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A B S T R A C T

Background and Objectives Measuring head-circumference (HC) length from ultra-
sound (US) images is a crucial clinical task to assess fetus growth. To lower intra-
and inter-operator variability in HC length measuring, several computer-assisted so-
lutions have been proposed in the years. Recently, a large number of deep-learning
approaches is addressing the problem of HC delineation through the segmentation of
the whole fetal head via convolutional neural networks (CNNs). Since the task is a
edge-delineation problem, we propose a different strategy based on regression CNNs.
Methods The proposed framework consists of a region-proposal CNN for head local-
ization and centering, and a regression CNN for accurately delineate the HC. The first
CNN is trained exploiting transfer learning, while we propose a training strategy for
the regression CNN based on distance fields. Results The framework was tested on
the HC18 Challenge dataset, which consists of 999 training and 335 testing images. A
mean absolute difference of 1.90 (± 1.76) mm and a Dice similarity coefficient of 97.75
(± 1.32) % were achieved, overcoming approaches in the literature. Conclusions The
experimental results showed the effectiveness of the proposed framework, proving its
potential in supporting clinicians during the clinical practice.

c© 2020 Elsevier B. V. All rights reserved.

1. Introduction

Fetal biometrics have a strong diagnostic and prognostic role
in the evaluation of fetal growth [1]. Fetal biometrics are com-
monly measured in the clinical practice from obstetric ultra-
sound (US), which is a non-invasive, low-cost imaging modal-
ity that allows real-time image acquisition. Among fetal bio-
metrics, head-circumference (HC) length is often measured by
clinicians to estimate gestational age and fetal weight, espe-
cially when abnormal head growth is suspected [2]. In the clin-
ical practice, HC-length measurement is performed manually,
either overlaying an ellipse on the fetal skull or identifying land-
marks on the skull that delimit the head main axes.
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(a) First trimester (b) Second trimester

Fig. 1: Samples of ultrasound images acquired at the (a) first and (b) second
trimester. The head-circumference annotations in shown in light blue.
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Fig. 2: Workflow of the proposed framework for head-circumference delineation.

The manual delineation, however, poses issues related to both
measurement reproducibility and time consumption [3].

A possible solution to attenuate these issues would be to de-
velop an algorithm for automatic HC delineation. However,
this is not a trivial task: challenges that have to be addressed
include presence of shadows in the images and signal dropout
and speckling, which cause fake or missing edges [4]. As a fur-
ther challenge, the HC only covers a small portion of the image,
which moreover varies among the trimesters (Fig. 1).

Recently, researches in closer fields (e.g., [5], [6], [7], [8])
have pointed out the benefits of modeling edge-delineation
problems, such as HC delineation, as heatmap regression
tasks. Following such modeling, a convolutional neural net-
work (CNN) is trained to directly regress a distance-field from
the edge of interest.

Thus, guided by the research hypothesis that regression
CNNs may allow accurate HC delineation, the contributions of
this paper can be summarized as follows:

1. A new framework for HC delineation, which consists of a
region-proposal CNN for head location and centering, and
a regression CNN for accurately delineate the HC

2. A new strategy to train the regression CNN that is based
on distance fields

2. Related work

Considering the relevance of HC measurement in the clini-
cal practice, several automatic and semi-automatic algorithms
have been proposed in the years. First approaches were mainly
model-based and relied on randomized Hough transform ([9],
[10]), circular shortest path [11], active contours ([12], [13])
and Chan-Vese level set [14].

More recently, machine learning has been investigated to
tackle the peculiar challenges of US images, as listed in Sec. 1.
A large variety of handcrafted features has been studied. Ex-
amples include distance-[15] and intensity-based features [16],
Haar descriptors ([17], [18], [19]) and textons [20].

To foster researches following the learning paradigm, one
challenge was realized in 2012, with the release of a dataset
of 90 US images. More recently, in 2018, the HC18 Grand
Challenge was organized, with the release of a dataset of 1334
US images (divided in 999 training and 335 test images). Such
dataset size allows the development of more advanced solu-
tions.

