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Abstract—Type I diabetes mellitus (T1DM) is a widespread
metabolic disorder characterized by pancreatic insufficiency.
People with T1DM require: a lifelong insulin injection, to
constantly monitor glycemia and to take note of their activities.
This continuous follow-up, especially at a very young age, may
be challenging. Adolescents with T1DM may develop anxiety
symptoms and depression which can lead to the loss of glycemic
control. An assistive technology that automatizes the activity
monitoring process could support these young patient in man-
aging T1DM. The aim of this work is to present the MyDi
framework which integrates a smart glycemic diary (for Android
users), to automatically record and store patient’s activity via
pictures and a deep-learning (DL)-based technology able to
classify the activity performed by the patients (i.e., meal and
sport) via picture analysis. The proposed approach was tested on
two different datasets, the Insta-Dataset with 3498 pictures (also
used for training and validating the DL model) and the MyDi-
Dataset with 126 pictures, achieving very encouraging results in
both cases (Preci= 1.0, Reci= 1.0, f1i= 1.0 with i ∈ C: [meal,
sport]) prompting the possibility of translating this application
in the T1DM monitoring process.

Index Terms—Type I Diabetes Mellitus, activity recognition,
automatic activity annotation, picture analysis, deep learning

I. INTRODUCTION

Type I diabetes mellitus (T1DM) is a widespread metabolic
disorder: Cho et al. [1] identified a prevalence of T1DM in
population aged 18-99 years of 8.4 % in 2017 and predicted
to reach 9.9 % up to 2045. T1DM is characterized by an
autoimmune deterioration of the pancreatic β cells, which cul-
minates in a deficiency of insulin production with a consequent
chronic elevation of blood glucose levels (hyperglycemia) [2].
Nowadays, to monitor the blood glucose levels, a popular
solution is using subcutaneous continuous-monitoring systems,
such as Dexcom R©. Dexcom R© measures glucose levels in the
interstitial subcutaneous fluid and consists of: (i) a glucose
sensor, usually implanted in the subcutaneous tissue of ab-
domen or upper glutes, (ii) a monitor to read and display the
glucose level in the plasma (Fig. 1), (iii) a transmitter that
allows the sensor and the monitor to communicate (via cable
or wireless).

So far, no definitive cure for T1DM exists and the con-
ventional treatment to control blood glucose level consists of
insulin injection to simulate β cells action, but managing the
right insulin injection, especially at a very young age, can be
challenging [3]. To define a proper insulin dose to be injected,

Fig. 1. An example of a daily glycemic curve from the Dexcom R© sensor.
Hyperglycemic (over the yellow line) and hypoglycemic (under the red lines)
episodes are highlighted in yellow and red, respectively.

the patients are required to manually annotate the activity
performed during the day (e.g., physical activity and meal
ingestion) on a glycemic diary to possibly adapt the insulin
therapy in case of hypo- or hyper-glycemic events (Fig. 1).

Keeping the glycemic diary updated is a tedious and time-
consuming procedure, which often results in a poor or sporadic
annotation [4]. Moreover, this everlasting follow-up strongly
impacts patient’s quality of life and his/her psychological
status. Adolescents with diabetes are at a material risk of
developing psychiatric or eating disorders, as well as substance
abuse; these issues can cause refusal of treatment and degra-
dation of glycemic control [5].

An assistive technology that automatizes the monitoring
process could support the young patient and his/her parents
in controlling glucose metabolism and represent a powerful
tool for telemedicine applications. In this scenario, some
preliminary applications that link glucose levels to the activity
performed by the patient have been proposed [6], but still
require to update a glycemic diary [7].

To attenuate the tediousness of manual annotation, a possi-
ble solution could be making the activity annotation process
more automatic via image-based diary records, which recently
emerged as a novel method for activity assessment [8], [9].
Hence, in this work we propose the MyDi framework, which
integrates: (i) the MyDi smartphone application, a smart
glycemic diary to retrieve patients’ activity via pictures taken
with their smartphone, and (ii) a deep-learning (DL)-based
technology trained to automatically recognize the activity per-
formed by the patients via images. In this paper, we focused on
two macro activity classes, meal and sport, as these events are
among the main causes of hyperglycemic and hypoglycemic
episodes [2].



Fig. 2. Workflow of the proposed approach for activity recognition from pictures for diabetes monitoring in young patients.

