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Abstract: Poplar (Populus L. spp.) Short Rotation Coppice systems (SRCs) for bioenergy production
are being converted back to arable land. Transitioning to Alley Cropping Systems (ACSs) could be a
suitable strategy for integrating former tree rows and arable crops. A field trial (Pisa, Central Italy)
was set up with the aim of assessing the C storage of an ACS system based on hybrid poplar and
sorghum (Sorghum bicolor L. Moench) and comparing it with that of an SRC cultivation system.
The carbon budget at the agroecosystem scale was assessed in the first year of the transition using the
net biome production (NBP) approach with a simplified method. The overall NBP for the SRC was
positive (96 ± 40 g C m−2 year−1), highlighting that the system was a net carbon sink (i.e., NBP > 0).
However, the ACS registered a net C loss (i.e., NBP < 0), since the NBP was −93 ± 56 g C m−2 year−1.
In the first year of the transition, converting the SRC into an ACS counteracted the potential beneficial
effect of C storage in tree belowground biomass due to the high heterotrophic respiration rate recorded
in the ACS, which was fostered by the incorporation of residues and tillage disturbance in the alley.
Additional years of heterotrophic respiration measurements could allow for an estimate of the speed
and extent of C losses.

Keywords: alley cropping; carbon sequestration; climate change mitigation; net biome production;
silvoarable system; soil CO2 flux; soil respiration partitioning

1. Introduction

A Short Rotation Coppice (SRC) is defined as a growing multi-stemmed woody material that is
subject to short rotations, usually of less than five years, and harvested using converted agricultural
machinery [1]. SRC stands were established in the 1990s and were exploited as a source of woody
biomass for energy production in the framework of the European 20-20-20 targets (GHG reduction,
Renewable energy, Energy efficiency) [2].

Hybrid poplars are fast growing trees suitable for SRC in Northern and Central Italy [3,4] and
covered 6000 ha in 2016 [5]. Despite their high biomass potential, SRC pure stands have some limitations:
A rapid decline of biomass production over years, a high water demand (5000 m3 water ha−1 year−1
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for a mature plantation), decreased CAP (Common Agricultural Policy) payments in the last years,
a low woodchip price and high destruction costs resulting in an overall decreased profitability [6,7].
In particular, it was observed that the destruction of an SRC plantation and stand re-planting is costly
and labor-intensive and it might become economically disadvantageous [8]. A possible solution for
reducing the economic risks underlying the shift from an SRC stand to other land uses could be
to convert the SRC into a silvoarable Alley Cropping System (ACS) by partially devitalizing and
removing tree rows, as recently proposed by Beuschel et al. [9]. SRC-based Alley Cropping Systems
integrate rows of fast-growing trees into conventional arable systems and they are currently under
investigation, especially in Central Europe [10–13], while there have been few experiments with them
in Mediterranean environments [14–16]. SRC-based ACSs, belonging to agroforestry systems, can
couple the production of biomass and food, while delivering other ecosystem services, such as soil
erosion reduction, improved nutrient cycling, soil faunal diversity and soil fertility conservation [17,18].
Moreover, agroforestry systems are widely recognized as a suitable climate change mitigation strategy
due to their potential to increase the carbon storage of agroecosystems [19–22]. Indeed, several studies
showed the ability of agroforestry systems to stock a higher amount of C compared to conventional
arable systems. They accumulated C in the total biomass of trees and enhanced the soil organic carbon
(SOC) sequestration potential [23–25].

Reviewing the results for C storage in agroforestry systems, Kim et al. [26] reported for ACS with
fast growing trees, averaging 12 years of age, carbon sequestration values equal to 1.6 t C ha−1 year−1

for the soil component and 2.4 t C ha−1 year−1 for the total biomass, resulting in a final total carbon
sequestration of 4 t C ha−1 year−1. However, contrasting results have been reported in the literature,
since other researchers found that agroforestry systems could result in no positive impact on soil C stocks
compared to systems without trees. This may be because in high fertility temperate soils, for example,
the presence of trees may not add C to the soil total C pool, when this is close to reaching saturation [27].

Indeed, estimating the impact of agroforestry systems on C stocks may be challenging, since the
capacity of soils and biomass in agroforestry systems to store C depends on several factors mainly
linked to site-specific characteristics (local pedoclimatic conditions, tree density and species, previous
land-use and management practices) [28]. In an ecosystem, C sequestration primarily involves the
fixation of atmospheric CO2 during photosynthesis and the transfer of fixed C into vegetation, detritus
and soil pools for “secure” (i.e., long-term) storage [19]. In the agroecosystem, C is located in five
main pools, namely, aboveground plant biomass (trees, crops and weeds), belowground plant biomass
(trees, crops and weeds), litter, microbial and soil C. These pools interact with each other, part of C is
stabilized in the soil and part is released back into the atmosphere as a result of the SOC mineralization
and root respiration [29,30]. Compared to conventional cropland, the presence of trees in agroforestry
systems may increase the overall efficiency in fixing the CO2 from the atmosphere and the C return to
the soil through litter deposition and deep root development [31].

Nevertheless, there is a scarcity of data on the C budget for ACSs [28] and few studies have
addressed the net carbon storage in agroforestry systems [26,32]. In particular, there is a need for the
implementation of comprehensive approaches suited to quantifying the most relevant components of
the carbon budget, such as the C accumulation in the aboveground and belowground biomass and
carbon losses from soil, considering the complexity of a system that includes both annual herbaceous
crops and perennial woody species [33].

To date, most studies have investigated the carbon sequestration in agroforestry systems,
considering only the change in the soil organic carbon pool by measuring the soil organic carbon (SOC)
stock change after the introduction of agroforestry practices, as widely reviewed by De Stefano et al. [32].
Some studies evaluated the potential soil carbon stock of agroforestry systems by analyzing the SOC
before and after the adoption of an agroforestry layout and comparing it to tree-less open field
controls [24]. However, analyzing soil organic carbon evolution in time using repeated soil sampling
does not provide a reliable estimate for a short period (<5 years), since the changes in SOC are slow
and too small to be detected [34].



Agronomy 2020, 10, 1251 3 of 23

Hanson et al. [35] suggested the adoption of a flux approach for short-term carbon monitoring
(<5 years) in order to detect soil carbon stock changes while considering the carbon input to soil and
heterotrophic respiration as the carbon output. According to ecology definitions [36,37], the carbon
remaining in the ecosystem after episodic C losses due to disturbances corresponds to the Net Biome
Production (NBP). NBP can be estimated accounting for all, or the most relevant, C fluxes occurring
in a selected time span. On an annual basis, the NBP is estimated considering the removal of crop
harvested material and residues. In an agroforestry system, changes in the woody biomass carbon
pool should also be considered and then allocated to the annual production.