In fact, the handcrafted-based approaches have been over-
came by deep learning (DL) [21, 22, 23], which directly ex-
tracts features from raw data, avoiding their explicit mathemat-
ical formulation, but requires larger training datasets [24]. The
work in [25] proposes an active-contour model guided by ex-
ternal forces that are derived with a CNN to segment the fetal

head. The HC is then identified by ellipse fitting with the direct
least squares fitting of ellipses method proposed in [26].

Nonetheless, the formulation of the external forces influence
the performance of the method, directly.

Region proposal networks, such as Yolo, are used in [27] to
limit the image area to be processed for HC search. Hough
transform and a filter-based approach relying on the difference
of Gaussians are then used to delineate the HC, posing issues
for parameter tuning (both for the Hough transform and the fil-
tering).

A large number of researchers have proposed CNN mod-
els for segmenting the whole fetal head, as a preliminary step
for HC delineation. [28] propose a CNN inspired by LinkNet
[29], where the LinkNet encoder path is used to perform fea-
ture extraction but also to obtain, thought fully connected neu-
rons, the HC main axes, center and angle. The main disad-
vantage is that directly regressing the HC pixel position is em-
pirically too localized, making this type of approach particu-
larly difficult. Sobhanina et al. present also another approach
[30] based on a multiscale mini-LinkNet network to perform
fetal-head segmentation, achieving promising results due to the
multiscale feature representation. In [31], polar transforma-
tion followed by UNet is applied to segment head boundary.
A region-proposal network is then used as post processing to
remove wrongly segmented pixels. Even if with encouraging
results, the approach was tested on 102 images only.

A similar approach is proposed by [32], where two UNet are
exploited in sequence for rough skull segmentation, and seg-
mentation refinement, respectively, from 3D fetal US.

The work in [33] develops two probabilistic CNN meth-
ods: Monte Carlo Dropout during inference and a Probabilis-
tic UNet. An ensemble of the generated segmentation masks
is used to reject acquired images that produce sub-optimal HC
measurements. These methods could be particularly useful
in the clinical practice since multiple plausible semantic seg-
mentation hypotheses are provided to the clinicians, which can
choose the best option. In [34], a combined fetal-head local-
isation and fetal-head segmentation approach based on Mask
R-CNN is proposed. In [31], [15] and [34] the HC is then iden-
tified by least square ellipse fitting method.

Most of these approaches mainly reduces the problem of
HC delineation to that of segmenting the whole fetal head via
CNNs. A different strategy could be to directly regress HC pixel
position. However, this is a highly non-linear problem, which
poses challenges to training convergence [35]. Regressing a dis-
tance field from the HC could attenuate this issue. This concept
has recently been proved to be successful in closer fields ([5],
[6], [7]). Guided by these recent considerations, in this work
we will investigate the concept of distance-field regression to
accurately delineate HC from US images.
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Table 1: Regression network architecture with Conv2D = convolution, Max-
Pool2D = max pooling, Upsamp = upsampling, Concat = concatenation.

Name Feature maps (inputs) Feature maps (output)
Conv2D 192x240x1 192x240x64
Conv2D 192x240x64 192x240x64

MaxPool2D 192x240x64 96x120x64
Conv2D 96x120x64 96x120x128
Conv2D 96x120x128 96x120x128

MaxPool2D 96x120x128 48x60x128
Conv2D 48x60x128 48x60x256

Contraction section Conv2D 48x60x256 48x60x256
MaxPool2D 48x60x256 24x30x256

Conv2D 24x30x256 24x30x512
Conv2D 24x30x512 24x30x512
Dropout 24x30x512 24x30x512

MaxPool2D 24x30x512 12x15x512
Conv2D 12x15x512 12x15x1024
Conv2D 12x15x1024 12x15x1024

Bottleneck Dropout 12x15x1024 12x15x1024
Upconv 12x15x1024 24x30x1024
Conv2D 24x30x1024 24x30x512
Concat 24x30x512 24x30x1024

Conv2D 24x30x1024 24x30x512
Conv2D 24x30x512 24x30x512
Upconv 24x30x512 48x60x512
Conv2D 48x60x512 48x60x256
Concat 48x60x256 48x60x512

Conv2D 48x60x512 48x60x256
Conv2D 48x60x256 48x60x256
Upconv 48x60x256 96x120x256

