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Abstract—Preterm infants’ limb-pose estimation is a crucial
but challenging task, which may improve patients’ care and
facilitate clinicians in infant’s movements monitoring. Work in
the literature either provides approaches to whole-body segmen-
tation and tracking, which, however, has poor clinical value, or
retrieve a posteriori limb pose from limb segmentation, increasing
computational costs and introducing inaccuracy sources. In this
paper, we address the problem of limb-pose estimation under a
different point of view. We proposed a 2D fully-convolutional
neural network for roughly detecting limb joints and joint
connections, followed by a regression convolutional neural net-
work for accurate joint and joint-connection position estimation.
Joints from the same limb are then connected with a maximum
bipartite matching approach. Our analysis does not require any
prior modeling of infants’ body structure, neither any manual
interventions. For developing and testing the proposed approach,
we built a dataset of four videos (video length = 90 s) recorded
with a depth sensor in a neonatal intensive care unit (NICU)
during the actual clinical practice, achieving median root mean
square distance [pixels] of 10.790 (right arm), 10.542 (left arm),
8.294 (right leg), 11.270 (left leg) with respect to the ground-
truth limb pose. The idea of estimating limb pose directly from
depth images may represent a future paradigm for addressing
the problem of preterm-infants’ movement monitoring and offer
all possible support to clinicians in NICUs.

I. INTRODUCTION

Preterm birth may affect infants’ anatomical and functional
development, leading to lifelong morbidity or, in worst-case
scenario, mortality. Monitoring preterm infants is crucial to
detect the onset of short- and long-term complications [1] and
cribs in neonatal intensive care units (NICUs) are commonly
equipped with a large variety of monitoring medical devices.

The movement of preterm infants is a strong clinical pre-
dictor to diagnose brain lesions [2], cognitive dysfunction [3],
sleep disorders [4] and pain [5]. Clinicians particularly pay at-
tention to involuntary movements, consisting of asymmetrical
and irregular banging of limb extremities (e.g., twitching and
jerking) [6]. Despite being recognized as a crucial clinical task,
preterm-infants’ movement evaluation is merely qualitative
and episodic, and mostly based on clinicians’ (i) assessment
at the crib side in NICUs or (ii) review of infants’ video-
recordings. Beside being time-consuming, this evaluation may
be prone to inaccuracies due to clinicians’ fatigue and suscep-
tible to intra- and inter-clinician variability [7].
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Fig. 1: Infant model. LS and RS: left and right shoulder, LE
and RE: left and right elbow, LW and RW: left and right wrist,
LH and RH: left and right hip, LK and RK: left and right knee,
LA and RA: left and right ankle.

Some promising computer-assisted approaches have been
proposed to support clinicians in detecting infants’ movement
from clinical devices (e.g., accelerometer, photopletismograph
and force sensors) [8] and multimedia data (audio and video)
[1], [9], [10]. With respect to intrusive clinical devices, RGB-D
cameras can be easily integrated into standard clinical monitor-
ing setup (e.g., over infants’ cage) while not hindering infants’
and health operators’ movements. Promising results have been
achieved in the literature for whole-body detection as a prior
for infants’ movement analysis. In [11], [12] threshold-based
approaches to whole-body movement detection using an RGB-
D camera are proposed. In [13], optical flow and statistical
classifiers are used to track manually-defined body points from
RGB images.

However, as explained in [6], single-limb movement should
be evaluated to verify the presence of cerebral illnesses in
preterm babies. An approach to limb-specific movement de-
tection is proposed in [14]. It exploits temporal tracking with
particle filtering integrated with limb-trajectory priors that,
however, have to be manually identified by users, hampering
the usability of the approach into the actual monitoring prac-
tice. In [15], histogram of oriented gradients is used as feature
to retrieve infants’ body skeleton. Body limbs and joints are
a posteriori retrieved using pre-defined body-part templates.

