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1. Introduction

The rapid development of knowledge in the
field of advanced materials and nanomate-
rials has fueled a discussion on the best
means to develop this emerging technology
both safely and sustainably, without limit-
ing the incredible potential benefits that
these advancements bring about in mate-
rial design and formulation.[1] One of the
first difficulties encountered in this domain
pertains to how we organize and utilize the
massive volume of information that is
being produced, in relation to the perfor-
mance and environmental and health and
safety (EHS) implications of these nano-
scale materials. Nanotechnology, machine
learning (ML), and artificial intelligence
(AI) are a few leading technologies in this
domain; although ML and AI have recently
surpassed nanotechnology in popularity,
they have largely complemented each
other.[2] We have been conditioned to
expect the development of AI in a wide
range of applications such as in flying

drones for home delivery, traffic routing, and small-scale robotic
assistance in performing daily chores. We are probably
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Materials at the nanoscale exhibit specific physicochemical interactions with
their environment. Therefore, evaluating their toxic potential is a primary
requirement for regulatory purposes and for the safer development of nano-
medicines. In this review, to aid the understanding of nano–bio interactions from
environmental and health and safety perspectives, the potential, reality, chal-
lenges, and future advances that artificial intelligence (AI) and machine learning
(ML) present are described. Herein, AI and ML algorithms that assist in the
reporting of the minimum information required for biomaterial characterization
and aid in the development and establishment of standard operating procedures
are focused. ML tools and ab initio simulations adopted to improve the repro-
ducibility of data for robust quantitative comparisons and to facilitate in silico
modeling and meta-analyses leading to a substantial contribution to safe-by-
design development in nanotoxicology/nanomedicine are mainly focused. In
addition, future opportunities and challenges in the application of ML in
nanoinformatics, which is particularly well-suited for the clinical translation of
nanotherapeutics, are highlighted. This comprehensive review is believed that it
will promote an unprecedented involvement of AI research in improvements in
the field of nanotoxicology and nanomedicine.
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interacting with AI more than we realize due to a prominent
upsurge in the use of AI in electronic gadgets and digital media,
and with AI grabbing the attention of the consumer industry.[3]

Technology/gadgets using ML are so common that often we
do not realize that computers are outperforming humans in
terms of efficacy. However, this also raises an alarm and clarifies
our understanding of what AI is capable of and how it can com-
plicate our future. In simple terms, AI is a broad area of com-
puter science that attempts to impart to machines human-like
intelligence to learn and perform the given tasks.[4]

In 1956, John McCarthy, a Dartmouth professor, first coined
the term “Artificial Intelligence” when he observed that machines
can solve problems such as understanding language semantics
and forming abstractions and concepts, which were thought to
be limited to humans.[5] McCarthy along with a group of computer
scientists and mathematicians demonstrated that machines are
capable of formal reasoning using trial and error, thus paving
the way for a new era of AI over 60 years ago. Since then, AI
has mostly remained limited to the Internet, university class-
rooms, and exclusive labs. The timeline of advances in computer
programming indicates that a wealth of applications has been cre-
ated along with uncertainties in different areas of life (Figure 1).[6]

AI and ML are growing exponentially and can soon become
ubiquitous.[7] Over the past few years, two factors have led to
the skyrocketing of AI worldwide, i.e., data availability and a faster
processing capacity.[8] The amount of data being generated is grow-
ing exponentially, which can be seen from the fact that 90% of the
data globally has been generated over the past 2 years alone.[9] With

high processing speeds, computers can process all of this informa-
tion more quickly and effectively, thus steadily rendering AI more
real than artificial, and significantly more intelligent. In this review,
we aim to address the developments in ML implemented in theo-
retical approaches and simulations used in characterizing nano-
scale materials over the last decade. However, by incorporating
AI into its core, the ML process has reached an all-time high. In
this article, we review ML algorithms, which are continually being
applied in new areas based on the widely distributed branches of
AI, for classifying the diverse properties of nanomaterials, as well as
correlation, validation, and grouping algorithms (Figure 2).[10] In
Table 1 and 2, we list the principal ML tools adopted for both
in vivo and in vitro nanotoxicity analyses used for the different clas-
ses of nanomaterials based on a meta-analysis and an analysis of
collected data. Many of these algorithms help with the classification
(e.g., logistic regression and support vector machines) and statisti-
cal regression analysis (e.g., decision trees and random forests,
which are used in both classification and regression) of nanoma-
terials based on their categorical or continuous numerical charac-
teristics such as pulmonary toxicity, cell-specific targeting, and
nanomaterial grouping in the case of nanotoxicology.

2. Standard Information Reporting in
Nanomedicine and Nanotoxicology

Although various ML tools are already being used for nanotox-
icity analyses, the comparison or correlation of various studies

Figure 1. Timeline of AI and ML in nanomaterial development. Evolution timeline for both the development of nanoparticles (NPs), starting after the first
synthesis and quantum effects as observed in 1853 by Faraday, and AI including statistical approaches. In 2010, both timelines merged when AI was
applied in tasks such as the identification of NP properties or interaction partners, the grouping of NPs depending on their properties or toxic effects, and
the prediction of NP toxicity.
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has only been possible to a limited extent. To date, there has
been a lack of standardization in nanotoxicological research in
characterizing and understanding the interactions between
nanomaterials and the surrounding biological media, leading
to a high degree of variability in the published literature.[62]

There is also a need for standardization within the field of
nanotoxicology. It is time for the nanotoxicology community
to adopt ML- and AI-oriented “reporting standards” to enhance
the quality and reusability of published research. In this section,
we briefly review how ML and AI help in interpreting the
collected data to predict safer cell–particle interactions, which
has been a major bottleneck in the fields of nanotoxicology
and nanomedicine.