Expansion section Conv2D 96x120x256 96x120x128
Concat 96x120x128 96x120x256

Conv2D 96x120x256 96x120x128
Conv2D 96x120x128 96x120x128
Upconv 96x120x128 192x240x128
Conv2D 192x240x128 192x240x64
Concat 192x240x64 192x240x128

Conv2D 192x240x128 192x240x64
Conv2D 192x240x64 192x240x64
Conv2D 192x240x64 192x240x2
Conv2D 192x240x2 192x240x1

Fig. 3: Fetal-head localization and centering: from the predicted bounding box
(pink rectangle), the coordinates of the head-circumference (HC) centre are es-
timated. The centered image (light-blue rectangle) is obtained by centering the
original image with respect to the HC center. The centered image has dimen-
sion nxm (with n and m equal to 705 and 545, respectively) to match the biggest
bounding box found in the training set. Zero padding is added when the HC is
too close to image borders.

Fig. 4: UNet architecture. The architecture includes four contraction blocks
along with a bottleneck section and four expansion blocks, as described in
Sec. 3.2.

(a) Raw image (b) HC annotation in light blue

(c) Gaussian profile. (d) Training mask.

Fig. 5: Ground-truth generation for the regression network. The raw image
in (a) is annotated by drawing the ellipse representing the head circumference
(HC) showed in light blue in (b). The distance field is then built following
a Gaussian profile (thickness r pixels), as shown in (c), to obtain the training
mask showed in (d).
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(a) Prediction (b) Distance distribution

(c) Prediction (d) Distance distribution

Fig. 6: In (a) and (c), the regression output is shown for two test images. The
corresponding distance distributions are shown in (b) and (d), respectively, with
the corresponding boxplot and outliers on top.

To the best of our knowledge, this is the first attempt to in-
vestigate regression CNN for automatic HC delineation from
US images. We developed and tested the proposed approach
using the HC18 Grand Challenge1 dataset.

3. Methods

Figure 2 shows an overview of the workflow of the pro-
posed framework. We exploit two consecutive CNNs for lo-
calizing and centering the fetal head (Sec. 3.1) and regressing
the HC pixel position via distance fields (Sec. 3.2). The last step
(Sec. 3.3) consists of fitting the output of the regression CNN
with an ellipse, to mimic what clinicians do in the actual clinical
practice. From the fitted ellipse, the HC length is computed.

3.1. Fetal-head localization and centering
As a preliminary step, inspired by [27], [31] and [34],

we use an object-proposal localization CNN (i.e., the tiny-
YOLOv2 [36]) for localizing and centering the fetal head. This
way, the regression network is relieved of learning the position
of the head.

The tiny-YOLOv2 is composed of 8 blocks, each consisting
of a convolutional layer (kernel size = 3x3, and stride = 1).
Each convolution is followed by batch normalization, and the
resulting output is activated with a LeakyReLU (with a con-
stant multiplier, α, equal to 0.1 to control the slope of the acti-
vation function for negative values). Max pooling (size = 2x2)
is applied after each LeakyReLU activation in the first 4 blocks,
with the goal to reduce the number of parameters to learn during
training.

1http://doi.org/10.5281/zenodo.1322001

The tiny-YOLOv2 is here trained exploiting transfer learn-
ing and fine tuning. Specifically, we use, as initial weights, the
weights obtained by training tiny-YOLOv2 on natural images.
The weights are available online2. For fine-tuning purpose, the
weights and bias of the last 4 convolutional layers are randomly
re-initialized using a normal distribution. The adaptive moment
estimation (Adam) is used to minimize the loss function pro-
posed in the original YOLOv2 paper [36]. As shown in Fig. 3,
we use the bounding box provided by the tiny-YOLOv2 to cen-
ter the image before feeding the regression network. Keeping
the fetal head centered, we select an image region with a size
(m × n) equal to the that of the largest bounding box found in
the training set. When the region falls outside the image area
(e.g., when the HC is close to image borders), zero padding is
performed. This procedure is done to avoid changing the HC
aspect ratio.

3.2. Head-circumference regression
The proposed strategy to train the regression CNN relies on

distance fields. The rationale behind using distance field is to
smooth the HC line as to facilitate the network task with respect
to directly regressing the HC line.

