargyl NA 1466 1 0.001 Low
Propaquizafop 2220 NA 2 0.001 Low
Quizalofop-P-ethyl NA 1816 2 0.001 Low
Oxyfluorfen NA 7566 35 0.005 Low
Pendimethalin 17581 NA 90 0.005 Low
Glyphosate 1435 NA 12 0.008 Low
Ziram NA 3007 30 0.010 Medium
Aclonifen NA 7126 117 0.016 Medium
Cycloxydim 59 NA 1 0.017 Medium
Mefenpyr-diethyl 634 NA 18 0.028 Medium
Linuron 739 NA 48 0.065 Medium
S-metolachlor NA 226 15 0.066 Medium
Acetochlor 156 NA 14 0.090 Medium
2,4-D 88 NA 10 0.114 High
Thifensulfuron-methyl 28 NA 4 0.143 High
Oxadiazon 3200 NA 502 0.157 High
Metazachlor 54 NA 9 0.167 High
MCPA NA 74 15 0.203 High
Metsulfuron-methyl NA 40 10 0.250 High
Metribuzin NA 38 12 0.316 High
Terbuthylazine NA 231 75 0.325 High
Imazamox NA 67 25 0.373 High
Triasulfuron 60 NA 23 0.383 High
Tribenuron-methyl 35 NA 14 0.400 High
Rimsulfuron 50 NA 24 0.480 High
Dicamba NA 12 8 0.667 High
Nicosulfuron 30 NA 26 0.867 High
Lenacil 165 NA 179 1.085 High
Flonicamid 2 NA 3 1.5 High
Iodosulfuron-methyl-sodium NA 1 8 8 High
Mesosulfuron-methyl NA 1 66 66 High

Table 6. Statistics for the leaching ratio (LR) value for each of the three classes.

Class Number of AIs Average Median St. Dev.

Low 8 0.003 0.001 0.003
Medium 7 0.057 0.065 0.038
High 18 4.783 0.383  15.884

2.4. Model Parameterisation

We describe here the parameters used for applying the model to the case study. Unfortunately,
the availability of the parameters needed for the application of the VI index method (Equation (1))
was limited to the main soil typology identified within the case-study area (in the number of few
units). Therefore, it was necessary to apply the same value of the parameters K and Orc to each
polygon belonging to a specific type of soil. For the parameters Z, gr, and %OM a single value was
assigned to all the investigated domain. Afterwards, we transformed the vector data files in raster
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data in order to process these parameters with those available in raster format, and then we
calculated the VI index by performing raster analysis calculations in the GIS environment for each
class of pesticides.

2.4.1. K, Soil Saturated Hydraulic Conductivity

The parameter K, hydraulic conductivity, is used in the model as a surrogate for the soil-water
velocity assuming a unit hydraulic gradient (gravity-dominated flow) for near-saturated conditions
as during irrigation [22]. K data were assigned to each class of soil and were derived from [26].

2.4.2. Orc, Water Content at Field Capacity

For the purposes of this analysis, one Orc data was assigned at each type of soil in the study
domain and the data was derived from [26].

2.4.3. Z, Thickness of the Soil Layer

This parameter corresponds to the thickness of the soil layer, where most of the sorption and
biodegradation processes occur (hence, it is not the thickness of the unsaturated area). It is well
known that most of the organic matter and biological processes usually occur in the shallowest
layers of the soil. In this case, since spatial-distributed data of this parameter were not available, we
choose to assign a single value, equal to 1 m, to the entire study domain on the basis of the soil
nature and the usual soil tillage depths. As such this parameter did not impact the calculation of the
VIin different areas of the investigated domain.

2.4.4. v, Soil Bulk Density
Only two tests were carried out for the soil bulk density during the soil map survey [26]:

—  one on the STF1 soil, with an average value g» = 1.53 g/cm?.
—  one on the GRE1_STGI soil, with an average value of gb = 1.49 g/cm?.

