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Università Politecnica delle Marche

Brecce Bianche 60131, Ancona
l.tiano@univpm.it,

s.silvestri@univpm.it

Adriano Mancini
VRAI Laboratory,

Department of Information Engineering
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ABSTRACT
The Comet Assay is a well-known procedure employed to in-

vestigate the DNA damage and can be applied to several research
areas such as environmental, medical and health sciences. User
dependency and computation time effort represent some of the
major drawbacks of the Comet Assay. Starting from this moti-
vation, we applied a Machine Learning (ML) tool for discrimi-
nating DNA damage using a standard hand-crafted feature set.
The experimental results demonstrate how the ML tool is able to
objectively replicate human experts scoring (accuracy detection
up to 92%) by solving the related binary task (i.e., controls vs
damaged comets).

Introduction
DNA is the repository of genetic information in cells there-

fore its integrity and stability are essential to life. However it is
not inert but subject to assault from the environment, and any re-
sulting damage could lead to mutation and possibly disease. Per-
haps the best-known example of the link between environmental-
induced DNA damage and disease is skin cancer, caused by ex-
cessive exposure to UV radiation present in sunlight. Another
example is the damage caused by tobacco smoke, which can lead
to mutations and subsequent lung cancer. Besides environmental
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agents, DNA is also subject to oxidative damage from products
of metabolism, such as free radicals. In fact, an individual cell
can suffer up to one million DNA lesions per day and their ac-
cumulation is one of the characteristics of the ageing process.
Detection of DNA damage is therefore of paramount importance
in different fields of basic and applied medical and health sci-
ences, including environmental studies for verifying the toxic-
ity of xenobiotics or chemicals released in the environment [1].
Among the different methodos developed to quantify DNA dam-
age, the single cell electrophoresis or Comet Assay is prominent
being a simple, rapid and sensitive method for measuring DNA
breaks in clusters of cells [2]. The resulting image observed un-
der the microscope appears as a ”comet” with a distinct head and
tail. The head is composed of intact DNA, while the tail con-
sists of damaged (single-strand or double-strand breaks) or bro-
ken pieces of DNA. When standardized and validated, the Comet
Assay can provide invaluable information in the areas of hazard
identification and risk assessment of environmental and occupa-
tional exposure [1], diseases linked with oxidative stress (e.g.,
diabetes and cardiovascular disease) [3], nutrition [4], monitor-
ing the effectiveness of medical treatment and investigating in-
dividual variation in response to DNA damage that may reflect
genetic or environmental influences. The information obtained
could lead to individual advice on lifestyle changes to promote
health and especially on relative risks of genotoxic exposure to
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environmental pollution in humans, in sentinel organisms or in
in vitro toxicity studies [5].

Despite its popularity, the Comet Assay still has some short-
comings mainly due to (i) a high inter-operator variability, (ii)
the inter-laboratory variability and (iii) the high time effort. The
advancement of research enabled the development of completely
automated acquisition software/hardware systems, that combine
operator-independent procedure and high-processivity capabili-
ties. However, in the literature a lack of standard criteria una-
nimity accepted by the experts still remains [6, 7]. In fact, some
ambiguities exist on which features the DNA damage should be
discriminated, and moreover, the decision about the severity of
the comet damage is rarely automatized, but still entrusted to hu-
man experts [8]. This condition can be no longer accepted when
thousands of cells have to be analyzed and discriminated [7].

Since high-throughput of image acquisition is already al-
lowed by a new generation of automated microscope readers, the
aim of the current work is to present a novel approach of comet
images classification based on automatized and reliable Machine
Learning (ML) approach.

Specifically, the present work is finalized to provide im-
provement in the Comet Assay methodology through the com-
bination of:

– Fully automated, operator-independent and high-throughput
image acquisition and features extraction system;

– ML techniques in order to discriminate and quantify the
DNA damage.

Current scenario
Comets can be extracted from the background and distin-

guished in head and length by expert’s visual inspection or im-
age analysis software. Even if an accurate visual scoring inspec-
tion made by and expert can provide an immediate qualitative
indication of severity of the DNA damage, the time employed
by experts to score the images represents the major drawback of
the Comet Assay. Moreover, the inspection is totally subjective
and cannot be reproduced, standardized or compared by other
researchers. On the contrary, the employment of comet analysis
tools lead to overcome only a part of these issues by extracting
some salient features. Moreover, some of these software still suf-
fer from user intervention by setting indispensable threshold pa-
rameters, while fully-automated systems are completely user in-
dependent. Nowadays, publicly available automated software are
very popular [9–11]. OpenComet [9] is a open-source, scalable
and useful tool, but still is not able to only extract hand-crafted
features without providing the classification of the damage.