The eddy covariance technique is the most frequently used method for estimating the annual
NBP, since it allows all the vertical CO2 fluxes in the agroecosystem during a selected period to be
measured [38]. However, its suitability strictly depends on the shape and size of the experimental sites.
Thus, alternative methods based on the direct measurement of single C fluxes have to be implemented
on small-size fields to check for variations at a finer spatial resolution. Several differences in the
C accounting methods were found in the literature. There is generally no consistency in how the
belowground biomass is measured. To measure tree belowground biomass, few studies use direct
sampling methods and these are frequently young SRC stands (2-5 years). However, researchers more
frequently use the root-to-shoot ratio or allometric equations based on aboveground biomass. Fine
roots could be sampled, but in the case of an agroforestry system, it is difficult to distinguish between
tree and crop roots and the distance from the tree rows may affect the values. Some studies do not
include an elemental analysis of the C content in biomass and others take into account all the biomass
produced through photosynthesis, as sequestered in a “long-lived pool”. Finally, a considerable part of
biomass, e.g., litter and residues, undergoes respiration processes, becoming a loss of CO2 from the
agroecosystem and not an actual gain, a factor that is often neglected and not accounted for in CO2

respiration measurements [26].
The aim of this work was to implement a methodology for measuring all relevant C fluxes

at a small scale in order to estimate and compare the annual NBP of two cropping systems: (i) a
sorghum-poplar Alley Cropping System (ACS) and (ii) a poplar Short Rotation Coppice system (SRC).
Thus, the first year of transition is shown in order to demonstrate whether the proposed method is
suited to detecting C budget variations in the two systems. Therefore, this three-year study aims to
show the effect of transitioning to SRC-based Alley Cropping Systems in terms of climate change
mitigation potential.

2. Materials and Methods

2.1. Site Description and Experimental Design

The field trial was carried out at the Centre for Agro-Environmental Research of the University of
Pisa (CiRAA), “E. Avanzi”, San Piero a Grado, Pisa, Italy (43◦40′49′′ N, 10◦20′47′′ E; 1 m above sea
level and 0% slope). The experimental area is subjected to an annual rainfall of 920 mm, with a 15 ◦C
annual mean temperature (long-term average for 1987–2017).

The treatment of this study is the cropping system with two levels: a Short Rotation Coppice
system (SRC) and an Alley Cropping System (ACS) cultivated with SRC poplar and grain sorghum.
The experimental layout has been established according to a randomized block design, with four
replicates per level.

The SRC plots, with five continuous poplar rows 2.7 m apart and 0.5 m between plants
(7400 plants ha−1 density), originated from a 1.2 ha former poplar SRC (Populus × canadensis Moench.
clone AF2 and Populus × generosa Henry × nigra L. clone Monviso) established in 2009, where previous
field experiments were carried out [39]. From 2009 to 2016, poplar plants were coppiced every two
years with a cut-and-chip harvester at the end of February, before vegetative regrowth. At the start of
the experiment, poplar stools were entering the second year of the 8th cutting cycle.
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The ACS originated from the same SRC plantation. Arable areas for alley cropping were created
after the 7th biomass harvest (March 2017) by removing four out of the five rows, leaving 13.5 m-wide
alleys. Land clearing was performed with a forestry shredder (to a depth of 20 cm), followed by disk
harrowing. In addition, three 5 m-wide paths were created on the poplar rows every 30 m to facilitate
management operations. In summer 2017, in the ACS, a lot of poplar re-sprouting in the poplar alleys
was observed. This was generated from the roots, which were still alive because they were not killed
by the land clearing with the forestry shredder. Nonetheless, the soil still had a high compaction,
since from 2009 to 2017, no tillage operations were conducted, and the heavy machinery used for
poplar stool harvesting worsened the compaction over the years. Thus, it was difficult to perform the
spring crop sowing in summer 2017. Furthermore, in autumn 2017, the winter crop could not be sown,
because the site had a shallow water table and it was prone to flooding. Thus, a deep tillage in spring
2018 was performed and a warm season crop (sorghum) was sown in 2018. The CO2 flux monitoring
experiment was established. Plots sown with sorghum (n = 4) were 12 m and 30 m long in the ACS.
The SRC plots had the same size, accounting for five tree rows.

In order to take into account the effect of the tree presence, in the ACS, the sampling areas of the
biomass components and C fluxes were placed along a transect in three positions: (i) 2.5 m far from the
tree row on the west side; (ii) in the centre of the alley (6.75 m from the two tree rows); and (iii) 2.5 m far
from the tree row on the east side. The values reported for each replicate of all the variables measured
in the ACS are the means of the three positions. The tree points in the transect each represent a third of
the plot: the central part, as it was less influenced by the trees; and the two points closer to the tree
rows, as they had different solar exposures during the day and during the season.

2.2. Climatic Conditions and Soil Characteristics

The climatic conditions were monitored by a meteorological station outside the field trial in an
open field position without tree interference, recording the rainfall, air temperature and wind speed
every hour.

In September 2017, before the experiment was set up, soil sampling was performed along the
entire field trial, following the experimental layout described in Section 2.1. Soil samples were
taken using an auger with a 5 cm inner diameter at a depth of 0–10 cm. The soil parameters
analyzed were as follows: soil texture (international pipette method), pH (H2O, 1:2.5), organic matter
content (Walkley–Black method), total N content (Kjeldhal method), available P (Olsen method) and
exchangeable potassium (K) (BaCl2 method) [40]. The experiment plots were characterized by a
clay-loam to silty-clay-loam soil, with a good nutrient availability (Table 1). The site was characterized
by a superficial water table (1.8 m deep in the driest conditions).

Table 1. Soil characteristics at a depth of 0–10 cm in the two systems, reported as average
values ± standard error (ACS: Alley Cropping System; SRC: Short Rotation Coppice system).

ACS SRC

Sand (mg kg−1) 291.94 ± 62.93 202.80 ± 5.88
Clay (mg kg−1) 289.57 ± 17.33 311.06 ± 2.12
Silt (mg kg−1) 416.46 ± 39.33 464.18 ± 3.81

Soil texture class CL SiCL-CL
pH 7.56 ± 0.06 7.66 ± 0.004

SOM (%) 3.12 ± 0.06 3.13 ± 0.003
SOC (kg C kg soil−1) 18.10 ± 0.35 18.14 ± 0.03

Bulk Density (kg dm−3) 1.36 ± 0.02 1.48 ± 0.06
C/N 9.08 ± 0.12 9.45 ± 0.05
N (g kg−1) 2.00 ± 0.02 1.92 ± 0.004
P (mg kg−1) 171.77 ± 23.59 136.43 ± 2.04
K (mg kg−1) 470.56 ± 14.11 435.55 ± 1.63
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During the field experiment, the bulk density (BD) was measured by soil coring at a depth of
0–10 cm. The BD sampling was performed three times during the study period: (i) at sorghum
sowing in June 2018, (ii) at sorghum harvest in October 2018 and (iii) before the poplar harvest in late
February 2019.

2.3. Crop Management

Details on sorghum (Sorghum bicolor L. Moench cv. Baggio) cropping management are listed in
Table 2. N-P-K fertilization was supplied in order to ensure that the soil nutrient availability was a
non-limiting factor. The harvest dates were 4 October 2018 for sorghum and 5 March 2019 for poplar.
Poplar and sorghum were rainfed.

Table 2. Dates and details for the main agricultural operations adopted during the year of the study for
sorghum in the ACS.

Operation Date Details

Main tillage 8 May 2018 Chisel ploughing (50 cm depth)
N-P-K fertilization at

sowing 6 June 2018 Ternary compound fertilizer (N: 32 kg ha−1

P: 96 kg ha−1 K: 96 kg ha−1)
Sowing 6 June 2018 40 seeds m−2

Hoeing 13 July 2018 10 cm depth
N fertilization topdressing 13 July 2018 Urea (N: 184 kg ha−1)

Sorghum harvest 4 October 2018

There was no N application to poplar trees. The only management operation after the clearing
was the harvest.