The minimum information reporting in bio–nano experi-
mental literature (MIRIBEL) for published accounts of
bio–nano research has recently been proposed for the detailed
reporting of biomaterial characterization and standard operat-
ing procedures (SOPs) in the development of experimental
protocols (Figure 3).[63] The data to be published are divided
into three groups. The first group describes the important

parameters for the characterization (Figure 3, left panel) of
the NPs to be used, such as the size, zeta potential, composition,
material density, aggregation behavior, labeling used, and pos-
sible drug loading. All of these parameters can influence the
interaction with the biological environment and thus have an
impact on the toxicity of the NPs. The second group describes
the basic biological characteristics of the selected biological
model (cells, tissues, or animals) on which the toxicological
study is to be conducted (Figure 3, middle panel). Based on
the cell culture experiments, details of the appearance of the
cells, the general cell characteristics, and toxicological studies
(e.g., determination of the mean effective concentration, i.e.,
EC50) should be stated. Overall, it is important to characterize
the biofluids used in in vitro and in vivo experiments. It is also
essential to characterize the NPs in the biofluids because the
behavior of the NPs in these biofluids has a decisive effect
on their uptake of the biological model and thus on the toxico-
logical effects. The third group (Figure 3, right panel) describes
the details of the experiment performed, such as the dimen-
sions of the cell culture, the dose administered, the image

Figure 2. Interconnected algorithm network for exploring advanced material design. A blueprint for AI and other important ML approaches used in
nanotoxicology for the prediction of safer nanomaterials.
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and signal details of the cells with and without NPs, and the
details of the data analysis.[64] Differences in the three groups
or the lack of information, even if insignificant, can lead to dif-
ferent results. An evaluation using ML methods is therefore
extremely difficult due to the high variability of the information.
Standardization of the information presented by the research
community in journals and corresponding platforms can
mitigate this fundamental problem, thereby increasing the
reusability, quality, and distinctiveness of the generated data.
In addition, the MIRIBEL list can be used to generate quantifi-
able data from qualitative data, which additionally enhances the
meaningfulness and robustness of the data.[64] The aforemen-
tioned problems of inhomogeneous or incomplete datasets and
the harmonization of resulting datasets for risk assessment
are also addressed by the EU US Roadmap Nanoinformatics
2030.[65]

Furthermore, although many nanomaterials have been pro-
posed as drug carriers and for targeted therapies, there are no
protocols or standard probes for analyzing the toxicity data of

the carrier material. Under this scenario, the assessment of
the possible toxic effects of the nanomaterials used is extremely
important. ML and AI can aid in the safe manufacturing and
efficient production of nanomaterials in the future.[66] Based
on the existing literature, toxic effects can be detected for dif-
ferent materials using classification or cluster methods (see
Table 1). If the materials used in biological models are suffi-
ciently investigated, the interaction of the nanomaterials with
the environment can also be studied and predicted accordingly
using atomistic or quantitative structure–activity relationship
(QSAR) models. Based on the results obtained, the atomistic
or QSAR models can also be used to predict the properties
of new nanomaterials. Although this procedure is complex, it
is necessary to train ML models. There is no existing alternative
approach for a reliable prediction of all necessary information
in a single model (or an ensemble model) regarding the nano-
material properties, the interaction with biological media, and
finally, the level of toxicity. The first concept of such a model
combination can be found in recent studies.[67]

Table 1. Principal ML tools for adopting a statistical approach to combine the data derived from a systematic review for a meta-analysis of different
classes of nanomaterials and their example application areas.

Predictive algorithm Nanomaterial type Application area in nanotoxicology Reference

Bayesian network TiO2, SiO2, Ag, CeO2, and ZnO Hazard ranking [11]

CORAL Metal oxide NPs Cell viability assay [12]

ZnO, CuO, Co3O4, and TiO2 Quantitative feature–activity relationships (QFARs) [13]

SiO2 NPs Percent cellular viability (CV%) prediction [14]

Random forest (RF) CNT pulmonary toxicity Physical dimensions and impurities affect the toxicity [15]

CNT impurity toxicity NP characteristic interaction effects on pulmonary toxicity [16]

Metal oxides NPs Multiple toxicity endpoints of nanomaterial effect [17,18]

Silica, TiO2, Mn2O3, Cu-phthalocyanine
blue, and Cu-phthalocyanine green

Nanomaterial grouping [19]

Artificial neural network (ANN) Nano-sized metal oxides Physicochemical effect prediction to cytotoxicity [20]

All categories of NPs QSAR [21]

Polymethyl methacrylate (PMMA), silica,
and polylactic acid (PLA)

In vitro NP–cell interactions [22]

Mixed naive Bayes, sequential
minimal optimization (SMO), J48, bagging,
locally weighted learning (LWL),
decision table, naïve Bayes (NB) tree, and RF

Poly amido amine dendrimers Cytotoxicity, analysis as a binary variable, toxic/nontoxic [23]

Support vector machines QSAR/quantitative structure-property
relationship (QSPR)

Nano–QSAR/QSPR [24]

Q-dots and FeOx NPs Cellular uptake of cross-linked iron oxide NPs [25]

Target specificity of NPs Nanoinformatics prediction [18,26]

Logistic linear regression with
an expectation minimization algorithm

NPs in the printing industry Pulmonary toxicity [27]

Apriori algorithm Nanoparticulate aerosol Systems toxicology meta-analysis [28]

Conductive metal NPs SEM analytic tool [29]

Decision tree Poly amido amine dendrimers Cytotoxicity, prediction as cell viability considered as a binary variable,
toxic/nontoxic NPs in human colorectal cancer cells

[23]

21 different NPs Classify nanomaterials [30]

Engineered nanomaterials (ENMs) Ecotoxicity of ENMs [31]

k-nearest neighbors Q-dots and FeOx NPs Cellular uptake of cross-linked iron oxide NPs [25,32]
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3. Theoretical and Computational Ab Initio Tools
to Address Safer Bio–Nano Materials

We know experimentally that physical parameters such as the
size, shape, surface functionalization, and/or physicochemical
composition influence the properties of nanomaterials.[69]

These dependencies are also intrinsically linked and must be

considered before we make predictions about possible risks.[70,71]

Although an understanding of the potential risks and hazards
associated with nanomaterials and NPs can certainly benefit
from further experiments, theoretical and computational
studies can also contribute through the application of relevant
calculations in this area.[72] The physical characteristics that give
NPs an advantage in many applications are also the ones that

Table 2. Principal ML tools for adopting the rigorous method of selecting, evaluating, and synthesizing all available evidence for a nanotoxicity analysis of
different classes of nanomaterials and their example application areas.