This paper is organized as follows: Sec. II presents the
MyDi app and the DL-based approach for classifying images.
Sec. III, describes the experimental protocol for validation.
The obtained results are presented in Sec. IV and discussed
in Sec. V which also summarizes the main achievements and
impact of the work.

II. METHODS

This section describes the MyDi smartphone application
(Sec. II-A) and the DL strategy to image-content retrieval
(Sec. II-B). The workflow of the proposed approach is shown
in Fig. 2.

A. MyDi application

MyDi application, programmed in C Sharp and is available
for Android users. It is designed as an alternative to the
glycemic diary with manual annotation and allows the user
to keep track of the activities performed by taking pictures
and clicking icons in an interactive way. When the patient
uses MyDi for the first time he/she completes a calendar with
the planned activities on a weekly basis.

Based on pre-annotated activities, notifications appear to
remind the patient to take pictures of his/her timetabled
activity. The application will automatically keep track of the
time at which the photo is taken and this time will then be
traced back to the measurements of the Dexcom R© sensor.

All the information is then stored on a cloud-based platform
with a strong focus on data protection, security and anonymity.

B. Deep learning strategy

In order to classify images from MyDi application, for
understanding the activity performed by the patient (i.e., meal

or sport), a VGG16 convolutional neural network (CNN) was
used (Fig. 3).

In the original VGG16 implementation, the input 224×224
RGB image is processed through 13 convolutional (conv)
layers for extracting image features. Each conv block has
filters with a very small receptive field (3×3 pixels) and is
followed by a rectified linear unit (ReLU) activation function.

Max pooling layers are inserted after 2 or 3 convolutional
blocks. Pooling has the purpose of progressively reducing the
spatial size of the feature map with the final goal of low-
ering the amount of parameters, reducing the computational
complexity and consequently the risk of overfitting. Finally, 3
fully-connected layers - 4096 neurons in the two first layers
and 1000 neurons in the last one - followed by a softmax layer
are used to predict a probabilistic label map.

To fulfill our binary classification task, fine tuning was
implemented. This procedure avoided training the network
from scratch by uploading ImageNet1 pre-trained weights and
training a small mini network. To construct this mini network
the first 4 conv blocks of VGG16 were frozen and the 3 fully
connected layers were modified - 1024 neurons in the first
layer, 512 neurons in the second and 2 neurons in the last one
- and added to the remaining conv block (Fig. 3)

There are many different reasons to apply fine tuning : (i)
the training time is drastically reduced, (ii) performance is
improved as the model is trained on large scale dataset, (iii)
lower and mid-level filters are not adapted specifically to a
small dataset, not leading the model to overfit as the features
extracted from ImageNet database are very generic [10].

1http://www.image-net.org/



Fig. 3. VGG16 architecture with a focus on fine tuning. Fine tuning
is implemented by freezing the first 4 convolutional (conv) blocks and
constructing a mini network of 3 newly stated fully connected layers - 1024
neurons in the first layer, 512 neurons in the second and 2 neurons in the last
one - added to the remaining conv block.

III. EXPERIMENTAL PROTOCOL

A. Collected dataset

For fine-tuning VGG16, “digital footprints” from the pop-
ular social network Instagram were downloaded using the
Python web crawler Instaloader, which was designed to re-
trieve images with the tag of interest [11]. A dataset (Insta-
Dataset) of 3498 images was collected using varied hashtags,
both on trend and specific ones, such as #breakfast, #eating,
#yummy and #italianfood for meal and #volleyball, #foot-
ballpractice, #baseballmatch and #swimming for sport. The
dataset was then divided into training (2000), validation (1000)
and testing (498) images, which were all equally balanced
between the two classes.

A further testing dataset (MyDi-Dataset) was collected
exploiting the MyDi application. 10 volunteers used the app
(after signing a written consent for privacy issues) throughout

TABLE I
DATASET INFORMATION.

Training Validation Testing
Insta-Dataset 2000 1000 498
MyDi-Dataset - - 126

a period of ten days simulating T1DM patients, uploading
pictures of their meals and physical activities in order to
assemble a collection of images as realistic as possible.

Datasets information is summarized in Table I.

B. Training settings

Before training the network, RGB images were resized to
224x224 pixels, which is the size of images in the Imagenet
dataset.