2.4. Carbon Budget Estimation

The overall carbon budget of the two cropping systems was assessed as the net biome production
(NBP). The NBP is the carbon remaining in the ecosystem when all other fluxes have been accounted
for [36,37]. Hanson et al. [35] suggested the adoption of a flux approach for short-term carbon monitoring
(less than 5 years). This method is able to detect soil carbon stock changes, considering only the carbon
input to soil as the biomass residues and heterotrophic respiration as the carbon output (Equation (1)).

NBP = NPP − Rh − H − D − F − VOC − CH4 − E + I (1)

where NPP is the Net Primary Production in a given time span, namely, the C fixed from the atmosphere
through photosynthesis (Gross Primary Production) minus the C lost by maintenance respiration
in plants.

Regarding the C losses, Rh is the C loss via soil heterotrophic respiration, H is the carbon lost
from harvesting, D is the dissolved or particulate organic or inorganic carbon, F is the carbon lost from
fires, VOC is the production of volatile organic compounds, CH4 is the microbially-produced methane,
E is the erosion and I is the carbon imported into the ecosystem (organic fertilization and manuring).

C losses related to D, VOC, CH4 and E were assumed to be negligible compared to the magnitude
of the other carbon fluxes in the agroecosystem, as reported by Hanson et al. [35]. I and F were not
considered, because no external organic carbon was supplied, and no fires occurred during the trial.
On an annual basis, NPP was measured as the carbon in the aboveground and belowground biomass
of sorghum, poplar and weeds.

Thus, a simplified approach was used in this study to determine the yearly NBP (Equation (2)).

NBP = CAGB + CBGB − CRh − Ch, (2)
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where the C inputs are the following: “CAGB” is the C content in the aboveground biomass (AGB)
components of each system (sorghum biomass, weeds’ biomass, poplar stools and leaf litter); “CBGB” is
the C content in the belowground biomass (BGB) components of each system (roots and poplar stumps).
The C outputs are the following: “CRh” is the C emitted to air as CO2 flux by heterotrophic soil
respiration and “Ch” is the carbon content of the harvested crop and tree biomass. All the components
are reported in g C m−2 year−1.

The NBP translates directly into the C amount net changes of the agroecosystem. A negative
NBP indicates a net agroecosystem C loss, whereas a positive NBP indicates that the agroecosystem
plays a role as a C sink [41]. In this index, the changes in soil organic carbon were considered as the
difference between the carbon input and carbon output. Soil is considered as a “black box”, so the
specific processes involving the biomass C return to soil and recycling were not investigated.

In Table 3, all the NBP components sampled in the two cropping systems and their sampling
dates are listed.

Table 3. Description of the NBP (Net Biome Production) components with their sampling dates for the
two systems, the Alley Cropping System (ACS) and poplar Short Rotation Coppice system (SRC).

NBP Component NBP
Subcomponent System Sampling Date

CAGB

Sorghum biomass ACS 4 October 2018

Weeds’ biomass ACS, SRC 4 October 2018
28 February 2018

Leaf litter ACS, SRC 21 November 2018

Poplar stools ACS, SRC 3 May 2018
5 March 2019

CBGB
Roots

ACS, SRC 4 October 2018
ACS 28 February 2019

Poplar stumps ACS, SRC 16 January 2019 1

Ch
Sorghum grain ACS 4 October 2018
Poplar stools ACS, SRC 5 March 2019

CRh
Heterotrophic

respiration ACS, SRC from 11 June 2018
to 1 March 2019

1 Estimated from the basal diameters of the stems.

2.5. Aboveground and Harvested Biomass

2.5.1. Aboveground Biomass of the Herbaceous Layer

In the ACS, the sorghum was sampled at harvest to measure its aboveground biomass (AGB) and
grain yield. The sorghum grain yield corresponds to the harvested biomass removed from the system,
determined as Ch together with the poplar stools.

Additionally, the AGB of the weeds was sampled in all systems at sorghum harvest in October
2018. This sampling was repeated in February 2019 in order to consider the winter regrowth at poplar
harvest in the ACS, excluding the SRC where weeds were not present. In the ACS, the sampling
scheme followed the experimental design described in Section 2.1. Thus, each replicate in the ACS is
the average of the three positions along the transect (west-side, center and east-side within the alley).

Crop and weed samples were cut at ground level, harvesting a 0.50 m2 surface and then weighted.
Sub-samples were oven dried at 60 ◦C for dry matter content determination. The sorghum AGB,
sorghum grain, weed AGB and litter biomass in the ACS were considered as occupying 89% of the
land area, with 11% being occupied by poplar rows. The reported values were then multiplied by 0.89.
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2.5.2. Aboveground Biomass of Trees

To calculate the annual growth of the poplar stools in the ACS and the SRC, two biomass samplings
were measured, before the regrowth period in May 2018 and during the harvest in February 2019.

In order to reduce the impact of destructive sampling on the plots, in May 2018, a destructive
sampling of only 15 randomly chosen shoots per clone and per system (60 shoots in total) was
performed. Subsequently, sub-samples were dried at 105 ◦C for dry matter content determination.
According to Pontailler et al. [42] and Paris et al. [4], an allometric equation (Equation (3)) was used to
relate the shoot dry weight (DWsh) to the relative average shoot basal diameter (D), measured with a
digital caliper at the cutting height (D was calculated as the average of two measurements per shoot).

DWsh = a × Db (3)

The best fitting models for the two clones and the two systems have been chosen on the basis of
the highest R2 value and the lowest RMSE for the parametrization of a and b (Table A1, Figure A1a in
Appendix A). The functions were then used to estimate the poplar stools’ biomass in the two systems,
based on the basal diameter and the number of shoots sampled in each replicate of ACS and SRC.
The basal diameter and the number of shoots of 5 stools per plot were measured on the west side and
on the east side (10 stools per replicate, with 20 stools in total) of the ACS, while in the SRC, 5 stools
per plot were considered (10 stools in total). The dry stool AGB was then estimated by applying the
parametrized allometric functions.

At poplar harvest in February 2019, the same stools sampled in May 2018, were totally cut,
weighted, and dried at 105 ◦C for dry matter content determination.

In order to calculate the poplar stool biomass growth in the studied period, the total dry weight
estimated in May 2018 was subtracted from the stool dry weight at harvest in February 2019. The average
annual stool biomass dry weight was multiplied by the number of vital stumps per plot measured
in March 2019 (average mortality rate: 46% in ACS and 56% in SRC) to obtain the total biomass
accumulation in each plot.

Leaf litter, namely, the amount of poplar leaves that remain in the system, was estimated by
sampling on a 0.50 m2 surface after the completion of the poplar leaf fall in November 2018. The litter
was collected and oven dried at 60 ◦C for dry matter content determination. The sampling procedure
followed the experimental design described in Section 2.1.

2.6. Belowground Biomass

Roots were sampled at harvest with a soil core sampler (5 cm inner diameter) at a depth of
0–30 cm. We assumed that the roots of both crop and poplar are found in the first 30 cm, so this
depth can be considered as a common layer, where positive or negative influences occur, in the ACS.
Moreover, in the SRC, the majority of the fine roots of poplar (about 70%) are located in the first 30 cm
of soil [43]. Sampling was repeated in February 2019 in order to collect the roots of weeds grown in
winter before the poplar harvest. As for the aboveground biomass, the sampling procedure followed
the experimental design described in Section 2.1.