Method
Computer-based image analysis provides an objective

method of scoring visual content independent of subjective man-

ual interpretation, while potentially being more sensitive, con-
sistent and accurate. The computer system automatically assigns
images to user-defined image classes extrapolated from an exper-
imental control. Extraction of numerical descriptors from refer-
ence experimental dataset of images enabled classification using
ML tools of test images. The training data were used to auto-
matically define the classification rules, while the test data were
used to assess the effectiveness of these rules and their ability to
consistently reflect the data. This enables the development of a
ML tool able to explore and elaborate image data and train the
model, followed by reliable real-time predictions.

Comet assay procedure
The comet assay was carried out to measure DNA damage as

previously described [12]. Briefly, Aliquots of γ rays irradiated
cells (0-450 cGy) and control cells containing 10 000 cells from
each sample were transferred to eppendorf tubes and centrifuged
for 10 min at 800 g at 4◦ C. The supernatant was removed and the
cells were resuspended in 0.7% low melting agarose from which
0.035 ml were taken and placed on pre-coated, high through-
put, comet assay slides (Trevigen). Trevigen Comet hightrouput
microscope slides are characterized by clean area separated by
silicon barriers in order to allow simultaneous layering of ten
different samples on each slide. Clean areas are manifactured
with a dried agarose coating in order to enhance adhesivity. The
microgels on the slides were then allowed to solidify at 4◦. Sub-
sequently, the slides were immersed overnight at 4◦ in the dark,
in ice-cold, freshly prepared lysis solution (2.5 M NaCl, 100 mM
Na2EDTA, 10 mMTris-HCl, 1% Triton X-100 and 10% DMSO,
adjusted to pH 10) in order to lyse the embedded cells and to
allow DNA unfolding. After incubation in lysis solution, the
slides were exposed to alkaline buffer (1 mM Na2EDTA, 300
mM NaOH buffer, pH 13 for 30 min to allow DNA unwinding.
Electrophoresis was then performed for 20 min at 1 V/cm in the
same buffer. After neutralization in Tris buffer (pH 7.5) and de-
hydration in 75% methanol, the DNA on each slide was stained
with 0.015 ml ethidium bromide (20µg/ml) and viewed under
fluorescent light using an Olympus BX51 fluorescence micro-
scope.

Data and Features extraction
For each sample, 15 randomly acquired images were

recorded and processed using a custom made software Marche
[13] based on Labview programming platform (National In-
struments) that enables automatic identification of the comets,
greatly reducing operator-dependent variability. A key feature of
the software is its ability to identify the comets from the back-
ground and to estimate the commonly used DNA-damage in-
dexes. Comet specific DNA-damage indexes and images of 150
nucleoids for each slide were fed to a database. Three slides were
analyzed for each treatment condition and a total of 335 comets
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(a) Subset of control comets (b) Subset of damaged comets

FIGURE 1: Control and damaged comets: region of interest (ROI) and the centre of the head are evidenced in red for each comet.

was selected (the other comets are not included in our analysis).
Figure 1 shows an example of a subset of the collected dataset.
Three expert biologists labeled the whole dataset resulting of 256
control comets (Fig. 1a) and 79 damaged comets (Fig. 1b). The
final label of the image was provided according to a majority vote
approach.

Digital images have been appropriately calibrated [14] in or-
der to associate geometrical units (µm) with pixels at the acquired
magnification (20x). Each pixel of the 8bit image has a grayscale
index varying from 0 (black) to 256 (white) proportional to the
fluorescence intensity of the DNA-bound probe, that is ultimately
directly proportional to the amount of DNA. The sum of pixel
intensities along the Y axis in the region of interest (ROI) defin-
ing the comet results in a histogram characterized by three major
values on the X axis that are the beginning and the end of the
ROI and the value corresponding to the peak of intensity. This
can be single in case of undamaged or lightly damaged cells or
may be multiple in case of heavy damaged cells. In the latter
case only the first peak will be considered. The area comprised
from the beginning of the ROI (Comet Start) and the first peak in
the intensity profile (CometPeak1) defines half of the comet head
typically composed by intact DNA. In intact comets, the comet
head equals the total area of the comet (i.e., all the DNA is intact
and the damaged DNA, also identified as comet tail is null and as
a result the histogram profile is a Gaussian curve). In damaged
comets total area is greater than comet head and image analysis
can be applied in order to calculate useful DNA damage indexes,
both geometric and light intensity parameters. The nine indexes
used in this study are detailed below:

1. Head length (µm) is derived from number of pixels in hori-
zontal direction of the comet and represents the length cor-
responding to 2∗ (CometPeak1−Comet Start).