A different strategy has been proposed in [16], where978-1-7281-1462-0/19/$31.00 c©2019 IEEE



TABLE I: Detection-network architecture. Starting from the
input depth image (1 channel), the network generates 20 maps
(12 confidence maps for limb joints, and 8 affinity fields for
joint connections).

Name Kernel (Size / Stride) Channels
Downsampling path

Input – 1
Convolutional layer - Common branch 3x3 / 1x1 64

Block 1 - Branch 1 2x2 / 2x2 64
3x3 / 1x1 64

Block 1 - Branch 2 2x2 / 2x2 64
3x3 / 1x1 64

Block 1 - Common branch 1x1 / 1x1 128
Block 2 - Branch 1 2x2 / 2x2 128

3x3 / 1x1 128
Block 2 - Branch 2 2x2 / 2x2 128

3x3 / 1x1 128
Block 2 - Common branch 1x1 / 1x1 256

Block 3 - Branch 1 2x2 / 2x2 256
3x3 / 1x1 256

Block 3 - Branch 2 2x2 / 2x2 256
3x3 / 1x1 256

Block 3 - Common branch 1x1 / 1x1 512
Block 4 - Branch 1 2x2 / 2x2 512

3x3 / 1x1 512
Block 4 - Branch 2 2x2 / 2x2 512

3x3 / 1x1 512
Block 4 - Common branch 1x1 / 1x1 1024

Upsampling path
Block 5 - Branch 1 2x2 / 2x2 256

3x3 / 1x1 256
Block 5 - Branch 2 2x2 / 2x2 256

3x3 / 1x1 256
Block 5 - Common branch 1x1 / 1x1 512

Block 6 - Branch 1 2x2 / 2x2 128
3x3 / 1x1 128

Block 6 - Branch 2 2x2 / 2x2 128
3x3 / 1x1 128

Block 6 - Common branch 1x1 / 1x1 256
Block 7 - Branch 1 2x2 / 2x2 64

3x3 / 1x1 64
Block 7 - Branch 2 2x2 / 2x2 64

3x3 / 1x1 64
Block 7 - Common branch 1x1 / 1x1 128

Block 8 - Branch 1 2x2 / 2x2 32
3x3 / 1x1 32

Block 8 - Branch 2 2x2 / 2x2 32
3x3 / 1x1 32

Block 8 - Common branch 1x1 / 1x1 64
Output 1x1/1x1 20

TABLE II: Regression-network architecture. The network is
fed with the depth image (1 channel) stacked with the (20)
output masks of the detection network, and produces20 re-
gression maps (12 for joints and 8 for connections).

Name Kernel (Size / Stride) Channels
Input — 21

Layer 1 3x3 / 1x1 64
Layer 2 3x3 / 1x1 128
Layer 3 3x3 / 1x1 256
Layer 4 3x3 / 1x1 256
Layer 5 3x3 / 1x1 256
Output 1x1 / 1x1 20

Fig. 2: Depth-image acquisition setup. The setup does not
hinder health-operator movements.

a deep-learning approach to directly assess limb joints is
proposed, with advantages such as reduced computational
time. In particular, two CNNs are used for pedestrian limb-
pose estimation: the first one (a detection fully convolutional
neural network, FCNN) to retrieve joint probability maps and
the second one (a regression CNN) to refine joint-estimate
position.

Inspired by [16], in this paper we propose to use the same
strategy to estimate preterm infants’ limb pose from images
acquired in NICUs during the actual clinical practice. In par-
ticular, we will focus our analysis on depth images, following
recent consideration related to infants’ privacy issues [17],
[18].

This paper is organized as follows: Sec. II presents the
infants’ pose-estimation approach. The evaluation protocol
and the image dataset built to test the proposed approach
are presented in Sec. III. Results are presented in Sec. IV
and discussed in Sec. V. Sec. VI concludes this paper by
summarizing the main achievements of this research.