In the ACS, four soil core samples were taken at equidistant points, following the method proposed
by Frasier et al. [44]. The samples were collected as follows: two soil core samples were taken from two
neighboring sorghum rows after aerial biomass cutting, avoiding the plant stalks, and two samples
were taken from the inter-row space. In the SRC, four samples were taken at equidistant points from
the inter-row in between the two poplar rows.

The soil cores were put in 0.5 mm mesh bags, kept in water for 24 h and washed in a hydraulic
sieving-centrifugation device. Then, the samples were extracted from the mesh bags, the roots were
separated by hand from stones and debris, dried at 60 ◦C and weighted [43,45,46]. The roots lost during
separation and washing were negligible, after several trials using different mesh bags and washing
intensities were made, until no detectable losses (e.g., no roots floating in water) could be found.



Agronomy 2020, 10, 1251 8 of 23

The roots in the ACS were considered as belonging to the herbaceous layer, thus, as related to 89%
of the land area (see Section 2.5.1).

Since we could not carry out destructive sampling by means of stump excavation, the stump
dry weight (DMst) was estimated from the basal diameters and the number of shoots measured for 5
contiguous stumps per plot after the harvest using the following allometric function (Equation (4)).

DMst = b × ecD (4)

where D (cm) is the theoretical diameter of the whole stool (derived from the entire shoot area, assuming
a circular shape). Empirical parameters b and c have been parametrized through a dataset of excavated
stumps from a former SRC experimental site (data not shown) (Table A2, Figure A1b). This site,
which is situated 1 km from our experiment, had the same poplar clones and a comparable age (stumps
excavated in 2013, 9 years after establishment). The best fitting models for the two clones and the two
systems were chosen on the basis of the highest R2 value and lowest RMSE.

The stump dry weight was divided by the age of the plantation to obtain the biomass annual
increase per stump (g C m−2 year−1), assuming a linear increase according to age. The average annual
stump biomass dry weight was multiplied by the number of alive stumps per plot measured in
February 2019 (see Section 2.5.2) to obtain the total biomass in each plot.

2.7. Soil Heterotrophic Respiration

In order to measure the soil CO2 flux due to heterotrophic respiration (Rh), soil flux partitioning
was carried out using the trenching method [47,48], with four replicates per system, following the
experimental design described in Section 2.1. At each sampling point, two 20 cm-diameter open-ended
PVC collars were installed: a 7 cm-deep surface collar inserted 1 cm into the soil to measure soil
respiration (autotrophic and heterotrophic) (Rs); and a 35 cm-deep collar inserted 30 cm into the soil to
measure heterotrophic respiration (Rh). The collar depth was found to be suitable for excluding 90% of
fine roots from the soil volume [49]. The collars were placed in March 2018, three months before the
beginning of the experiment, in order to progressively eliminate the spontaneous weeds present in the
collars and to let the soil respiration stabilize.

Plants inside the collars were removed by cutting the sprouts when needed. Collars were placed
in the sorghum inter-row spacing for ACS and in the poplar inter-row for the SRC. The soil CO2 flux
was measured using a non-steady-state through-flow chamber, equipped with a portable infrared gas
analyzer (IRGA) (Licor LI-820) connected to an aluminum alloy chamber, with a height of 30 cm and
20 cm of diameter (West Systems Srl, Pontedera, Italy). An internal fan maintained the homogeneity of
the air mixture within the chamber during the measurements. The CO2 concentration was recorded
with a frequency of one second, while its increase in the headspace (ppm s−1) was checked for
linearity for a period of two minutes and recorded by a tablet connected via Bluetooth. The CO2

flux was calculated from the slope of the linear regression, describing the temporal change in the
gas concentration in the chamber headspace during deployment, assuming an ideal gas relation,
considering the ratio headspace volume area−1 of the chamber, the mean daily air pressure and the
temperature. The volumetric soil water content and temperature were recorded in each measurement
next to each collar using a probe (Decagon Devices ECH2O-TE/EC-TM), which was inserted into the
soil at a depth of 5 cm. All the measurements were conducted between 9 a.m. and 12 a.m., because
mid-day values of the soil CO2 flux are reported to approximate the 24 h mean flux [50]. The CO2 flux
was measured weekly from 11 June 2018 (sorghum sowing) to 1 March 2019 (poplar harvest), with a
total of 25 sampling dates. The data from the three positions in the transect in the ACS were averaged.

A Grubb’s test was performed in order to identify possible outliers in the soil flux measurements
among replicates per each investigated system and the sampling date with the R package “outliers” [51].
The cumulative CO2 emissions over the whole monitoring period were calculated by linear interpolation
between two close sampling dates and the numerical integration of the function over time.
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2.8. Analysis of the C Content in the Subcomponents

Subsamples of the NBP subcomponents were dried at 60 ◦C and ground (Retsch SM1) to a particle
size of <297 µm. All the subcomponents were analyzed, except for the poplar stumps, for which the
results obtained from the stools’ biomass were used. The carbon concentration was obtained through
elemental analysis (LECO Truspec CHN Analyzer, LECO Corporation, Saint Joseph, MI, USA). The C
concentration (%) was multiplied by the samples’ dry weight to obtain the C content per surface unit
(g C m−2) for CAGB, CBGB and Ch. The C content of CRh was calculated using the cumulate CO2 flux
converted into C stoichiometrically.

2.9. Data Analysis

The statistical analysis was carried out in R environment [52]. The assumptions of the linear
models were not met, so a Kruskal-Wallis non-parametric test was performed using the R package
“FSA” [53], in order to study the effect of the system. This test was first performed for all the NBP
subcomponents, then the NBP subcomponents were summed together according to the NBP equation
(Equation (2)) to calculate the total NBP and the resulting NBP values were analyzed.

3. Results

3.1. Metereological Conditions

Winter and early spring in 2018 experienced heavy rains, which were concentrated in the months
of February and March (Figure 1). The monthly precipitation in January and April were −63% and
−58% lower than the long-term average (1987–2017), respectively.
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Figure 1. Monthly values for the average air temperature in the study period (solid line) and in the
long term (1987–2017, dashed line) and the rainfall in the study period (vertical bars) and in the long
term (circular dots). The graph allows dry months, when the precipitation is equal or less than twice
the monthly mean air temperature (p ≤ 2 T), to be identified [54].

In May 2018, a high precipitation amount was recorded (+36% compared to the long term), forcing
a delay in the sorghum sowing to early June. However, between late June and late July, four rainy
days with more than 6 mm occurred, allowing for sorghum vegetative growth in rainfed conditions.
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Conversely, in August and September (sorghum grain maturation stage), only two rainy days occurred,
with precipitations lower than the long-term average (−53% in August and −79% in September).

The mean temperatures between June and September were, on average, 1.2 ◦C higher compared
to the long term. The maximum temperatures were 1.6 ◦C higher during August and September but
0.2 ◦C lower in June and July compared to the long term. The minimum temperatures were always
higher than the long term from June to September (+1.7 ◦C). In March 2019, when poplar harvest was
performed, the monthly precipitation was much lower than in 2018 (2 mm versus 168 mm, respectively).