Predictive algorithm Nanomaterial type Application area in nanotoxicology Reference

Bayesian network Cross-linked iron oxide (CLIO) NPs Cell-specific targeting [33,34]

Small molecules and NPs Nanomaterial�QSAR (Nano�QSAR) [34,35]

Organic, inorganic, and carbon-based NPs 24 h postfertilization (hpf ) effect on zebrafish model [36,37]

CORAL All categories of nanomaterial cytotoxicity modeling External leave-one-out cross-validation (LOO) for approach
verification

[38]

Random forest (RF) Soil NPs pH Nanotoxicology prediction in ago-ecosystems [39]

Linear regression (LR) Sizes of the anatase TiO2 NPs on ROS production ROS correlations between in vitro and in vivo data [40]

TiO2 and ZnO Predictive optimization of experimental conditions [41]

Organo-coated silver NPs Mechanistic ecotoxicity [41]

CeO2 NPs induce DNA damage Genotoxic dosimetry [42]

Nano drug mimic Nano drug-specific protein expression [43]

FeOx NPs with 108 different functionalization protocol To build the nano–QSAR model [44]

Estimating ultrafine particle number concentrations
(PNCs)

Urban ecotoxicology [45]

Artificial neural
network (ANN)

Chitosan/streptokinase NPs Cytotoxicity as a function of polymer concentration,
pH of a solution, and stirring time

[46]

Polyethylene glycol (PEG)/PLA NPs doxorubicin release
from polymeric micelles

Entrapment efficiency prediction polymers [47]

PEG–chitosan NPs Prediction of cell adhesion [48]

Polystyrene fluorescent NP To predict quantity adhering to the vessel walls as a
function of wall shear rate and NP diameter

[49]

Poly lactic-co-glycolic acid NPs To predict the release of macromolecules [50]

IBK, bagging, M5P, and k-star Multiple NPs To predict embryonic zebrafish postfertilization toxic effect [36]

Support vector C60 NPs Nano–QSAR/QSPR [51]

Cobalt–ferrite NPs (Co–Fe NPs) Cytotoxicity as a binary value [52]

Logistic linear regression
with an expectation
minimization algorithm

MWCNTs In vivo modeling in embryonic zebrafish [53]

Colloidal NPs Adverse outcome pathways (AOPs) [54]

CaCO3 NPs Pulmonary hypofunction [55]

Metal oxide NPs Nano�QSAR [56]

C60 fullerene Pulmonary toxic effects [57]

Apriori Algorithm Pristine C60 fullerene Predicting hemocompatibility [58]

k-nearest neighbors PEG/PLA NPs Microarray gene expression analysis and clinical
outcome prediction

[47]

All category NPs to predicts the 24 h postfertilization (hpf ) In vivo embryonic zebrafish [36]

K-means clustering algorithm Quantitative resolution of NP size aqueous matrices at
environmentally relevant concentrations

Au-NPs [59]

Protein NPs Local protein sequence motifs representing
common structural property

[59]

i-TASSER Short peptide-gold nanoflowers In-silico modeling for hyperthermia [60]

SnO2 NPs Biomineralization efficiency [61]
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Figure 3. Summary of MIRIBEL components, guiding principles, and potential benefits. The development of MIRIBEL was guided by the principles of
reusability, quantification, practicality, and quality. The information to be reported is divided into three groups. I. The important parameters for the
characterization of the NPs to be used (e.g., size, zeta potential, composition, material density, aggregation behavior, labeling used, and possible drug
loading) (left panel). II. The basic characteristics of the selected biological model (cells, tissues, or animals) on which the toxicological study is to be
conducted (middle panel). III. The experimental details (i.e., dimensions of the cell culture, the dose administered, image and signal details of cells with
and without NPs, and details of data analysis) (right panel). If combined with a journal and community adoption (lower panels), MIRIBEL can lead to
improved outcomes in the field, including data exchange and communication, reproducibility, a deeper analysis of the published data, and a systematic
comparison between approaches and materials. Reproduced with permission.[63] Copyright 2018, Springer Nature.
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increase the possible risk and toxicity.[70,73] In addition, the toxi-
cology of different nanomaterials is being studied with the devel-
opment of new nanotechnology applications.[74] Numerous
studies summarizing the existing knowledge and highlighting
areas that require focused attention have mainly relied on exper-
imental approaches to solve this problem.[75,76]