II. METHODS

Our infant’s model considers each of the 4 limbs as a set
of three connected joints (i.e., wrist, elbow and shoulder for



Fig. 3: Dataset challenges includes different distance between camera and infants, varying illumination level, presence of
limbs self-occlusion, different number of visible joints in the camera field of view.

Fig. 4: Sample detection results. First row: ground-truth (blue) and achieved (green) joint detection. Second row: ground-truth
(blue) and achieved (purple) joint-connection detection.

arms and ankle, knee and hip for legs), as shown in Fig. 1.
To estimate limb pose, we exploit two consecutive CNNs,
one for detecting joints and joint connection (Sec. II-A), the
other for regressing the joint position, exploiting both the joint
probability and joint-connection maps, with the latter acting
as guidance for joint linking (Sec. II-B). The joints belonging
to the same limb are then connected using bipartile graph
matching (Sec. II-C).

A. Detection network

To develop our detection FCNN, we perform multiple
binary-detection operations (considering each joint and joint-
connection separately) to solve possible ambiguities of mul-
tiple joints and joint connections that may cover the same
image portion (e.g. in case of limb self-occlusion). For each
video frame, we generate 20 separate ground-truth binary
detection maps: 12 for the joints and 8 for the joint connections
(instead of generating a single ground-truth mask with 20
different annotations, which has been shown to perform less
reliably) [16]. The detection network provides joint and joint-
connection confidence maps as output of the joint and joint-
connection branches, respectively.

For every joint mask, we consider a region of interest
consisting of all pixels that lie in the circle of a given radius

(r) centered at the joint center [19]. A similar approach is used
to generate the ground truth for the joint connections. In this
case, the ground truth is the rectangular region with thickness
r and centrally aligned with the joint-connection line.

Our architecture (Table I) is inspired by the classic encoder-
decoder architecture of U-Net [20], with 8 blocks that fol-
lows input and common-branch convolutional layers and are
followed by an output layer. Each block is divided in two
branches (for joints and connections). The outputs of two
branches in a block is then concatenated in a single output
prior entering the next block. Using a bi-branch architecture
has been shown to provide higher detection performance,
as it allows processing separately the joint-probability and
joint-connection affinity maps [16]. Batch normalization and
activation with the rectified linear unit (ReLu) is performed
after each convolution.

Our FCNN is trained using the per-pixel binary cross-
entropy as loss function, and the adaptive moment estimation
(Adam) as optimizer.

B. Regression network

Similarly to what is done for the detection FCNN, for every
joint we consider a region of interest consisting of all pixels
that lie in the circle with radius r centered at the joint center.



In this case, instead of binary masking the circle area as for
the detection FCNN, we consider a Gaussian distribution with
standard deviation (σ) equal to 3*r and centered at the joint
center. A similar approach is used to generate the ground-truth
masks for the joint connections. In this case, the ground-truth
mask is the rectangular region with thickness r and centrally
aligned with the joint-connection line. Pixel values in the mask
are 1-D Gaussian distributed (σ = 3 ∗ r) along the connection
direction.

The regression network (Table II) has a single-branch archi-
tecture made of 5 layers, with an additional input and output
layer. The network is fed by both the depth image and the
output of the detection network, which consists of 12 joint
confidence maps and 8 affinity fields for joint connections.
The networks then produces 20 maps, 12 for joints and
8 for joint connections. Batch normalization and activation
with the rectified linear unit (ReLu) is performed after each
convolution.

Our regression network is trained using the mean square
error as loss function, and stochastic gradient descend as
optimizer.

C. Joint linking

The last step of our limb pose-estimation task is to link
joints for each of the infants’ limb. First, we identify joint
candidates from the joint regression output maps using non-
maximum suppression, which is an algorithm commonly used
in computer vision when redundant candidates are present
[21]. Once joint candidates are identified, they are linked
exploiting the joint-connection regression maps. In particular,
we use a bipartile matching approach, which consists in (i)
computing the integral value along the line connected two
candidates on the joint-connection regression output map and
(ii) choosing the two winning candidates as those guaranteeing
the higher integral value.