3.2. Carbon Input

3.2.1. Carbon in the Aboveground Biomass

The sorghum total biomass in the ACS was 550.9 ± 95.0 g DM m−2 (Table 4), with a C
concentration equal to 45.2 ± 0.2%. The C content in the sorghum total biomass was equal to
221.5 ± 39.01 g C m−2 year−1. The weeds’ biomass was 67.4 ± 14.3 g DM m−2 in the ACS, which
is higher than that of the SRC, where the amount was negligible (7.7 ± 3.8 g DM m−2). The C
concentration covered a wide range of values, falling between 41.0 ± 0.5% in the ACS and 44.3 ± 0.1%
in the SRC. The weeds’ C content was higher in the ACS (25.4 ± 3.1 g C m−2 year−1) than in the SRC
(3.4 ± 1.7 g C m−2 year−1).

The poplar leaf litter was, on average, four times more abundant in the SRC than in the ACS,
where the tree density was lower (404.4 ± 33.5 g DM m−2 and 104.4 ± 17.2 g DM m−2, respectively).
The C concentration varied between 38.0 ± 0.05% in the ACS and 45.1 ± 0.3% in the SRC. The C
content of the leaf litter was higher in the SRC (182.5 ± 15.5 g C m−2 year−1) than in the ACS
(35.3 ± 5.81 g C m−2 year−1). The poplar stool production in the first year of the experiment in the
ACS was estimated to be 1073.9 ± 51.7 g DM m−2 for the SRC and 312.7 ± 23.8 g m−2 for the
ACS, with the poplar in the ACS producing less than one third of woody biomass compared to the
poplar in the conventional SRC. The C concentration for the two systems did not differ, remaining
at around 48.6 ± 0.1%. The C content of the poplar stools was significantly higher in the SRC
(522.7 ± 24.5 g C m−2 year−1) than in the ACS (152.0 ± 11.6 g C m−2 year−1).

3.2.2. Carbon in the Belowground Biomass

The number of roots was not significantly higher in the ACS (441.7± 51.2 g DM m−2) than in the SRC
(341.4± 48.5 g DM m−2). Conversely, the C content was higher in the ACS (286.6 ± 40.11 g C m−2 year−1)
than in the SRC (100.2 ± 12.2 g C m−2 year−1). This may be related to the different C concentration
measured in the two systems. Indeed, the roots showed a wide range of values and were lower in the
ACS (28.3 ± 0.8%) and higher in the SRC (39.3 ± 0.5%).

The poplar stumps in the SRC were two-fold (511.5 ± 24.5 g DM m−2) compared to the ACS
(217.7 ± 24.0 g DM m−2), assuming the same C concentration in the poplar stumps as in the poplar stool
biomass (see Section 3.2.1). The C content in the SRC was then higher (248.9 ± 11.6 g C m−2 year−1)
than in the ACS (105.9 ± 11.7 g C m−2 year−1).

3.3. Carbon Output

3.3.1. Carbon in the Harvested Biomass

Sorghum grain yield was, on average, equal to 164.3 ± 82.0 g DM m−2. The C concentration was
similar in the sorghum grain and the sorghum biomass (45.6 ± 0.04%) (see Section 3.2.1). The C content
in the ACS was equal to 74.5 ± 37.4 g C m−2 year−1. The harvested poplar biomass corresponds to the
poplar stools (see Section 3.2.1).
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Table 4. NBP subcomponent values: biomass per surface unit (g DM m−2 year−1, average ± SE) and C content (g C m−2 year−1) in the two systems (ACS: Alley
Cropping System; SRC: Short Rotation Coppice system; AGB: Aboveground biomass; BGB: Belowground biomass; Rh: Heterotrophic respiration). Asterisks represent
significative differences in the biomass and C content between the investigated systems (ns: not significative; *: p < 0.05).

NBP Component NBP Subcomponent Biomass (g DM m−2) Carbon Content (g C m−2 year−1)

ACS SRC ACS SRC

Cinput

CAGB

Sorghum biomass 550.9 ± 95.0 1 n.a. ns 221.5 ± 39.0 1 n.a. ns
Weeds’ biomass 67.4 ± 14.3 1 7.7 ± 3.8 * 25.4 ± 3.1 1 3.4 ± 1.7 *

Leaf litter 104.4 ± 17.2 1 404.4 ± 33.5 * 35.3 ± 5.8 1 182.5 ± 15.5 *
Poplar stools 312.7 ± 23.8 1073.9 ± 51.7 * 152.0 ± 11.6 522.7 ± 24.5 *

CBGB
Roots 441.74 ± 51.2 1 341.4 ± 48.5 ns 286.6 ± 40.1 1 100.2 ± 12.2 *

Poplar stumps 217.7 ± 24.0 511.5 ± 24.5 * 105.9 ± 11.7 248.9 ± 11.6 *

Coutput
Ch

Sorghum grain 164.3 ± 82.0 1 n.a. ns 74.5 ± 37.4 1 n.a. ns
Poplar stools 312.7 ± 23.8 1073.9 ± 51.7 * 152.0 ± 11.6 522.7 ± 24.5 *

CRh Heterotrophic respiration 2540.8 ± 102.0 1609.6 ± 83.2 * 692.9 ± 27.8 439.0 ± 22.7 *
1 on the 89% of arable area occupied by the crop.
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3.3.2. Carbon Lost as Heterotrophic Respiration

The cumulative CO2 emissions were lower in the SRC (1609.6 ± 83.2 g CO2 m−2) than in the
ACS (2540.8 ± 102.0 g CO2 m−2). The consequent C content was significantly higher in the ACS
(692.9 ± 27.8 g C m−2 year−1) than in the SRC (439.0 ± 22.7 g C m−2 year−1).

3.4. NBP: Full Budget

The main components of the NBP in the two systems and the overall carbon budget are reported in
Table 5. The carbon in the total aboveground biomass was higher in the SRC (709 ± 31 g C m−2 year−1)
than in the ACS (434 ± 33 g C m−2 year−1), because the aboveground biomass of the sorghum and
weeds did not counterbalance the high C net accumulation measured in the aboveground of the
SRC system.

Table 5. Annual NBP components in the two systems (g C m−2 year−1, average ± SE; ACS: Alley
Cropping System; and SRC: Short Rotation Coppice system). The values for aboveground biomass
(CAGB), belowground biomass (CBGB), carbon harvested (Ch), heterotrophic respiration (CRh) and the
resulting net biome production (NBP) are reported. The asterisks represent significative differences in
the C content between the investigated systems (ns: not significative; *: p < 0.05).

NBP Component ACS SRC

CAGB 434 ± 33 709 ± 31 *
CBGB 392 ± 51 349 ± 21 ns

Total Cinput 827 ± 70 1058 ± 46 ns

Ch 227 ± 46 523 ± 25 *
CRh 693 ± 28 439 ± 23 *

Total Coutput 920 ± 19 962 ± 18 ns

NBP − 93 ± 56 96 ± 40 *

The total belowground C amount for the two systems was comparable, accounting for 392 ± 51
and 349 ± 21 g C m−2 year−1 in the ACS and SRC, respectively. The higher amount of C measured
in the fine roots of the ACS did not counterbalance the annual C accumulation estimated for the
poplar stumps.

Overall, the total carbon input for the two systems was not significantly different, even if it was
22% higher in the SRC than in the ACS (1058 ± 46 and 827 ± 70 g C m−2 year−1, respectively).

Regarding the output subcomponents, Ch was higher in the SRC (523 ± 25 g C m−2 year−1) than
in the ACS (227 ± 46 g C m−2 year−1).