Computational methods have an advantage because, unlike
experimental methods, each of the critical parameters can be
individually controlled such that the underlying mechanisms
responsible for variations in the nano–bio interactions can be
identified. A methodological approach can be followed to create
the required virtual environment for the nanostructures within a
short period of time. Such methods and virtual spaces can be
used to possibly investigate the interaction of nanostructures
under extremely complex environments, which would otherwise
not be possible experimentally. A pertinent example mentioned
in the literature is that of titanium dioxide (TiO2), where proper-
ties of nanomaterials can be optimized using density functional
theory (DFT) calculations to predict the crystal structure related
to the photocatalytic effects.[78] This mineral, also known as tita-
nia, occurs in three forms: rutile, anatase, and brookite. There
have been concerns regarding the toxicity of the photocatalytic
anatase form because the surface of these NPs can produce a
greater amount of reactive oxygen species (ROS), which can
lead to oxidative stress in exposed organisms. It was mentioned
that the (001) surface of the anatase form is particularly reac-
tive, although the relative fraction of such a surface found in
different samples was reported to depend on the temperature
and chemical environment.[79] Therefore, studying its toxicity
would traditionally require setting up a significant number of
tightly controlled experiments. By contrast, DFT calculations
can be used to predict the number of reactive sites on the sur-
face of polyhedral particles as a function of temperature and
NP size,[79,80] thereby saving precious time, money, and effort.
Through the knowledge gained from theory and simulations,
we can build predictive models that will help in building nano-
material interactions within the biochemical environment in
question that are both effective and nontoxic. A similar concept
of the interaction of a particular nanomaterial with biological
molecules is shown in Figure 4. As indicated, the simulation
starts with the NP properties determined experimentally or
through simulations (DFT, QSAR) as input parameter vectors
and uses them to train a set of features against the target func-
tions based on the NP–biomolecule interaction properties. As a
result, the interaction between NPs and biomolecules can be pre-
dicted. With the speed and sophistication of established models
and computational resources, algorithms can be developed to
assess the toxicity of nanomaterials in a variety of natural envi-
ronments, which will help to avoid potential toxic hazards in
nanomedicine. In Table 3, the freely available theoretical and
computational tools available for the analysis are presented along
with their corresponding links.

3.1. Nanodescriptors Characterizing the Surface Competitive
Adsorption Index of the Nanomaterial and NP–Protein Corona

In a physiological environment, NPs selectively adsorb proteins
to form a NP–protein corona,[81,82] as shown in Figure 5. This

leads to a reduction in the surface energy and simultaneous
increase in the bioavailability of the NPs due to the resulting
protein corona formation as a monolayer. The intrinsically large
surface area of the nanomaterials results in the preferential
adsorption of chemicals or biomolecules, reducing their surface
energy.[83] The adsorption of proteins depends on the properties
of the nanomaterial[84] (e.g., size, shape, composition, and pH),
particularly the energetic state of the nanomaterial surface.

To understand the interaction of nanomaterials with biomo-
lecules, the biological surface adsorption index (BSAI) approach
has been reported in the literature.[82] This approach character-
izes the adsorption properties of the NPs by quantifying the com-
petitive adsorption of a set of small-molecule probes onto the NPs
by mimicking the molecular interactions of the NPs with the
amino acid residues of the proteins. The basis of this approach
is the forces that are dominant at that scale, i.e., the Coulomb
force, hydrogen bonds, lone-pair repulsions, and London disper-
sion forces.[85] By measuring the quantities of the probe com-
pounds adsorbed, and their concentration in the surrounding
media, the adsorption coefficient (k) is calculated as shown in
Figure 6.[82]

In another study, the BSAI approach was developed to identify
and quantify the significant factors that govern the adsorption
properties of nanomaterials using a solid-phase microextraction
(SPME) and gas chromatography mass spectrometry (GC–MS)
method.[82,86]

For NPs, BSAI nanodescriptors are a perfect tool for predict-
ing the adsorption of small molecules on their surface, which is a
critical process for nanomaterials used in biological and environ-
mental systems. The BSAI approach can play an important role
in the development of predictive nanomedicine and for a quan-
titative risk assessment and safety evaluation of nanomateri-
als.[87] The collection of morphological nanodescriptors of the
surface exhibits significant aspects of the nanomaterial character-
istics such as the size/shape anisotropy, density/number of cor-
ners, aspect ratio, bio-persistence, surface area, and curvature.
In mathematical calculations, nanodescriptors are crucial in
representing the contributions and relative strengths of each
molecular interaction for creating pharmacokinetic and nanoma-
terial safety assessment models.[88] Evolutionary algorithms can
further optimize the clustering of nanodescriptors and predict
the particle properties.

3.2. A Molecular Dynamics-Based Approach for Characterizing
Thermal Transport in Nanoscale Material

In silico modeling of the energy-dependent transport phenome-
non in nanoparticulate matter can be of significant assistance in
preclinical and human trials of plasmonic nanotherapeutics
in cancer nanotechnology, and in infection control.[60,89]

A hybrid calibrated fluorescence assay (CF) and ML tool, i.e.,
a Fluorescence Cell Assay and Simulation Technique
(FORECAST), were used to quantify the exposure dose in corre-
lation with the membrane deposition and internalization of
quantum dots, as well as the polystyrene nanomaterials.[90]

The hybrid algorithm provides a multitude of information
regarding the NP stability, quantitative biokinetics, and intracel-
lular fates based on the transport phenomena.[91]
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New carbon nanotube (CNT) materials have been proposed
in the literature as ideal candidates for potential applications

in biomedical, chemical, and industrial processes.[92] An impor-
tant property that affects the usability of CNT materials is their

Figure 4. Simulation concept of nanomaterial–protein interaction by the application of AI and ML. a,b) The nanomaterial properties (e.g., size, shape,
composition, granularity, and pH) resulting in surface-specific energy contribute toward nanomaterial–protein interactions and can be used as input
parameter vectors based on real experimental data or simulations (DFT and QSAR). c) By training the set of features against appropriate target functions,
appropriate models can be built and optimized depending on available datasets. d,e) As a result, possible interactions with proteins can be predicted.
Reproduced with permission.[68] Copyright 2018, Science and Technology Review Publishing House.

Table 3. Freely available theoretical and computational tools for predicting the interaction between NPs and biomolecules.