The HC ground-truth masks of the HC18 Grand Challenge
dataset are ∼2-pixels wide. Hence, to build our distance field,
the masks are skeletonized first. Then, as shown in Fig. 5, we
consider a region consisting of all pixels that lie in the rect-
angular region with thickness r pixels, centrally aligned with
each of the pixel of the HC, and perpendicular to the tangent
of the HC. Inspired by the work in [5], which uses a regression
network to estimate surgical-robot joint position, we used the
original UNet architecture [37] modifying the output layer to
accomplish a regression task. Choosing UNet can be twice as
beneficial: in addition to showing astounding results in regards
to medical-image segmentation [38], work in the literature for
fetal-head segmentation (as described in Sec. 2) used U-shaped
network, making the comparison with our regression architec-
ture straightforward. The regression architecture, shown in Fig.
4 and described in Table 1, consists of a contraction section,
a bottleneck and expansion section. The contraction section in-
cludes 4 blocks, each with two convolution layers (kernel size =

3x3 with no padding) followed by a ReLU and a 2x2 max pool-
ing (stride = 2). The last block adds a Dropout layer (dropout
rate = 0.5) between the convolutional and max-pooling layers.
The number of channels is doubled at each block to incremen-
tally learn more complex features, starting from 64 and reach-
ing 512 channels.

The bottleneck connects the contraction section with the ex-
pansion section using two convolutional layers (kernel size =

3x3) followed by dropout (with a rate = 0.5) and one up con-
volutional layer (kernel size = 2x2). The number of channel
doubles from 512 to 1024.

Similarly to the contraction section, the expansion section is
made of 4 blocks. Each block consists of two convolutional
layers (kernel size = 3x3) followed by a ReLU activation func-
tion and an upsampling layer (kernel size = 2x2) that halves

2https://github.com/experiencor/keras-yolo2.git

http://doi.org/10.5281/zenodo.1322001
 https://github.com/experiencor/keras-yolo2.git


Maria Chiara Fiorentino et al. / Computer Methods and Programs in Biomedicine (2020) 5

Fig. 7: Head-circumference (HC) parameters obtained from the fitted ellipse:
(xc, yc) = HC center coordinates, a = semi-major axis length, b = semi-minor
axis length, and θ = angle of orientation.

the number of feature channels. The input of each contraction
section is concatenated with the correspondingly cropped fea-
ture map from the contracting section, as to recover the feature
lost due to the downsampling in the contraction path. The last
block is composed of four convolutional layers, three of which
are followed by a ReLU activation function. As opposed to the
UNet proposed by Ronneberger [37] in which a softmax activa-
tion function is used, the last convolutional layer is activated by
the hyperbolic tangent (tanh).

The regression network is trained using the stochastic gradi-
ent descent with momentum as optimizer, minimizing the Mean
Squared Error (MS E) as loss function:

MS E(M, M̂) =
1
N

N∑
i=0

(Mi − M̂i)2 (1)

where Mi and M̂i are the regression mask and predicted out-
come from the regression network for the i-th training image,
respectively, and N is number of training samples.

3.3. Ellipse fitting

Before performing ellipse fitting, we threshold the output of
the regression network. We then compute the distance between
each point on the thresholded output and the center of the im-
age, which matches the HC center, resulting in a distance dis-
tribution. As shown in Fig. 6, we identify (and remove) the
outliers of the distance distribution as those values outside the
range [Q1 − O ∗ IQR, Q3 + O ∗ IQR] [39], where Q1 and Q3
are the first and third quartile, respectively, IQR is the inter-
quartile range, and O is a constant value that is set according to
the validation set (Sec. 4.2).

The resulting image is fitted with an ellipse using a geomet-
ric distance based method (i.e., ElliFit) [40], which is uncon-
strained, non-iterative and computationally inexpensive. From
the fitted ellipse, the five parameters (shown in Fig. 7) that uni-
vocally identify it (i.e., semi-major axis length (a), semi-minor
axis length (b), angle of orientation (θ), and center (xc, yc)) are
obtained.