III. EXPERIMENTAL PROTOCOL

A. Dataset

Videos of four preterm infants were acquired at the G. Salesi
Hospital NICU in Ancona, Italy. The infants were identified by
clinicians in the NICU. All infants were spontaneously breath-
ing and did not present hydrocephalus, congenital defects and
bronchopulmonary diseases. Written informed consent was
obtained from the infant’s legal guardian. Video-acquisition
setup is shown in Fig. 2.

Video recordings (length = 90 s) were acquired for every
infant, using the Astra Mini S - Orbbec R©with a frame rate of
30 fps and image size of 640x480 pixels. For each video, the
ground truth was manually obtained every 5 frames, resulting
in 540 annotated frames per patient. Then, these 540 frames
were split into training and testing data: 270 frames (45 s)
were used for training purpose and the remaining ones (270
frames) to test the network; resulting in a training and testing
set of 1080 frames each.

(a) Joint DSC

(b) Connection DSC

Fig. 5: Boxplots of the Dice similarity coefficient (DSC) for
(a) joint and (b) joint-connection detection achieved with the
proposed fully-convolutional neural network.

Challenges in the dataset included varying infant-camera
distance (due to the motility of the acquisition setup), illumi-
nation level, different number of visible joints and limb self
occlusion (Fig. 3).

B. Training settings

Images were resized to 128x96 pixels in order to smooth
noise and reduce both training time and memory requirements.
Joint annotation was performed using a custom-built annota-
tion tool, publicly available online1. To build the ground-truth
masks, we selected r equal to 6 pixels.

For training the detection and regression network, we set an
initial learning rate of 0.01 with a learning decay of 10% every
10 epochs, and a momentum of 0.98. We used a batch size of

1https://github.com/roccopietrini/pyPointAnnotator



Fig. 6: Sample results of the regression-network output for left ankle superimposed on the corresponding depth images.

Fig. 7: Boxplots of the root mean square distance (RMSD)
computed for the four limbs separately.

16 and for both the networks the number of epochs was set
to 100. We selected the best model as the one that maximized
the accuracy on the validation set (training/validation split =
0.3).

All our analyses were performed using Keras2 on a Nvidia
GeForce GTX 1050 Ti/PCIe/SSE2.

C. Performance metrics

To measure the performance of the detection FCNN, we
computed the Dice similarity coefficient (DSC) and recall
(Rec):

DSC =
2× TP

2× TP + FP + FN
(1)

Rec =
TP

TP + FN
(2)

where TP : true positive, FP : false positive, FN : false
negative.

To evaluate the overall pose estimation, we computed the
root mean square distance (RMSD) [pixels] for each infants’
limb.

For both the detection and regression network, we measured
the testing time.

IV. RESULTS

Sample outputs of the detection FCNN are shown in Fig.
4, both for joints and joint connections. It is worth noting that
also when some joints were occluded (e.g., due to plaster as
in column 2 of the image, right leg) or they were out of field
of view (column 4, left leg), the network correctly detect the
others.

The boxplots for DSC, separately computed for joints and
connections, are shown in Fig. 5. Median DSC and Rec for
joints are shown in Table III. For DSC and Rec, interquar-
tile range (IQR) was always lower than 0.080 and 0.124,
respectively. Median DSC and Rec for joint connections were
evaluated too (Table IV). For DSC and Rec, IQR was always
lower than 0.099 and 0.146, respectively. Detection time was
on average 0.01 s per image.

Visual results for the regression-CNN output (left ankle)
are shown in Fig. 6. The RMSD median values (for the
reduced 128x96-pixel images) for pose estimation are shown
in Table V. IQR was always lower than 4.760 pixel. Boxplots
for RMSD are shown in Fig. 7.