Task Name of the tool Supported OS Link

MD simulations NAMD Windows/GNU Linux/Mac OS X/Solaris http://www.ks.uiuc.edu/Research/namd/

Tinker Windows/GNU Linux/Mac OS X http://dasher.wustl.edu/tinker/

Quantum Monte Carlo CASINO Linux-related operating system/Windows by Cygwin http://vallico.net/casinoqmc/

Semiempirical calculations COLOMBUS GNU Linux http://www.univie.ac.at/columbus/

DIRAC Windows/GNU Linux/Mac OS X http://www.diracprogram.org/doku.php

Ab initio CFOUR GNU Linux http://www.cfour.de/

DALTON GNU Linux http://daltonprogram.org/

OpenAtom GNU Linux/Mac OS X http://charm.cs.uiuc.edu/OpenAtom/

DFT CPMT GNU Linux http://www.cpmd.org/

DFTBþ GNU Linux http://www.dftb-plus.info/

FLEUR GNU Linux http://www.flapw.de/pm/index.php

Quantum ESPRESSO GNU Linux http://www.quantum-espresso.org/
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thermal transport, which depends on their size, chirality, temper-
ature, and defects, among other factors. It is therefore important
to understand the influence of several different physical factors
on their thermal transport.[93] Under such a scenario, molecular
dynamics (MD) simulation models would be a good alternative
to time-consuming, elaborate, and expensive experiments for
studying the transport phenomenon at the nanoscale level.
For a more realistic prediction, in the calculation of the molecular
transport during the physisorption and chemisorption, mono-
layers of small molecules were created to passivate the surfaces
of the nanostructures, as shown in Figure 4. “Clean” surfaces are
experimentally impossible except under ultra-high-vacuum con-
ditions and are conveniently presumed inmolecular simulations.
However, an MD simulation does not link the input parameters
with the generated output. Under such a scenario, AI techniques

coupled with modeling such as MD simulations can be intro-
duced to fill this gap.[94]

A literature review suggests that there is a need to develop an
integrated MD-based AI simulation technique for modeling the
material properties of nanoscale materials with a long aspect
ratio.[94] The new integrated approach can combine the accuracy
and low cost of an MD simulation with the input–output linking
of the AI techniques. However, building an AI technique
requires training data, which can be obtained from controlled
MD simulations. Once trained, the AI will then be able to mean-
ingfully support our ability to generate solutions for complex
nanotoxicology problems. CNTs with a high aspect ratio can
generate ROS which are considered indicators of the high
toxicity of a material.[95] To study the toxicity of multiwalled
CNTs (MWCNTs), ML models were developed based on the
representation of molecular descriptors using the Monte
Carlo approach. This involves weights of descriptor correlation
through a preincubation in a quasi-simplified molecular-input
line-entry system (quasi-SMILES) using descriptors such as
the concentration, presence of an enzyme mix, and surface area
of the MWCNTs.[96] In another study,[97] the genotoxicity was
modeled as a function of five parameters, i.e., particle type
(MWCNTs or fullerene), illumination, concentration, metabolic
activation, and preincubation, which produce a satisfactory sta-
tistical parameter. Quasi-SMILES is used to reflect the physio-
chemical properties and experimental conditions such as the
diameter, weight, surface area, an assay of toxicity in vitro, cell
line, exposure time, and dose. The calculation of the quasi-
SMILES model using the Monte Carlo equation provides ample
statistical parameters.[98] In this case, the cytotoxicity calcula-
tion endpoint is the percentage of viability of the cells. In
another case, i.e., an in vitro ML-based algorithm, as shown
in Figure 7, it was shown that single-walled CNTs (SWCNTs)
can amend the cellular motility and biological chirality of the
cells, an anomaly that can be related to abnormal in vivo fetal
development.[101] As shown in this report, in the context of CNT

Figure 5. Visual representation of an NP corona formation process.
Single-type proteins attach to an NP surface at rate kon, leaving the NP at
rate koff; on average, a complete “n” protein can fully cover the NP surface.
Reproduced with permission.[77] Copyright 2013, Public Library of Science.

Figure 6. Nanodescriptors of bio-physicochemical prediction. A radar compass plot comparing the five nanodescriptors of 12 different nanomaterials.
The nanodescriptors [r, p, a, b, v] are regression coefficients representing the relative molecular interaction strengths of the nanomaterials. The
nanodescriptors of NiOx NPs present an irregular pattern due to their unique chemisorption of phenol-derivative probe compounds. Reproduced with
permission.[82] Copyright 2010, Springer Nature.
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toxicity, the cellular motility is an important parameter that
plays a significant role in cell–cell interactions and cellular
microenvironment homeostasis.[100]

For example, an MD-based AI approach used to investigate
the effects of the geometry, chirality, and vacancy defects on
the thermal conductivity of CNTs has been reported.[102] A model
for calculating the thermal conductivity of CNTs in terms of their
diameter, length, and several defects is described in the afore-
mentioned study. It has also been reported that the thermal
transport in CNTs can be calculated using a reversible nonequi-
librium MD simulation,[102] with a good agreement with the
actual data by Cao and Qu.[103] Although further studies are
needed, engineers can use their mathematical formulation to
estimate the thermal conductivity of CNTs in relation to their
physical properties, which in turn can prove useful for design
purposes and nanotoxicology applications.

4. AI-Based Translational Nanoinformatics
Catalyzing Clinical Trials in Nanomedicine

It has been reported that nanoinformatics and DNA-based com-
puting will have a major impact on the field of nanomedicine in
the future by changing the way we model and process informa-
tion in biomedicine.[104] The developments of nanotechnology
and computational resources are leading to informatics and com-
puting becoming one of the most important tools for testing the

toxicity at the nanoscale. At that scale, theoretical and computa-
tional ab initio tools are needed to address the nanosafety of bio-
materials because almost all physiochemical properties such as
the size, shape, surface area, concentration, and electrostatic
properties can affect their interaction with the surrounding
media.[105] Although it provides an advantage, i.e., such proper-
ties can be used to achieve a targeted interaction with a specific
biological environment, it also requires more intensive studies to
test for nanotoxicity.