Then VGG16 was fine-tuned employing stochastic gradient
descend (SGD) as the optimizer, which helps the model avoid
degenerate solutions [12], and using the binary cross-entropy
as Loss function for 100 epochs. The batch size was 32 as
default with a learning rate = 0.0001. The best model was then
selected according to the highest accuracy (Acc) (Eq. 1) on
the validation set.

Acc =

∑i
k TPk

n
, i ∈ C : [meal, sport] (1)

Where: C represents the classes set, TPk represents the cor-
rectly classified sample and n is the total number of samples.
To fine-tune VGG16, Keras library2 was used.

All experiments were implemented on Google Colabora-
tory3: a free GPU cloud platform.

C. Performance metrics

To measure the performance of the classification CNN, we
computed the classification Precision (Preci) (Eq. 2), Recall
(Reci) (Eq. 3), and f1-score (f1i) (Eq. 4) for the i-th class,
with i ∈ C : [meal, sport]

Preci =
TPi

TPi + FPi
(2)

Reci =
TPi

TPi + FNi
(3)

f1i =
2× Preci ×Reci
Preci +Reci

(4)

where TPi, FPi, FNi are the correctly classified samples,
the false positives and the false negatives for the i-th class,
respectively.

2https://keras.io/
3https://colab.research.google.com/notebooks/welcome.ipynb#recent=true



TABLE II
PERFORMANCE METRICS ACHIEVED ON THE Instagram TESTING DATASET.

METRICS ARE REPORTED IN TERMS OF PRECISION (Preci), RECALL
(Reci) AND F1-SCORE (f1i) WHERE i REPRESENTS THE i-TH CLASS.

Prec Rec f1
meal 0.99 1.0 0.99
sport 1.0 0.99 0.99

Fig. 4. Learning curves to evaluate the training (blue) and validation (red)
Accuracy (Acc) and Loss.

IV. RESULTS

Tab. II shows the results achieved by the network in terms
of Preci, Reci and f1i (with i ∈ C: [meal, sport]) for Insta-
Dataset. MyDi-Dataset was used for testing too and the same
metrics were calculated. In this latter case Preci, Reci and
f1i were all equal to 1.

In Fig. 4 learning curves to evaluate the training and
validation Acc and Loss are depicted. The best DL-model was
the one with the highest Acc as reported in Fig. 4. Moreover,
to prove that the model did not experience the overfitting
phenomenon we also reported in the same Figure (Fig. 4) the
Loss curve for the validation set with its decreasing trend.

V. DISCUSSION AND CONCLUSION

This work presented the MyDi framework which coupled
the MyDi smartphone application with VGG16 CNN to sup-
port young adults with diabetes in automatizing the process
of activities annotation. Hence, the system, did not force the
patient in keeping a glycemic diary but directly classified his/
her activity from pictures.

Two datasets were considered to test the network: the Insta-
Dataset (which was also used for training and validating the
network) and the MyDi-Dataset. As reported in Sec. IV,
encouraging results were achieved for both datasets and the
two classes considered (i.e., meal and sport) with peaks of
1.0 in all the 3 metrics (Preci, Reci, f1i). These results

suggested that MyDi could represent a valid solution for young
patients with diabetes to monitor their pathology in an easy
and motivating way, without having to manually record their
activity on a diary.

However to give them the chance to improve the overall
quality of their life it is acknowledged that further research
is required. Among the possible future improvements the
CNN could be trained to recognize various parameters and
characteristics from the photo taken through MyDi and retrieve
the amount of food eaten, of kilocalories consumed or of
carbohydrates ingested or interpreting if the exercise is aerobic
or anaerobic. Moreover the trained model could be uploaded
on the new generation of smartphone with processors able
to handle CNN to make online predictions. Other kinds of
data could be integrated in the application (as in [13]): for
example the ones coming from wearable sensors (e.g., Fitbit4)
and other health applications (e.g,. Android HiCare) that would
add more precise information on the activities carried out by
the patient and allow a more robust and continuous (data would
be retrieved at different times during the entire day) estimation
of the latter. Furthermore, directly correlating blood glucose
variation detected with Dexcom R© to the activity (meal and
sport) performed by the patient, uploaded on MyDi, would be
clinically relevant.

Organizing the entirety of these data could benefit clinic
knowledge of T1DM, giving the chance to study young
patients’ behaviour and routines more in detail.
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