4. Experimental setup

4.1. Dataset

The dataset used to evaluate the proposed methodology was
released in the context of the HC18 Grand Challenge3. The
dataset consists of a training set of 999 and a test set of 335
US images from 551 women, acquired at the beginning of the
first, second and third trimester of pregnancy. The images
were collected at the Department of Obstetrics of the Radbound
University Medical Center, Nijmegen, Netherlands, using both
the Voluson E8 and the Voluson 730 (General Electric, Aus-
tria) [19]. All data were acquired by competent sonographers
and anonymized as state in the Declaration of Helsinki. The
local ethics committee (CMO Arnhem-Nijmegen) approved the
collection and use of the data for research purposes.

Each image had a size of 800x540 pixels, with a pixel size
ranging from 0.052 to 0.326 mm, due to sonoprapher adjust-
ments to face the different size of fetuses.

For each image, the sonographer manually annotated the HC
by drawing an ellipse that best fits the skull section. In this
work, we kept 301 images (out of the 999 training images) as
validation set.

The most peculiar challenges of the testing set are shown in
Fig. 8. Challenges included different position of the head in the
image, as well as varying dimension of the fetal head among
the gestational trimesters.

Hence, the images of the first trimester showed a tiny head
with skull edges not always visible. Reverberations and shad-
ows were also be present, which resulted in poor fetal head con-
trast with respect to the background.

4.2. Parameter settings

To train the tiny-YOLOv2, the COCO challenge annotation
format was followed. Starting from the HC annotation, we
generated the bounding box that bounded the HC. Prior feed-
ing tiny-YOLOv2, the images were resized to 800x800 pix-
els to match the dimension of the pretrained model. The tiny-
YOLOv2 was fine tuned using Adam for 100 epochs, with an
initial learning rate of 0.0001 and batch size equal to 16. Prior
fine tuning, offline data augmentation (with horizontal flipping
and rotation) was implemented to augment the number of im-
ages from the first semester.

The masks used for training the regression network were ob-
tained with an r empirically set to 100 pixels and a Gaussian
standard deviation of r/2. This allowed to fully cover the head-
skull section at each HC point. Before feeding the regression
network, we performed the preprocessing explained in Sec. 3.1,
with m and n equal to 545 and 705 pixels, respectively.

The images were zero padded (from 182x235 to 192x240
pixels) to match the dimension required by the regression net-
work. Also in this case, padding was preferred over reshaping
for preserving the fetal-head aspect ratio.

The regression network was trained with mini-batch stochas-
tic gradient descent, with an initial learning rate of 0.001 and

3https://hc18.grand-challenge.org/

https://hc18.grand-challenge.org/
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8: Challenges in the testing datasets include different fetus head dimensions (a, b, h) and position (d, f) in the image, partially visible head skull (c), presence
of noise and US image artifacts (e, g).

Table 2: Metric comparison for the ablation study. The mean is reported for each metric, with standard deviation in brackets.

Absolute difference (AD) [mm] Difference (DF) [mm] Dice similarity coefficient (DS C) [%] Hausdorff difference (HD) [mm]
Shallow regression 11.11 (± 38.25) 2.74 (± 39.74) 93.14 (± 12.23) 3.82 (± 6.04)
Proposed-short 5.67 (± 30.28) 3.62 (± 30.60) 95.58 (± 9.32) 2.53 (± 4.59)
Proposed-middle 2.08 (± 2.08) -0.13 (± 2.04) 97.62 (± 4.17) 1.38 (± 1.19)
Regression only 5.79 (± 16.58) 5.27 (± 16.75) 95.33 (± 9.51) 2.82 (± 5.47)
Proposed without excluding outliers 2.33 (± 3.36) 1.46 (± 4.10) 97.30 (± 3.21) 1.51 (± 3.68)
Proposed 1.90 (± 1.77) 0.21 (± 2.59) 97.76 (± 1.32) 1.32 (± 0.73)

Table 3: Metric comparison for methods in the state of the art using the same test set. The mean is reported for each metric, with standard deviation in brackets.