To effectively understand these interactions, new informatics
tools must be developed and implemented. The data from the
literature can be used in new computational methods, which
can reveal the relation between the physical properties of the
NP and its biological interactions, and eventually its toxicity.[106]

Although their unique electrical, optical, and chemical proper-
ties due to their small size raise concern about their potential
toxicity,[104,107] in some cases, the dose and mechanism
of action result in a toxic NP therapy.[108] To build effective
nanoinformatics models, we need a sharable toxicity database.
Examples of such available databases are those developed by the
National Institute for Occupational Safety and Health and the
Oregon Nanoscience and Microtechnologies Institute.[104,109]

Such databases can be used to feed nanoinformatics models
and simulate the toxicity processes, thereby reducing the time
taken to translate drugs and NPs from the testing phase to clin-
ical practice. It has also been reported that the data integration

Figure 7. ML used to predict the influence of nanotoxicity on biological chirality or L/R asymmetry. Left panel: Left–right (L–R) asymmetry on micro-
patterned surfaces. a,b) Sinister and dextral snails have mirrored shell geometry with opposite out-growing spiral patterns (looking down the tip).
c,d) Mouse myoblasts and human endothelial cells exhibit opposite chiral alignment on patterned rings. Green: tubulin, red: actin, and blue: nucleus.
e) Schematic of polarity and chirality of muscle cells on micropatterned surfaces. The cells are polarized at the boundary by positioning their centrosomes
(green) closer to each boundary than the nuclei (blue) while forming a chiral alignment. f ) Mechanism of L–R asymmetry on micropatterned geometry.
Muscle cells on a ring determine the z-axis through attachment and the x-axis through the ring boundaries. The leftward bias of the muscle cells on
the appositional boundaries creates a chiral cell alignment and morphogenesis. Right panel g–k): SWCNTs affect the multicellular chirality in the endo-
thelial cells. Endothelial cells lose their chirality in the presence of CNTs. g) A phase-contrast image of asymmetric cell alignment of endothelial cells on
ring patterns without the CNTs. h) Local cell alignment of (a) determined using an automatic MATLAB program and indicated with short orange lines.
i) The circular histogram of biased angles (based on the deviation of the short orange lines in (b) from the circumferential direction) shows a CW bias in
the endothelial cells. j) The percentage of chiral rings decreases with the CNT concentration after a three day exposure. k) Time-dependent chirality loss
of endothelial cells when exposed to 10 μg mL�1 of CNT. Scale bars: 50 μm. a–f ) Reproduced with permission.[101] Copyright 2011, Landes Bioscience.
g–k) Reproduced with permission.[99] Copyright 2014, American Chemical Society.
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at the nanoscale poses some challenges[104,110]; prime among
them is the development of central repositories and databases
of NP toxicity,[111] standards for information storage and
exchange,[112] domain nano-ontologies,[113] and tools for deci-
sion support.[114]

5. Ensemble Classifiers and Regression Trees in
Nanosafety Practices for Decision-Directed Nano
Research

Several initiatives are underway to provide open data repositories,
which are linked, open, searchable, accessible, and interoperable
through a framework of appropriate semantic protocols and ontol-
ogies of tagged metadata descriptors, thereby allowing for
machine readability.[115] The findable, accessible, interoperable,
reusable (FAIR) data principles are the foundation of the

European open science cloud (EOSC), a virtual environment
for open and seamless services for storage, management, analy-
sis, and re-use of research data (EOSC pilot report, 2018). In the
final report, an action plan from the European Commission
expert group on FAIR data laid out a foundational structure of
what constitutes a minimum viable research data ecosystem in
Europe, its main rules of participation, a governance framework,
and possible finance models. The goal of the cloud is to effectively
interlink people, data, services and training, publications, proj-
ects, and organizations. In addition, they presented an action plan
to achieve FAIR research data. The European Commission
expects the research data generated by Horizon 2020 projects
to follow the FAIR data principles, and the EOSC has recom-
mended that this infrastructure should be founded on the
FAIR principles, where data should be as open as possible,
and as protected as necessary (European Commission expert
group, 2018). As these initiatives expand and more data become

Figure 8. Principal ML tools used in nanotoxicity assessment of different categories of nanomaterials. Algorithms involve a,b) suitable scaffold design,
c) dosimetry predictions, d) NP corona stability, e) toxic concentration decision making, and f ) prediction of outliers.
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available and are linked across disciplines, the potential for an
increase in the use of ML/AI applications will expand, and
new relationships in NanoEHS data may become evident.

The numerical meta-analysis algorithm, random forest, which
is an ensemble of a large number of regression trees, has recently
gained popularity in nanotoxicology predictions (Figure 8).[116] It
has been reported that the parameters having the largest impact
on the toxicity of Q-dots are the diameter, surface ligand type, sur-
face modifications, and shell composition.[117,118] The complex
relationships between the aforementioned variables and toxicity
are not straightforward but can be retrieved using a random for-
est.[117] A random forest is a multiple-learningmethod based on an
ensemble of multiple decision trees.[119] Decision trees help us go
from an observation to a conclusion. In our case, observations can
imply a toxicological exposure, and a conclusion can indicate the
ensuing result of an exposure. In a parametric toxicology study
involving three parameters, with three variables and three different
values each, there will be 27 observations and their conclusions.

Decision trees (also called regression trees) are comprised of
nodes and branches. Each node is a decision statement, according
to which it may split into further nodes via branches. The node
from which a decision tree begins is called the root, and the nodes
at the terminal ends of the branches are called leaves. Using deci-
sion trees, we can sort observations into subsets by identifying the
most critical independent variables and using them as nodes and
creating further splits.[120] Figure 8 shows a qualitative ensemble
of themost popular algorithms used in nanotoxicology for predict-
ing safer biomedical material designs ranging from an advanced
nano scaffold preparation to modeling the corona and cytotoxicity
dosimetry determinations of NPs. Proceeding with the sorting, we
reach the leaves, which are nodes that cannot be further branched.
Starting from the root, and following the branches representing
the decision statements of interest, we can reach an isolated leaf
that satisfies all the decision statements. These trees can therefore
potentially be used for isolating the mechanisms of toxicity and
eventually for designing safer NPs for medical use.