As no further data were available to characterize the other soil types, a single value equal to gb =
1.5 g/cm3was assumed and assigned to the study domain. Also, in this case, this parameter did not
impact the calculation of the VI in different areas of the domain investigated.

2.4.5. %OM, Percent Organic Matter

Regarding the organic matter content, results from two samples were available. They showed
an average organic matter content of 3.24% and 5.6% respectively. Since only two data points were
available, and rarely organic-rich soils are found in the study domain, a single value of 3% organic
matter content was assigned to the whole domain. In this case, this parameter did not impact the
calculation of the VI in different areas of the investigated domain.

2.4.6. Leachability Ratio

We associated to each group of pesticide the median value of the leachability ratio for each of
the classes as defined in Table 5.

2.4.7. The Foew Parameter

This dimensionless factor accounts to the depth to groundwater, as this distance may influence
the amount of pesticide that reaches the water table. Larger values of the parameter were assigned to
areas where the unsaturated zone had a small thickness, while smaller values were assigned where
the thickness was large, by using a non-linear relationship.

Using the piezometric survey data (from [30]), we prepared a depth to water table map by
subtracting the values of the groundwater head to those of the surface elevation derived from the
Tuscany Region digital terrain model (10 m cell). Results were processed using a Kriging
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interpolator. In some areas, a negative depth to water table value was obtained as a result of the
interpolation process. As it was not possible to validate these data with extensive experimental
campaigns, we assumed a precautionary depth to water table of 0.15 m for all the areas where the
interpolated value was lower than 0.15 m. The final depth to water table map is presented in Figure
3. As already mentioned, the analysis carried out was only performed for the domain where
piezometric data were available. In [22] the Foew parameter was assigned according to the scale
presented in Table 7. In order to assign a higher score to depth to water table values less than 2 m
from the soil surface and often close to zero (a frequent situation in our case study), we built a
non-linear relationship according to which as the unsaturated thickness decreases, the value of the
Focw parameter increases following an exponential function. This relationship allowed us to assign a
greater Focw value to the areas with very small depth to water table. The curve derived is shown in
Figure 4. The parameter values then assigned for the different areas are reported in Table 8, while in
Figure 5 the map with the spatial distribution of the Foew parameter is presented.

Table 7. Focw Values as Function of the Depth to Water Table (from [22]).

Depth to Water Table (m Below Soil Surface) Focew

0-5 3

5-10 25
10-15

>15 1

Regression line

1 l Foow = 5.2915x 34134
1 RE = ,9664
|
1
1"{ - Data

Foow
o o=k P L e O =] D0 W o

T T T T T T i
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Depth to water table (m)

Figure 4. Function used to define the Focw parameter.

Table 8. Focw Values Assigned at Different Depth to Water Table.

Depth to Water Table (m from Soil Surface) Foew

0-0.30 9

0.3-0.6 6

0.6-1.2 4.5

1.2-1.8 4

1.8-2.4 3.5
24-5 3
5-10 25
10-15

>15 1
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Figure 5. Spatial distribution of the Focw parameter in the domain investigated.
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3. Results and Discussion

We applied the VI model to the three leachability classes of pesticides in the investigated area.
Although the original method identified three vulnerability classes (Table 1), we added a fourth class of
vulnerability to highlight areas with a value of VI greater than 1000. This new class included all areas
characterized by a very high level of aquifer vulnerability.

The results are presented in the form of specific vulnerability maps for the three leachability classes of
pesticides previously defined and discussed below in Figures 6 and 7, except for the class of pesticides with
a low leaching ratio. In the latter case, the vulnerability index calculated for the entire investigated area
was low. This low vulnerability class was maintained in all areas, even performing calculations with a
lower organic matter content, 2% instead of 3%.

Regarding the medium leaching ratio pesticide class (Figure 6), the interaction between the nature of
the Als and the physical-chemical characteristics of the soil led from medium to high areal distribution of
vulnerability, whereas the zones with low vulnerability resulted in very small areas. Comparing this map
with the soil distribution map (Figure 2), the influence on the result of the parameters assigned specifically
to each type of soil, and particularly of the K parameter, can be seen.