Absolute difference (AD) [mm] Difference (DF) [mm] Dice similarity coefficient (DS C) [%] Hausdorff difference (HD) [mm]
[19] 2.80 (± 3.30) 0.60 (± 4.30) 97.00 (± 2.80) 2.00 (± 1.60)
[28] 2.12 (± 1.87) 1.13 (± 2.69) 96.84 (± 2.89) 1.72 (± 1.39)
[30] 2.22 (N.A.) 1.19 (N.A.) 92.46 (N.A.) 3.40 (N.A.)
[25] 2.45 (± 2.55) -1.05 (± 3.38) 95.49 (± 4.11) 2.44 (± 1.96)
[34] 2.33 (± 2.21) 1.49 (± 2.85) 97.73 (± 1.32) 1.39 (± 0.82)
Proposed 1.90 (± 1.77) 0.21 (± 2.58) 97.76 (± 1.32) 1.32 (± 0.73)

Fig. 9: Visual samples of the ablation-study results. Each colored panel corresponds to a test image. Each panel shows the results obtained by (1st column) shallow
regression, (2nd column) short proposed UNet, (3rd column) regression only and (4th column) proposed framework. Each column shows the (first row) prediction,
(second row) post processed and (third-row) ellipse-fitted image.
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a momentum of 0.98, for 1500 epochs. The value of the mo-
mentum was set according to similar work that uses regression
networks [5]. Batch size was set to 32, as a trade off between
memory requirements and training convergence. On-the-fly
data augmentation was performed during training. Augmen-
tation included horizontal flip and rotation in range ±45◦, and
was randomly applied at each training iteration. The best model
among epochs was selected according to the lowest mean abso-
lute error obtained in the validation set. The threshold value was
set to the 80% of the maximum value of the regression output,
and the outliers for the post-processing described in Sec. 3.3
were identified using a O value of 0.5. The empirical thresh-
old value of 80% and the O value of 0.5 were optimized on the
validation set.

The HC length [mm] was obtained by multiplying the HC
pixels for the corresponding pixel size [mm], provided by the
challenge organizers. To obtain the final HC parameters, all the
images were resized and recentered.

All the analyses were performed using the Keras4 Python li-
brary on a NVIDIA RTX 2080TI, with a Xeon e5 CPU and 128
GB RAM.

4.3. Ablation study and comparison with the state of the art

As a first ablation study, we investigated the use of a sim-
ple regression architecture (shallow regression). The shallow
regression only architecture was chosen following similar work
in the literature [5].

The network was composed of 6 convolutional layers fol-
lowed by batch normalization and activated with ReLU. We
also tested UNet with only the 2 top layers at first (proposed-
short) and then with an additional top layer (proposed-middle)
(plus the bottleneck in both the architectures) to investigate the
trade off between architecture dept hand HC delineation perfor-
mance. Both shallow regression, proposed-short and proposed-
middle results are obtained including the post-processing steps
presented in Sec. 3.3

To assess whether the fetal-head localization and centering
helped the regression network, we compared the performance
achieved by the proposed framework with that achieved by the
regression network fed with raw US images.

We also tested the performance of our network without ex-
cluding outliers.

For fair comparison, all approaches were investigated using
the same dataset split and training setting, as well as the same
computational hardware.

For the comparison with the state of the art, we chose the
methods proposed in [25], [28], [30] and [34], which follow
the deep-learning paradigm and are the most similar with re-
spect to our approach. All these methods were developed and
tested using the HC18 Grand Challenge dataset. The relative
performance metrics, reported in Sec. 5, were extracted by the
corresponding research papers. We also included the work in
[19], even if it uses handcrafted features, because it is the one
that presented the HC18 Grand Challenge dataset.

4https://keras.io/

4.4. Performance metrics

To measure the performance of the proposed method, we
computed the metrics suggested by the organizers of the HC18
Challenge. Hence, the difference (DF) [mm], absolute differ-
ence (ADF) [mm], Hausdorff distance (HD) [mm] and Dice
similarity coefficient (DS C) [%] were computed.

The DF and ADF are defined as follows:

DF = HCA − HCB (2)

ADF = |HCA − HCB| (3)

with HCA and HCB the HC obtained by the proposed method
and clinician manual annotation, respectively.