Figure 9. Predicting the emergence of complexity in hierarchically organized nanostructures. Secondary structures for a) FWCYHAGHVL,
b) MSRCWQPNPR, and c) VVAGSGGHTT. Metal ligand-binding sites for d) FWCYHAGHVL, e) MSRCWQPNPR, and f ) VVAGSGGHTT. g) Coil form
of secondary structure and h) sheet form of secondary structure. i,l,o) 10, 50, and 100 μmol L�1 concentrations of FWCYHAGHVL. j,m,p) 10, 50, and
100 μmol L�1 concentrations of MSRCWQPNPR. k,n,q) 10, 50, and 100 μmol L�1 concentrations of VVAGSGGHTT (scale bar: 200 nm). r) Scheme for
different synthesized gold nanostructures at three different VVAGSGGHTT concentrations. Reproduced with permission.[60] Copyright 2018, American
Chemical Society.
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As shown in Figure 9, the i-TASSER (i.e., iterative threading
assembly refinement), a template-based bioinformatics tool, is
used to adopt an advanced and novel in silico approach to deter-
mine the final nanostructure size/shape from their precursor
metal ligand. It predicts the secondary structures of an amino
acid via a local meta-threading-server for a protein structure.
Incorporating structure-based protein function predictions ena-
bles this tool to determine the ionic ligand binding sites into
3D self-assembled amino acid scaffolds. The final nanostructure
of the metal–biomolecule frameworks can be controlled by
selecting an optimal amino acid concentration and experimental
verification and scanning electron microscope (SEM). The algo-
rithm helps in understanding the mechanism involved in anisot-
ropy and the final structures based on a ligand–amino acid

interaction, which consequently leads to an energy minimization
and a docked gold nanocluster assembly into nanoflower-like
structures. Table 4 and Figure 8 indicate the most commonly
used ML models for the prediction of in vivo and in vitro nano-
toxicity along with their pros and cons.

6. Challenges in the Implementation of ML and
AI Algorithm in Reporting Nano–Bio Interactions

The implementation of ML methodologies in terms of actual
usage in the evaluation of material quality, properties, and gen-
eral toxic effects is still not very clear in the context of nanome-
dicine. The problem lies in the implementation of ML being an

Table 4. Common ML algorithms along with their pros and cons.

Models Application Advantages Disadvantages References

Regression Regression analysis is widely used in
predictions and forecasting.

1. Their transparency to provide relevant
significant information about
physicochemical descriptors.

1. It is limited to the linear relationship. [121]

2. Can consider the impact of many
variables at once

2. They are easily affected by the outliers.

3. It involves a very lengthy and
complicated procedure of calculations

and analysis.

Decision tree Visualizing, classification, and
statistical analysis

1. Automatic selection of input variables
based on entropy and information gain

1. Cannot handle non-numerical data [122]

2. Removal of insignificant descriptors 2. Training time is high

3. Immune to sampling errors 3. Prone to overfitting and underfitting,
particularly when using a small dataset

Support vector
machines (SVMs)

Various issues such as collinear
descriptors, nonlinear relations, small and
large datasets as well as overfitted models

are handled by SVM.

1. The capability of SVM to give high
precision and speculation.

1. The main disadvantage of SVM is the
high sensitivity of model performance
to the selection of design parameters

(e.g., kernel functions)

[123]

2. Can manage both classification and
regression problems

2. The complexity of direct interpretation
of SVM decisions

3. Can handle problems such as nonlinear
relationships, colinear descriptors, small

datasets, and model overfitting

Artificial neural
network (ANN)

ANN is another approach utilized
for nonlinear data relationships and

large datasets

1. Detect complex nonlinear relationships
between dependent and independent

variables

1. Limited ability to explicitly identify
possible causal relationships

[124]

2. Require less formal statistical training 2. Require very high computational
resources and training data

3. High generalization sensitivity to
variation in parameters and network

topology

Partial least
square (PLS)

PLS is applied to reduce the number
of descriptors to make them more

suitable for further analysis

1. Works well when there are noise and
several intercorrelated descriptors

1. Difficulty in interpreting loadings of
independent latent variables

[125]

2. Distributional properties of estimates
not known

Principal component
analysis

Mainly used for eliminating
correlation between input variables

(i.e., physiochemical descriptors) without
removing information about relevant

data points

1. Used to reduce the number of features
in the dataset

1. The independent variables become less
interpretable.

[126]

2. Reduces overfitting 2. Extremely dependent on the number of
principal components selected.3. Transformation of high-dimensional

data to low-dimensional data for easy
visualization
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objective in terms of decision support versus automation. In the
design of biomaterials, an elaborate category of operational ML
rules provides a standard for minimum information reporting in
experimental bio–nano studies.[63] The particular problems
posed by ML might need to be addressed during the implemen-
tation process rather than focusing on approaches for the adop-
tion of emerging technologies in general, which has been
thoroughly discussed in the field of cancer nanomedicine. We
emphasize filling what we see as the most important gap in
cell–NP characterization. In a recent study, over 100 articles
in multidisciplinary journals from 2018 that have impacted
the field of nano bio-med were selected, evaluated, and labeled
according to two major categories: application-driven and
technology-driven approaches.[127] The study then subdivided
each major category into scientific fields such as an oncology,
cardiovascular disease, biomaterials, gene therapy, and theranos-
tics.[128] The study further divided the articles according to the
stage of research experience of the corresponding author (num-
ber of years that have passed since the corresponding author’s
first publication). These stages are defined in the study as early
(22 articles), intermediate (49 articles), and late (29 articles). The
authors, according to the individual parameters included in the
MIRIBEL, created a checklist of three categories, i.e., material
physicochemical characterization, biological characterization,
and experimental details, and then manually scored each of
the articles. It was reported that only a few articles satisfied
the top 30% of the requirements in all three categories. Such
articles were mainly from the fields of oncology, gene therapy,
or theranostics. Florindo et al.[127] suggested that there can be
a correlation between the fulfilment of the MIRIBEL checklist
and the field of study. Specific examples indicate that the field
of oncology scores higher than the cardiovascular-related studies,
and the field of theranostics scores higher than the field of gene
therapy.[129] Therefore, it can be seen that not all fields are ready
in terms of data availability for the implementation of AI and ML
techniques. There are certain fields that are more mature and
rigorous, and better meet the information reporting criteria.
Florindo et al.[127] also suggested that researchers at the “early”
stage are more likely to miss the criteria for minimum informa-
tion reporting compared to those at the “intermediate” and “late”
stages. Therefore, there is a need to develop a MIRIBEL checklist
that all articles must satisfy before publication for the sake of
uniformity across the literature and for the sake of future imple-
mentation of AI and ML techniques in their particular fields. The
criteria can be modified and enhanced gradually and regularly
based on new information in the future.