Finally, the vulnerability to the class of pesticides with a high leaching ratio (Figure 7) varies from
medium to very high, demonstrating the need for careful use of these kind of agrochemicals by the
farmers. The consistency of our estimates was strictly dependent on the density and spatial distribution of
the data used. In fact, we derived several of the input data from soil maps with little experimental
information collected in the investigated area. The scarcity of experimentally gathered data mainly limited
the predictive value of the vulnerability classification of the study area. In fact, our results may be
considered an initial screening that might be used to provide general advice on pesticide use, especially
under high or very high vulnerability index conditions. We also suggest that in such areas experimental
activities are run to monitor the use of pesticide on farming practices and their potential leaching following
distribution. In terms of uncertainties in the parameters, while Z, op and %OM may not show a large
variability range in the investigated area, this is not the case for K. This parameter may vary up to an order
of magnitude, impacting the definition of the vulnerability classes. Anyway, further data on the
characteristics of the soils (primarily the organic carbon content) would allow us to, for example, better rate
the vulnerability score in areas with high organic matter.

Concern is also expressed in relation to the fact that in the investigated area the water table is very
shallow, and consequently the barrier effect and the attenuation provided by the soil and the unsaturated
zone bio-geochemical processes might be ineffective. It must be mentioned that as the area is mechanically
drained, the worst-case scenario would be depth to the water table equal to zero (waterlogging). This could
happen during very wet seasons. In that case, all the areas would be rated from high to very high
vulnerability, notwithstanding the class a pesticide is attributed to.

Furthermore, performing groundwater monitoring and sampling to detect the presence of active
ingredients, besides shedding a light on the real groundwater chemical status respect to pesticide presence,
is a necessary step to validate the maps produced.

Although the proposed method is based on a small number of parameters compared to other
methods, the required parameters are time-consuming and expensive to obtain. This means that to
produce a sound, but static, vulnerability assessment, the cost in data gathering may be high. We then
suggest that index-overlay methods for vulnerability mapping are combined with process-based methods
such those offered by numerical modelling. Freely available and open source software tools (such as
Hydrus 1-D [33]; the SID&GRID [34] or FREEWAT suite [35-37]; VLEACH [38], etc.) are widespread and
allow implementation of dynamically improving models which may be able to not only validate the maps
produced, but also to help in redefining areas at different vulnerabilities based on simulated processes and
associated uncertainties. Thus also increasing the data value and better justifying the cost for large dataset
acquisition [39].
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4. Conclusions

Evaluating the risk of pesticide leaching into groundwater is a necessary step to suggest robust
advices on the usage of such compounds in agricultural practices, hence reducing groundwater
contamination risks and supporting cropping system sustainability. However, choosing a proper
method for the assessment of such risks is not straightforward. In this study, we applied the
vulnerability index method [22] as an example of an index-overlay method. This method needs a
relatively small number of parameters compared to other more complex ones. Yet, even such a small
number of parameters was not easily available in our case study. Several data had to be derived
from soil maps and then averaged over large areas. This lead to vulnerability maps with reduced
reliability, no validation with groundwater samples for the presence of active ingredients, and little
practical use. We then suggest that maps produced in such way may provide information on specific
vulnerability in areas identified as at high risk of leaching. In such areas, a specific focus should be
on delivering advices to farmers on the use of pesticides, and at the same time monitoring the impact
of such use. Here, we want to reiterate how extension services for farmers and owners of plant
nurseries and greenhouses in the correct use of agrochemicals is, however, the first and most
important action for the protection of water resources.

Finally, the cost for producing reliable static vulnerability maps based on index-overlay
methods can be high, because of the several data that need to be gathered. The value of these data
may, however, be increased, and the cost better justified, if the analyses are carried out by using
process-based or advanced statistical methods. While the future for vulnerability assessment
methods is in process based/advanced statistical methods, index-overlay methods, as a preliminary
step for process-based simulation analysis, may still provide initial and quick insights into potential
leaching of pesticides to shallow aquifers.
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