The HD is computed as

HD(A, B) = max(h(A, B), h(A, B)) (4)

where B = {b1, ..., bq} and A = {a1, ..., aq} are the sets of pix-
els from the HC measured by clinician and obtained with our
framework, respectively, with

h(A, B) = max
a∈A

max
b∈B
||a − b|| (5)

The DS C is defined as:

DS C =
2 ∗ |Areaa ∩ Areab|

|Areaa| + |Areab|
(6)

with Areab and Areaa the fetal head area as delimited by the HC
measured by clinicians and obtained with the proposed frame-
work, respectively.

5. Results

The performance comparison in terms of ADF, DF, DS C
and HD of the different models proposed in the ablation study
is summarized in Table 2. The lowest mean AD = 1.90 (± 1.77)
mm was obtained with the proposed framework, with a mean
AD of 1.49 (± 1.32), 1.72 (± 1.50) and 3.25 (± 2.64) mm for
images in the first, second and third trimester, respectively. The
worst results were achieved with the shallow regression net-
work, with an AD of 11.11 (± 38.25) mm. With the proposed-
short and the regression-only architecture, the AD dropped to
5.67 (± 30.28) and 5.79 (± 16.58) mm, respectively. Proposed-
middle achieved good results, with a mean AD of 2.08 (± 2.08).
The same trend was observed for the other metrics. Without ex-
cluding the outliers from the distance distribution, as described
in Sec. 3.3, the results of the proposed framework slightly
dropped to (AD) 2.33 (± 3.36) mm, (DF) 1.46 (± 4.10) mm,
(DS C) 97.30 (± 3.21)%, (HD) 1.51 (± 3.68) mm.

Figure 9 shows visual samples of the results obtained from
different models in the ablation study. Each colored panel refers
to a test image. The first, second, third and fourth columns
shows the results achieved by shallow regression, proposed-
short, regression only and proposed framework, respectively.
The upper, middle and lower images correspond to prediction,
post-processed and ellipse-fitted images, respectively. Since no

https://keras.io/
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radical differences were found by visual inspection, it was de-
cided not to include proposed-middle and Proposed without ex-
cluding outliers in the figure.

As shown in the blue panel, each of the models performed
comparably when processing images with clearly-contrasted,
centered HC that covers a large portion of the image. As the di-
mension of the HC decreased (gray panel), the shallow regres-
sion and easy UNet predictions deteriorated. The pink panel
shows an image where noise and blur make the HC poorly vis-
ible with respect to the background, resulting in low perfor-
mance for the shallow regression, easy UNet and regression-
only architecture. The yellow and green box shows challenging
images (poorly visible head skull and evident uterus edge) that
compromised even further the prediction of the shallow regres-
sion, easy UNet and regression-only network. The post process-
ing helped to attenuate the prediction inaccuracies, as shown in
the yellow panel, while it was not effective when the HC texture
was similar to the background tissues.

In the test image shown in the orange panel, only the pro-
posed framework was able to delineate the head quite accu-
rately.

Moving to the comparison with the state of the art, the ADF,
DF, DS C and HD obtained by work in literature that used the
HC18 Grand Challenge are reported in Table 3. The best per-
formance, for all metrics, was achieved by the proposed frame-
work. The work in [28] and [30] achieved ADs very close to
ours, with a difference of 0.22 and 0.32 mm, respectively.

Den Heuvel et al.[19], Rong et al.[25] and Al-Bander et
al.[34] obtained the largest ADs.

The inference time of the entire pipeline was of ∼0.03s when
using the NVIDIA RTX 2080TI with a Xeon e5 CPU and 128
GB RAM. For the sake of completeness, we also computed the
inference time on a less performing machine (a MacBook Pro
with a Intel Iris Plus Graphics 1536 MB with 16 GB RAM),
achieving an inference of 0.7s.

6. Discussion

Measuring fetal biometrics, such as HC length, has a strong
diagnostic and prognostic role. In the actual clinical practice,
biometric measurements are performed manually, resulting in
high intra- and inter-clinician variability. Computer-assisted so-
lutions in the literature try to tackle this issue by proposing ap-
proaches based on deep learning for fetal head segmentation.
In this work, we instead investigated if it was possible to di-
rectly regress a distance field from the HC for accurate HC de-
lineation. To relieve the regression network of learning the HC
position in the image, we exploited a region-proposal network
to detect and center HC before feeding the regression network.
Directly regressing HC boundary is empirically too localized
(i.e., it supports small spatial context) therefore we avoided to
do it merely with the pixel positions. We instead regressed dis-
tance fields, as shown to be successful in the literature of closer
branch studies (e.g., [6, 8]). We tested the proposed framework
on the HC18 Grand Challenge, in which there are images with
different HC dimension and location, poorly visible HC as op-
posed to the background, and presence of reverberations, shad-
ows and speckles.