7. Future Outlook and Opportunities

The influence of AI is not limited to programming computers to
drive a car by obeying traffic rules or automated parking in a
mechanical manner; it extends to programming a computer to
further mimic human behavior. Similar to telemedicine, the
remote monitoring of consumer products containing nanomate-
rials will further earn the public’s confidence and bring about
transparency in biosafety measures. AI and ML will be at the
heart of such technology, which is complemented by advances
in nano–bio sensors, enhancing the ability to institute a “cradle-

to-grave” monitoring of nano and other advanced material-
enabled products. With a unique universal material ID and
potential incorporation of a trustworthy blockchain-based ledger
system, future nanomaterials can be tracked from their produc-
tion, deployment in the consumer or industrial market, and
eventual end-of-life recycling and safe disposal. All information
regarding the safety and handling requirements for each
enhanced material can be easily available through a simple scan
on a handheld device.

Recent developments in breathing/air quality monitoring sen-
sors that measure gases/volatile compounds in the input sam-
ples and use laser sensors to measure particulate matter in
the surroundings can be used to scan consumer products
(e.g., textiles, toys, food/food contact, and education/recreational
kits containing nanomaterials).[130] In the case of complex data,
the information collected after the scan can be wirelessly sent to
regulatory experts in the local area for interpretation and feed-
back (Figure 10). The wireless communication between “fitness
monitoring” wearable e-gadgets or smartphones and sophisti-
cated analysis apps developed using AI/ML can be adopted for
nanomedicine and monitoring biosafety of nanomaterials.[131]

This will also bridge the communication gap between regulatory
bodies and public domains. Furthermore, as freely available
general-purpose high-level programming languages supporting
multiple programming paradigms gain popularity, the modeling
in nanotoxicology and nanomedicine will embrace new horizons.
For example, Python, which was once popular for an object-
oriented approach,[132] has made inroads into many nanotoxicol-
ogy and nanomedicine labs. Advances in the areas of computing
language development, ontology development, and the employ-
ment of appropriate semantics related to the data warehousing
and interoperability of nanosafety data are well underway and

Figure 10. A multimodal computational system toxicology platform for
remote monitoring of consumer products containing nanomaterials envi-
sioned by interlinking the different submodules starting from pollutant
generation in the environment, pollutant screening, data production
and sharing, communication, and law enforcement and regulatory meas-
ures taken to make human ecosystems cleaner and safer.
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will begin to enable predictions across a vast array of EHS data
(e.g., toxicity, omics, and environmental fate) spanning a range of
environmental, industrial, and consumer spaces. In general, the
quality of the output of AI/ML applications relies heavily on the
amount and quality of data that can be included in the analysis.
As the amount of data grows rapidly and with an increase in
efforts to make this data FAIR, according to the initiatives cur-
rently underway to promote EOSC, Center for Open Science, and
open knowledge foundation (OKF), among others, the potential
of AI/ML techniques to provide new insights and form new rela-
tionships between advanced materials and the people who use

them will become apparent. This, in turn, will help speed up
the development of safe, efficient, cost-effective, and advanced
material-based solutions and bring about material production
methods in line with the 21st century advances in AI/ML
technologies.

As shown in Figure 11, an AI and ML toolbox can immensely
help in defining the core properties of nanomaterials relevant to
biological activity, which will be useful for applications related to
minimize toxicity in the context of nanotherapeutics. Because the
bio-physicochemical interface of the NP corona determines the
biological identity of the NP, unlocking the material properties,

Figure 11. AI toolbox for understanding bio-physicochemical identity at the nano–bio interface. The model envisions complementing and predicting the
core properties of nanomaterials to identify the nano–bio interaction sides. After the selection of appropriate NP properties, real experimental data must
be used for ML model development, optimization, and cross-validation before unknown NP properties or the nano–bio interaction can be predicted. The
boundary condition indicated by radial outlines (right panel) represents working spaces to apply AI and ML approaches to predict unknown properties for
the prediction of toxicity and health effects in nanomedicine.
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size/shape, and surface characteristics using ML algorithms may
reveal important insights into NPs and their interaction with the
surrounding environment. Furthermore, NP–cell interactions
in vitro in viscous biological media with a high salt concentration
act as another stealth layer of nanotoxicology. Here as well, AI
approaches (e.g., grid search, artificial neural networks, and
MD simulations) may help to decode the dissolution behavior,
electrostatic agglomeration and accumulation, and the competi-
tive binding of protein over NPs. These characteristics are gen-
erally complex and difficult to predict using conventional
experimental methods based on a correlation of data or an iden-
tification of the most influential parameters (Figure 11). In par-
ticular, phase transformations and a free energy release based
predictive relation can be established to decode the nano–bio
interface of nanotoxicology using ML tools.
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