2. Head intensity (%) is defined as (sum of all pixel intensity
values in the comet head / sum of total intensities in the ROI)
∗100. It is proportional to the percentage of intact DNA.

3. Tail length (µm) is defined as the Head length subtracted
from the overall comet length. In damaged comets it exceeds

the value of 1/2 Head length, but is subjected to saturation
not showing a linear response over a wide range of DNA
damage.

4. Tail intensity (%) is defined as 100−Head intensity.
5. Tail moment is defined as the percentage of DNA in the

comet tail multiplied by the tail length.
6. Tail migration is proportional to the tail length.
7. Total area is defined as the number of pixels enclosed in the

comet shape.
8. Gray mean level is defined as the average of the grey levels

from pixels in the comet.
9. Total intensity is defined as the sum of all pixel intensity

values in the comet.

All the features were used as the predictors of the ML mod-
els, while the label is the absence or presence of damage.

Statistical analysis
The statistical analysis aimed to evaluate and quantify the

dependency between the extracted predictors and the comet dam-
age. In particular, we tested the null hypothesis that the data
(features set) comes from a normal distribution according to a
one-sample Kolmogorov-Smirnov test at the 5% of significance
level. Then, we employed the two-sample Kolmogorov-Smirnov
test at the 5% of significance level in order to verify if there is
a sort of dependency between the features observations and the
related label (controls vs damaged comets). This test measures
the distance between the empirical distribution functions of two
samples (i.e., predictors versus labels to be predicted).

Machine Learning analysis and Measures
The ML tool aims to estimate the binary label of the comets

through the predictors extracted by the automated image pro-
cessing. Specifically, the following standard ML models were
employed and compared:

– Decision Tree (DT) [15]
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– Random Forest (RF) [16]
– K-Nearest Neighbor (KNN) [17]
– KNN with NN features selection (KNN+NCFS) [18]
– Linear Support Vector Machine (SVM Lin) [19]
– Gaussian Support Vector Machine (SVM Gauss) [19]

The performance of the introduced ML models was evalu-
ated according to the following measures:

– Accuracy: the percentage of correct predictions;
– Macro-precision: the percentage of true positive over the

predicted condition positive. We refer to this metric with
Precision. The Precision is calculated for each class and
then take the unweighted mean;

– Macro-recall: the percentage of true positive over the con-
dition positive (sensitivity). We refer to this metric with Re-
call. The Recall is calculated for each class and then take
the unweighted mean;

– Macro-F1: the harmonic mean of precision and recall aver-
aged over all classes. We refer to this metric with F1.

We computed in all the experiments a stratified Tenfold
Cross-Validation (10-CV) over comets procedure. The hyper-
parameters optimization was performed implementing a grid-
search and optimizing the macro-recall score in a nested strat-
ified Five fold Cross-Validation. Hence, each split of the outer
CV was trained with the optimal hyperparameters tuned in the
inner CV. Despite the high computational cost of this procedure,
it allows to obtain an unbiased and robust model checking evalu-
ation. Table 1 shows for each ML the different hyperparameters
as well as the grid-search range.

TABLE 1: Range of Hyperparameters (Hyp) for each model: De-
cision Tree (DT), Regression Forest (RF), K-Nearest Neighbor
(KNN), KNN with NN features selection (NCFS), Linear Sup-
port Vector Machine (SVM Lin) and Gaussian Support Vector
Machine (SVM Gauss).