Figure 8 shows visual pose-estimation results for the four
infants’ limbs. Regression and bipartite-matching algorithm
time was on average 0.02 s. Figure 9 shows the temporal
evolution of joint position for each infants’ limb for two
sample testing videos.

V. DISCUSSION

The proposed FCNN achieved similar results for the de-
tection of all joints (i.e., without outperforming in detecting
one joint with respect to others), reflecting the FCNN ability
of processing in parallel the different joint probability maps.
This is also visible from the visual results in Fig. 4, where the
FCNN was able to correctly detect visible joints without being
affected by occluded ones. The regression network provided
guidance for the bipartile matching algorithm, which achieved
satisfactory performance (RMSD < 12 pixels) for all limbs.
The overall methodology required ∼0.03 s per image, hence
being compatible with real-time infants’ monitoring.

Our approach, despite some limitations (e.g., dataset di-
mensions and video length), overcame some of the literature
drawbacks. Hence, it allowed to directly estimate limb-specific
pose, being computationally efficient and clinically relevant.

Future improvements of the proposed methodology may
include: (i) the collection and annotation of a larger dataset
(considering the lack of available datasets in this field), (ii)

2https://keras.io/



Fig. 8: Sample pose-estimation results. Green: right-arm, red: left-arm, blue: right-leg, yellow: left-leg pose obtained with the
proposed approach.

TABLE III: Joint-detection performance in terms of median Dice similarity coefficient (DSC) and recall (Rec). The metrics
are reported separately for each joint.

Right arm Left arm Right leg Left leg
RW RE RS LS LE LW RA RK RH LH LK LA

DSC 0.813 0. 798 0.778 0.823 0.843 0.837 0.849 0.858 0.792 0.758 0.863 0.847
Rec 0.690 0. 672 0.637 0.708 0.734 0.726 0.752 0.761 0.664 0.661 0.770 0.743

TABLE IV: Joint-connection detection performance in terms of median Dice similarity coefficient (DSC) and recall (Rec).
The metrics are reported separately for each joint connection.

Right arm Left arm Right leg Left leg
RW-RE RE-RS LS-LE LE-LW RA-RK RK-RH RH-LH LK-LA

DSC 0.851 0.817 0.818 0.850 0.888 0.838 0.803 0.861
Rec 0.760 0.706 0.703 0.750 0.826 0.744 0.679 0.768

TABLE V: Limb-pose estimation performance in terms of median root mean square distance (RMSD) computed with respect
to ground-truth pose. The RMSD is reported separately for each limb.

Right arm Left arm Right leg Left leg
RMSD 10.790 10.542 8.294 11.270



(a) Joint DSC (b) Connection DSC

Fig. 9: Temporal evolution of joint position for each infants’
limb. Each color refers to a different limb.

the analysis of temporal information (naturally encoded in
videos) in both detection and regression network, as recently
proposed in [22] and (iii) the integration of infant-specific
measures, already stored in electronic health records (e.g.,
height, limbs length...) to ameliorate the limb-pose estimation.
An accurate estimation may potentially allow to retrieve useful
hints for movement classification (e.g., following [23]) to offer
all possible supports to clinicians.

VI. CONCLUSION

In this paper, we have proposed a deep-learning framework
for 2D pose estimation of infants’ limb in cages inside NICUs.
The framework performs first a rough detection of limb-
joint position via a FCNN, and then refine the detection
exploiting a regression convolutional network, followed by
bipartile matching to link joints belonging to the same limb.
This work, to the best of our knowledge, represents a novel
attempt to perform image-based infants’ limb pose estimation
and can potentially be extended to handle even more complex
scenario, where healthcare operators interacts with infants.

With respect to state-of-the-art approaches, our work allows
a direct estimation of limb-specific pose, is completely auto-
matic and allows real-time processing. This make it suitable
for being integrated in the clinicians’ decision process and
providing support for early diagnosis of brain and cognitive
disorders from limb-movement analysis.
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