The poplar stool yield was nearly four times higher in the SRC than in the ACS, which is due to
the lower plant density measured for poplar stumps. In the ACS, the harvested sorghum grain was
not sufficient to compensate for the lower amount of biomass harvested with poplar stools. Thus, Ch

was significantly higher in the SRC than in the ACS.
CRh was higher in the ACS (693 ± 28 g C m−2 year−1) than in the SRC (439 ± 23 g C m−2 year−1),

which is mainly linked to the differences in soil management operations between the two systems.
In terms of the total carbon output and total carbon input, the two systems were not

significantly different, with the SRC just 4% higher than the ACS (962 ± 18 g C m−2 year−1 and
920 ± 19 g C m−2 year−1, respectively).

Overall, the SRC proved to be a net carbon sink (i.e., NBP > 0), with an NBP
equal to 96 ± 40 g C m−2 year−1, while the ACS was a net carbon source (i.e., NBP < 0)
(−93 ± 56 g C m−2 year−1).
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4. Discussion

4.1. NBP of the Two Investigated Cropping Systems

Our results showed that, one year after its conversion from an SRC stand to an ACS, the system
turns from a carbon sink into a carbon source. In our experiment, SRC had a positive NBP, while the ACS
had a negative NBP. Our NBP results for ACS were close to those reported by Kutsch et al. [55] for five
arable crop rotations (winter cereal-based four-year rotations) and two monocultures (barley and rice)
over four years in different environments across Europe. Indeed, they estimated an average NBP for the
seven sites equal to -95 ± 87 g C m−2 year−1. Our results were also consistent with Janssens et al. [56],
who reported a carbon loss of −90 ± 50 g C m−2 year−1 on croplands. Kay et al. [57] reported a value
for an ACS based on willow and hazelnut SRC in an Atlantic climate of 36 to 105 g C m−2 of net
carbon sequestration potential. This result is similar to our result for SRC but not for ACS, where we
observed a negative NBP. However, Feliciano et al. [58] reviewed the potential carbon storage in
agroforestry systems and found no clear results, reporting from very negative to very positive carbon
budgets (−800 g C m−2 to 800 g C m−2, respectively). They stated that, in a general framework of a lack
of standardized methodologies for carbon budget assessment, climatic conditions, site history and
management play a crucial role in determining the actual C storage of such systems. For example,
Douglas et al. [27] suggested that the introduction of poplar and alder conservation trees in a long-term
pasture (>30 years) could lead to no soil C stock gain at a depth of 1 m, because the trees are too young
(14 to 16 years) to allow for a significant shift to the soil C stock.

Cropland sites from Europe, even if managed according to good practice guidelines [59], can
be both moderate carbon sinks and sources, while other model-based studies (ORCHIDEE-STICS)
predicted an almost neutral C balance for European agriculture [60].

In general, there is a great variability among sites in different environmental conditions and also
among carbon budget estimation methods. These two issues make it difficult to obtain reliable data
that are representative of the average situation in Europe or in the Mediterranean [61]. In general,
few studies are available on the C balance using a flux approach repeated for more consecutive years
after the conversion from a less intensively managed or unmanaged system to a more intensively
managed system. We could say that the few examples of studies on the carbon storage of systems
undergoing conversion from forest to silvoarable considered only changes in the soil organic carbon
stock. Cardinael et al. [28], in an effort to revisit the IPCC Tier 1 for soil organic and biomass carbon
storage in agroforestry systems, reported that, where a conversion took place, there were C losses of
−26 g C m−2 year−1 from forest to silvoarable in South America and −53 ± 218 g C m−2 year−1 from
forest to silvopasture in three different tropical regions. Therefore, our hypothesis is that more carbon
is lost in the first years after the conversion and that these C losses are mainly linked with organic
matter and residue mineralization through respiration processes. This C loss rate, however, could slow
down in the long term, so our NBP values for ACS could become closer to the ones cited, showing a
tendency to reach a steadier state.

4.2. Contribution of the C Input to the NBP

Regarding the C inputs, in the ACS, the total carbon input (Table 5) was lower than in the SRC.
In particular, the sorghum biomass and annual weeds’ biomass were not sufficient to close the gap,
with a much higher poplar stool biomass production in the SRC.

The sorghum aboveground biomass, in a field trial 3 km away from our site, with different soil
conditions and different management but with the same sorghum variety, was 52% higher than in the
ACS (1153.1 ± 103.5 g DM m−2 compared to 550.9 ± 95 g DM m−2 in the ACS) (data not published).
Nassi o Di Nasso et al. [62], after a long-term (12-year) experiment in Pisa with arable crop rotations,
including rainfed sorghum, reported an aboveground production of about 1470 g DM m−2, which is
three-fold higher than that in the ACS. The sorghum aboveground biomass measured in the ACS was
lower due to the lower crop growth and partly to the reduction of the cropped area (11% less than an
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open field cultivation). However, it is worth noting that there are no data available for a comparison
with our result in the ACS for sorghum aboveground production.

Weeds were more present in the ACS than in the SRC since they were favored by the conversion.
It is likely that in the ACS, with the beginning of tillage operations after clearing, weed seed bank
germination took place at a fast rate, stimulated by the beginning of the application of fertilizers and
seedbed preparation, as well as the higher light availability in the alleys.

In the SRC, the C input was remarkably higher than in the ACS (+22% respect ACS), both for the
C accumulated in the poplar stools and the leaf litter.

Nassi o Di Nasso et al. [3] reported a poplar stool yield of 1380 ± 90 g DM m−2 in a 12-year-old
SRC poplar stand in Pisa, which is higher than our result in the SRC (1073.9 ± 51.7 g DM m−2).
Giannini et al. [63] reported a value of around 1000 g DM m−2, which is close to our value in the
SRC, in a young SRC poplar stand (3 years) in organic soil in Tuscany. However, Ventura et al. [64]
reported a poplar C biomass of 1100 ± 200 g C m−2 year−1 in a young SRC poplar stand (3 years old)
in Northern Italy, which is more or less two times higher than our C content value in the SRC
(522.7 ± 24.5 g C m−2 year−1).

Regarding poplar leaf litter, Ventura et al. [64] reported a value of 210 ± 20 g C m−2 year−1, which is
not far from our values in the SRC (182.5 ± 15.5 g C m−2 year−1).

Due to the fact that the poplar woody biomass was removed from the system through harvesting,
the results also showed that the C output, like the C input, was higher in the SRC than in the ACS.
Hence, the net gain in C accumulation for the SRC came from the other biomass sources that were not
removed from the system, i.e., weeds, leaf litter, roots and poplar stumps.

In particular, the total C input in the ACS showed a higher proportion of belowground biomass
(CBGB), even if it was not significantly different and it also showed a higher proportion of roots than the
SRC, along with the presence of poplar stumps. We should note, however, that the CBGB standard error
is higher in the ACS than in the SRC. An explanation of the differences in the statistical results for the
roots (root biomass not significantly different vs. root C content significantly different) could be the C
concentration, which was found to be lower and have a higher variability in the ACS than in the SRC.

The stumps in the ACS were less dense than in the SRC, but competition with contiguous poplar
rows was not present, so the poplar stools reached a higher crown diameter and the stumps expanded,
resulting in a calculated higher annual stump biomass accumulation (Table A3). Moreover, these data
should be treated carefully, considering that the annual accumulation of biomass in the stumps was
assumed to follow a linear trend, according to the age, and that the poplar plants density varied only
after 2017.