Model Hyp Range

DT
max n◦ of splits

min n◦ of leaf size

{5,10,15,20,25}

{50,60,70,80,90,100}

RF
n◦ of DT

n◦ of predictors to select

{50,100,150,200,250}

{ all
4 , all

3 , all
2 ,all}

KNN n◦ of neighbors {1,2,3,4,5,6,7,8,9,10}

KNN+NCFS Regularization parameter λ {10−4,10−3,10−2,0.1,1}

SVM Lin Box Constraint {10−3,10−2,0.1,1,10}

SVM Gauss
Box Constraint

Kernel Scale

{10−2,0.1,1,10,102,103,104}

{10−2,0.1,1,10,102,103,104}

Results
Statistical analysis

The performed one-sample Kolmogorov-Smirnov test re-
jects the null hypothesis (p < 0.05) that the data (features set)
comes from a normal distribution. Accordingly, the two-sample
Kolmogorov-Smirnov test demonstrates how the nine extracted
features have a statistically significant (p < 0.05) dependency
with respect to the related label. These results confirm the ef-
fectiveness of the employment of these features as predictors of
the ML model in order to discriminate the damaged comets. Fig-
ure 2 shows the histogram plot for each different feature and for
each condition (i.e., control vs damaged comet). The histograms
confirm qualitatively the discriminative power of the extracted
features in order to perform the classification task.

Machine Learning approaches
Table 2 shows the results of the proposed ML models for

discriminating the damage of comets. The SVM Lin achieved
the best performance in terms of Accuracy (0.92± 0.03), F1
(0.88± 0.05), Precision (0.89± 0.05) and Recall (0.89± 0.06).
The performance is stable across the 10-CV fold providing a
minimum value of 0.89, 0.80, 0.84 and 0.77, respectively.

TABLE 2: Machine Learning results: Decision Tree (DT), Re-
gression Forest (RF), K-Nearest Neighbor (KNN), KNN with
NN features selection (NCFS), Linear Support Vector Machine
(SVM Lin) and Gaussian Support Vector Machine (SVM Gauss).
The best results were highlighted in bold.

Model Accuracy F1 Precision Recall

DT 0.88 0.83 0.84 0.83

RF 0.90 0.86 0.87 0.86

KNN 0.76 0.66 0.67 0.66

KNN+NCFS 0.86 0.80 0.80 0.79

SVM Lin 0.92 0.88 0.89 0.89

SVM Gauss 0.89 0.84 0.85 0.83

Discussion
In this work we set up a framework that consists of a fully

automated and high-throughput image acquisition and features
extraction system combined with a ML tool, in order to discrim-
inate the presence or the absence of the DNA damage. We pro-
posed a reliable ML tool able to replicate manual scoring with
an accuracy detection up to 92%. The main benefits of apply-
ing ML techniques for solving this binary task (i.e., controls vs
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FIGURE 2: Statistical analysis.

damaged) consist to avoid the subjective bias and to exponen-
tially decrease the time-consuming process. The application of
the methodology is interdisciplinary, and can range in macro-
areas such as cancer research, ecotoxicology and skin health.
Thus, the improved methodology can enable rapid, automatic,
operator-independent, measurement of DNA damage in relation
to different health-related issues. More specifically, the proposed
analytical platform can also likely foster its use in other research
fields such as diseases linked with oxidative stress (e.g., diabetes
and cardiovascular disease), human and animal fertility, ageing
research, nutrition and sports medicine. Basically, the augmented

microscopy can enhance the effectiveness of medical treatment
and the monitoring of individual variation in response to DNA
damage that may reflect genetic or environmental influences.

Conclusions and future work
Since the proposed method still represents a preliminary ap-

proach, a future development would be to extend the binary prob-
lem to a multi-class problem, where the damage class is divided
at least in other three intermediate sub-classes. In this future di-
rection, taking into account the higher difficulty of the task, ML
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and Deep Learning (DL) approach can be combined in order to
(i) segment the comet (i.e., using a CNN as made in the very sim-
ilar problem of head segmentation in top-view images [20, 21]),
(ii) discover a novel highly discriminative feature descriptors
(without using hand-crafted features) and (iii) learn some hidden
patterns which can be sometimes unsighted by biologists. This
aspect can increase the usefulness of the framework for solving
increasingly important clinical challenges.

Additionally, it would be of considerable interest to investi-
gate the DNA damage identification with ML unsupervised ap-
proaches (e.g., spectral clustering, hierarchical clustering, Gaus-
sian mixture model) in order to minimize as much as possible the
human labeling procedure.

Considering the processing potentiality of the framework,
we plan to increase the number of comets included in the dataset
(up to 5k comets). In this scenario, the ML tool can be inte-
grated in a cloud-framework and can be updated continuously,
because all the input and output data of the algorithm can be
shared among researchers.
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