The proposed framework achieved encouraging results with
a mean AD of 1.90 mm, showing also high stability, as demon-
strated by low standard-deviation values (± 1.76). The value
obtained is two order of magnitude lower with respect to the
HC length (mean HC in the training set = 174.38 mm), thus
showing a great potential for clinical practice applications. A
slightly lower performance was seen for images from the third
trimester (with a difference of 1.76 mm between the AD of the
first and third trimesters), which may be due to the higher pixel
dimension in images from the third semester with respect to
images from the other trimesters.

The combination between the detection and regression net-
works allowed to obtain accurate predictions, which were not
affected by the fetal head position in the image. This was
proven by the lowest performance of the regression-only net-
work, where the network had also to learn to retrieve the posi-
tion of the HC in the images (see Fig. 9, pink, green and orange
panels). This is particularly evident from the comparison with
the Proposed without excluding outlier: the proposed method
turns out to be better (AD of 2.3 mm) even without discarding
outliers. It is worth highlighting though how ours is just one of
the many approaches that can be used to exclude outliers. Other
viable options include connected component analysis.

As the depth increased, the regression network was able to
discriminate characterizing head features with respect to fea-
tures of other structures (e.g., uterus edges) with similar in-
tensity level (see Fig. 9, green and orange panels). This was
not seen in fact when testing the shallow regression and the
Proposed-short networks, as opposed to Proposed-middle and
Proposed.

The proposed framework provided the highest performance
among the state of the art methods tested on the same dataset.
The lower performance of [19] with respect to our approach can
be explained considering the highest robustness of deep learn-
ing over handcrafted-based approaches. Similarly, our data-
drive approach showed to be more robust with respect to the
model-based strategy of [25]. A possible reason for the lower
performance of [28] may be attributed to the challenging task of
directly regressing the HC parameters. Our approach also out-
performed approaches based on fetal-head segmentation [34],
[30]), showing that modeling the HC delineation as a edge-
delineation problem, by directly regressing a distance field from
the HC, may be a valuable alternative for HC length computa-
tion.

The proposed pipeline achieved real-time inference using a
powerful GPU. At the same time, when using a less powerful
computational resource, we achieved an inference time lower
than 1 s. We believe this may be suitable for clinical applica-
tions, considering that the manual selection of point on the US
image by clinicians could take more than 1 s.

A straightforward limitation of this work may be seen in the
size of the dataset, which, however, is considered as benchmark
in the field. Furthermore, all the data used in the study were
acquired from only two different devices (same vendor) in the
same hospital, and only one clinician performed the HC annota-
tion [19]. With a view to translate the proposed pipeline in the
actual clinical practice, more data are required for validation
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proposes.
Future directions of this work include exploring feedback

from users, as recently proposed in [33]. Moreover, visual at-
tention mechanism could be encoded in the regression network
for further boosting the results [41].

We also would like to investigate more advanced models such
as nnUNet [42], for improving the delineation performance.
Adversarial training to take into account HC shape priors may
also be explored [43], as well as atlas-based approaches [44].
As future work, we also plan to exploit synthetic augmenta-
tion techniques through generative adversarial networks. Im-
age synthesis has been shown to be a valuable tool for improv-
ing performances, and may help to reduce the errors due to the
poor generalisation of rare patterns in the training set [45].

7. Conclusions

In this work, we showed that exploiting regression CNNs
for HC delineation from US images may be a valuable solu-
tion to automatically generate HC measurements. We achieved
an AD = 1.90 (± 1.76) mm, overcoming the approaches pre-
sented in the literature. Inspired by the excellent performance
of boundary detection-based algorithms [46] [47], this work
is among the first attempts of exploiting regression CNNs for
edge-localization tasks in the US field and has great potential to
support clinicians during the clinical practice for fetal biometric
measurement.
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