There are few comparable data on sorghum belowground biomass accumulation in Mediterranean
environments. Applying the root-to-shoot ratios studied by Myers [65] to the average rainfed sorghum
long-term aboveground biomass production for the area [62], we find a value of 294 g DM m−2. Our
result for fine roots in the ACS (441.74 ± 51.2 g DM m−2) is higher, but we did not separate the relative
contribution of sorghum, weeds and poplar.

An important point regarding the C inputs is the high uncertainty related to the quantification
and dynamics of the belowground biomass. More than half of the C assimilated by the plant is
transported belowground via root growth and turnover, root exudates (of organic substances) and
litter deposition. With this process, Fernández-Núñez et al. [66] estimated, in a silvopasture in Spain,
a root C contribution of up to the 33% of the C sequestered in ecosystems. Our results show that the
total C content in the belowground biomass (CBGB) is 47% in the ACS and 33% in the SRC of the total C
input (Cinput), thus confirming this proportion. The dynamics of the root growth, decay and turnover
are some of the least understood aspects of belowground interactions in agroforestry [67].

In our experiment, we did not know how poplar roots were distributed in the alleys after clearing.
Fine roots of both trees and crops have a relatively fast turnover (measured in days to weeks). Lignified
coarse roots of trees decompose much more slowly once trees are harvested (and ground, in our case)
and may contribute substantially to hidden belowground C inputs, but we could not detect this [68].
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A probable process is a lack of intra-specific competition in the inter-row, with root web destruction
in the first 50 cm and inter-specific competition with sorghum at the same time, which we expect to
be fierce in the first 60 cm, as described for silvoarable systems with walnut and hybrid poplar in
France [69]. Recently, an attempt at understanding the root dynamics in silvoarable systems has been
made by Beuschel et al. [9]. In their study on soil quality parameters after an SRC conversion to a
silvoarable system in Germany, they reported data on root determination, finding no living poplar
roots in the cultivated alleys and six-fold more dead poplar roots close to the tree rows compared
to those in the cultivated alley, suggesting a reduced root biomass after conversion. However, tree
roots develop for longer and at a lower depth than herbaceous annual crops, and in soils under trees,
a considerable amount of C, which is very challenging to detect and measure, is stored below the
plough layer (50 cm) [30]. Trees appear to extend roots to deeper layers when there is competition
and disturbance in the plough layer in order to exploit other pools of water and nutrients to sustain
their growth [70,71]. Hence, it becomes difficult to estimate and calculate the relative contribution of
belowground biomass to the overall carbon input in the ACS. The lack of root measurements in the
soil layers deeper than 30 cm could have diminished the calculated belowground carbon and could
have led to a higher NBP in both the systems. However, our hypothesis is that the exclusion of the
roots under the plough layer could have been a greater disadvantage for the ACS than the SRC in
this experiment.

Regarding fine roots, Chimento and Amaducci [43] reported a fine root biomass weight at a depth
of 0–30 cm for a 6-year-old SRC poplar in Northern Italy equal to 300 g DM m−2. Our result for the
SRC was similar to the one reported (341.4 ± 48.5 g DM m−2). In this study, the root biomass weight
was sampled at a depth of 0–102 cm and the data showed that 71% of the fine roots were located in the
first 0–30 cm. According to these data, in our SRC system, about 30% of the fine roots are missing from
the NBP calculation; while we do not have data from other experiments on a comparable ACS system,
where the percentage of poplar fine roots in the first 30 cm could be lower than 71%.

As for coarse roots and stumps, since poplar is an opportunistic rooter, it does not produce roots
in deep soil layers when the water table is sufficiently high [72], as observed by Berhongaray et al. [73].
In their experiment, where the average water table was 85 cm, they found almost no coarse roots below
60 cm in a young SRC poplar plantation (4 years old), after the complete excavation of the stumps.
The situation in our ACS could be very different because of the competition in the plough layer and the
breaking of the coarse roots with stand clearing, which may have forced the poplar to reorganize its
root system at deeper layers. Oliveira et al. [74] made a huge effort to determine SRC poplar roots in
Spain, excavating stumps for different clones in different sites to validate a model. They measured the
single-stool root-to-shoot ratio for SRC poplar (3 to 4 years old) in four different sites in Spain, finding
an average value of 0.23. Berhongaray et al. [73] found root-to-shoot values ranging from 0.27 to 0.70
in 2- to 4-year-old poplar, obtained through allometric equations and excluding the fine root biomass.
The root-to-shoot value in our SRC is 0.79, if roughly calculated with the belowground biomass and
divided by the aboveground biomass, which is much higher than the reported values. These data
could suggest that the stand age and site characteristics are determinant, and it becomes difficult to
compare root data on SRC stands of different ages [67]. The study conducted by Oliveira et al. [74]
focused on younger pure stands in less productive sites. These issues suggest that our quantification
of poplar roots in a 9-year-old converted ACS could have been hampered by sampling complications,
which could eventually give unsatisfactory results.

4.3. Contribution of the C Output to the NBP

As for the carbon input, the SRC showed a higher but not significant carbon output, which was
mainly due to the harvested poplar woody biomass. In the ACS, the carbon output was close to that of
the SRC due to its higher heterotrophic respiration rate, which is high enough to close the gap between
the ACS and SRC due to the two times higher biomass harvested in the SRC. For instance, in the SRC,
there was a higher aboveground biomass production, but the carbon was lost through harvesting,
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while the respiration rate was significantly lower than in the ACS, thus leading to a positive NBP in
the SRC. Conversely, the ACS, which had a lower aboveground production and a similar belowground
accumulation compared to SRC, was found to have a carbon output closer to that of the SRC, thus
leading to a negative NBP.

The poplar stools’ yields were discussed in the previous section with respect to the contribution of
the C input since poplar stools were measured as C inputs and C outputs through harvesting. According
to the levels of sorghum aboveground biomass discussed in the previous section, the sorghum grain
yield of the ACS (164.3 ± 82.0 g DM m−2) was also about 50% lower than in an open field condition in
the area (data not published). It should be noted, however, that the sorghum yield recorded in the
ACS was lower (−64%) than the sorghum yields of the area from the national statistic for Pisa Province
(459 g DM m−2) [75]. Nassi o Di Nasso et al. [62] reported an even higher long-term yield average of
670 g DM m−2. Our low yield is due to the lower crop growth, especially next to the poplar rows, and
also to the reduced cropped area.

After considering these data, our hypothesis was that the factor underlying the main differences in
NBP among the two systems was the carbon output through heterotrophic respiration, which is linked
with soil and crop management and site history [76]. Our result regarding the total soil respiration for
the ACS was 1560.2 ± 300.7 g C m−2 year−1 (Table A4), a high value if compared with other open field
cultivations. Sharma et al. [77] measured an open field biomass sorghum (Sorghum bicolor L. Moench)
in southern USA, finding values of 872.1, 1138.4 and 882.2 g C m−2 year−1 in 2013, 2014 and 2015,
respectively. Alberti et al. [78] reported another warm season cereal, continuous maize, in Northern
Italy, finding much lower Rh rates of 607 g C m−2 year−1 and 540 g C m−2 year−1 for 2007 and 2008,
respectively. In a review paper, Subke et al. [79] reported about 30% lower values for total respiration
of 1077 g C m−2 year−1 for Mediterranean croplands, on average. However, there is a lack of data on
the respiration measurement and partitioning of ACSs in Mediterranean environments and on the
peculiar transition characteristics considered in our experiment, so we found no data that could be
clearly compared with ours [80]. Moreover, it should be noted that the CRh calculated by means of
heterotrophic respiration could result in an underestimation of the C output, since it does not include
the C lost through biomass degradation.

The SRC showed a cumulate Rh value close to the values reported for temperate forest ecosystems,
ranging between 280–970 g C m−2 year−1 [81]. Under Mediterranean conditions in Northern Italy,
Ventura et al. [64] measured, in a poplar SRC plantation, an Rh ranging from 700 ± 100 g C m−2 year−1

for 2008 and 900 ± 100 g C m−2 year−1 for 2009 in control non-fertilized plots. In the SRC, the lack of
soil aeration, crop residue incorporation and, eventually, tree-shading may have led to a lower carbon
loss through respiration. Indeed, in the SRC, the CRh was −37% compared to that in the ACS.

The SOM content in the ACS was closer to that of the SRC because of the former poplar stand, but
the soil aeration and crop residue incorporation, due to tillage operations, may have led to an increase
in heterotrophic respiration, which may have been due to the higher pool of carbon in the SOM. Indeed,
in the ACS, the stumps were destroyed and ground one year before the beginning of the experiment.
Thus, a very high quantity of woody biomass was incorporated into the soil (estimated to be equal to
1520 g C m−2 or 15.2 t C ha−1, data not shown). This could have boosted the heterotroph respiration
activity in the soil, resulting in a higher rate of CRh. Beuschel et al. [9] studied the conversion of a Short
Rotation Coppice stand into a silvoarable system in Germany and found that the SOC and related
soil quality parameters in the first 0–5 cm decrease in the alley in the first year after conversion. Thus,
in the ACS, the incorporation of woody biomass and the consequent repeated tillage operations could
have favored a higher mineralization rate than that in the SRC. No studies are available on soil CO2

fluxes for a conversion from an SRC stand to an Alley Cropping System, since the few data available
are on studies conducted on formerly arable lands that have been converted into SRCs and not vice
versa [82,83].

In arable systems, soil carbon is usually depleted, because the systems have a lower plant biomass
input due to harvesting, a fast SOM breakdown (SOM is more easily reached and disrupted by tillage
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soil aggregates) and an increased displacement of carbon-rich topsoil [84]. However, crop management
practices, such as ploughing and fertilization, may cause either soil C increases or losses [19].

In our case, if the incorporation of poplar stumps in the ACS led to a peak in soil respiration
in the short term, in the second year, we could expect a decrease in the Rh and a lower carbon
loss [85]. Nonetheless, if the repeated soil aeration and crop residue incorporation steadily boosted
the heterotrophic activity in the soil, we could expect the opposite result, since the ACS loses more
carbon even in the following years. Some studies suggest that the loss of a permanent cover and
re-introduction of tillage may lead to a destruction of microorganisms’ habitats and a decrease in
soil organic matter recycling, thus overcoming the beneficial effect of stump incorporation for SOM
accumulation [86]. These two opposite results could also be dependent on the woody nature of
the poplar stumps incorporated. Alberti et al. [78] and Aubinet et al. [87] showed that crop residue
respiration (maize and sugar beet) was mostly accomplished in the first months after the incorporation
and was nearly finished within one year. Poplar stumps could take longer and show their effect on CRh

in more than one year. We need to point out that the SOM content in topsoil could have influenced the
soil respiration rates, as reported for temperate croplands [55]. However, in our experiment, the SOM
content sampled from the ACS and SRC in 2017 was very close, which is mainly related to them having
the same management history for the years prior to the conversion (Table 1). Since organic substrates
present in litter or soil are decomposed through Rh [88], carbon losses from the ecosystem can be
correlated with the C concentration in topsoil [55,76,89].

5. Conclusions

The transition from an SRC poplar mature stand to an ACS with an annual arable crop (a sorghum
and poplar Alley Cropping System) led to a loss of carbon in the agroecosystem. Indeed, while the SRC
showed a positive NBP (96± 40 g C m−2 year−1), the ACS had a negative NBP (−93 ± 56 g C m−2 year−1).
Thus, the SRC system proved to be a net carbon sink (i.e., NBP>0), while the ACS was a net carbon
source (i.e., NBP < 0).

The carbon in the total aboveground biomass was higher in the SRC, while the total belowground
C amount in the two systems was comparable. Overall, the total carbon input for the two systems was
not significantly different, even if it was 22% higher in the SRC than in the ACS.

Regarding the output subcomponents, the carbon harvested was higher in the SRC than in the
ACS. However, the carbon lost through heterotrophic respiration was higher in the ACS than in the
SRC. The total carbon output, like the total carbon input, for the two systems was not significantly
different and the SRC was only 4% higher than the ACS.

Our results showed that, in this transition stage, the higher respiration rate of the ACS was
the NBP component impacting more on the final negative NBP value. Heterotrophic respiration
could have vanished the beneficial effect of the presence of trees due to tillage disturbance in the
organic carbon-enriched soil after the conversion. However, further years of heterotrophic respiration
measurements could provide a proxy of the speed and of the degradation process of poplar woody
residues and show the effect of the transition towards SRC-based Alley Cropping Systems in terms of
climate change mitigation potential.

The challenges relating to the determination of the contribution of the belowground biomass
accumulated by tree roots in deeper layers could have caused an underestimation of the C input in
both systems.
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Appendix A

Table A1. Parameter estimates and goodness-of-fit statistics for the poplar shoots model with the
equation DWsh = b × Dc.

Estimate Std. Error t Value p-Value (>|t|) RMSE R2 DF

a 28.326 2.489 11.38 <2 × 10−16 49.737 0.957 58
b 2.359 0.066 35.75 <2 × 10−16

Note: Std. Error: standard error; RMSE: root of mean square error; R2: coefficient of determination; DF: degrees
of freedom.

Table A2. Parameter estimates and goodness-of-fit statistics for the poplar stumps model with the
equation DMst = b × ecD.

Estimate Std. Error t Value p-Value (>|t|) RMSE R2 DF

b 0.117 0.045 2.629 0.0122 1.463 0.750 39
c 0.299 0.028 10.701 3.62 × 10−13

Note: Std. Error: standard error; RMSE: root of mean square error; R2: coefficient of determination; DF: degrees
of freedom.
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Tree height m 5.0 ± 0.1 5.3 ± 0.1
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Number of shoots shoots stool−1 21.3 ± 1.2 17.4 ± 2.1
Mean shoot diameter mm 22.4 ± 0.6 20.7 ± 1.0
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Agronomy 2020, 10, 1251 19 of 23

Table A4. Cumulated annual respiration rates in the two systems (g C m−2 year−1, average ± SE;
ACS: Alley Cropping System; SRC: Short Rotation Coppice system). Values reported as Soil respiration
(Rs), Heterotrophic respiration (Rh), Autotrophic respiration (Ra).

NBP Component Unit ACS SRC

Rs g C m−2 year−1 1560.2 ± 300.7 964.8 ± 151.0
Rh g C m−2 year−1 692.9 ± 27.8 439.0 ± 22.7
Ra g C m−2 year−1 867.2 ± 327.9 525.8 ± 167.1
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