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Abstract Microsurgical procedures, such as petrocli-

val meningioma resection, require careful surgical ac-

tions in order to remove tumor tissue, while avoiding

brain and vessel damaging. Such procedures are cur-

rently performed under microscope magnification. Robotic

tools are emerging in order to filter surgeons’ unin-

tended movements and prevent tools from entering for-

bidden regions such as vascular structures.

The present work investigates the use of a handheld

robotic tool (Micron) to automate vessel avoidance in

microsurgery. In particular, we focused on vessel seg-

mentation, implementing a deep–learning–based seg-
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mentation strategy in microscopy images, and its inte-

gration with a feature-based passive 3D reconstruction

algorithm to obtain accurate and robust vessel position.

We then implemented a virtual–fixture–based strategy

to control the handheld robotic tool and perform vessel

avoidance. Clay vascular phantoms, lying on a back-

ground obtained from microscopy images recorded dur-

ing petroclival meningioma surgery, were used for test-

ing the segmentation and control algorithms.

When testing the segmentation algorithm on 100

different phantom images, a median Dice similarity co-

efficient equal to 0.96 was achieved. A set of 25 Mi-

cron trials of 80s in duration, each involving the in-

teraction of Micron with a different vascular phantom,

were recorded, with a safety distance equal to 2mm,

which was comparable to the median vessel diameter.
Micron’s tip entered the forbidden region 24% of the

time when the control algorithm was active. However,

the median penetration depth was 16.9 µm, which was

two orders of magnitude lower than median vessel di-

ameter.

Results suggest the system can assist surgeons in

performing safe vessel avoidance during neurosurgical

procedures.

Keywords Robot-assisted surgery · Vessel segmenta-

tion · Virtual fixture control · Neurosurgery

1 Introduction

During neurosurgery procedures, surgeons perform ac-

curate and minute operations with limited visibility [46].

Such procedures are currently performed under micro-

scope magnification. Bleeding requiring transfusion is

recognized as one of the most common complications in

cranial surgeries (5.4%) [42]. Detaching the tumor from
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tiny or large arterial and venous vessels is a daunting

challenge; damaging (and then blocking) the physiolog-

ical blood flow in such structures usually causes brain

infarction and a consequent grim neurological perfor-

mance and prognosis, being the worst neurosurgical sce-

nario to be faced [31,57].

In particular, petroclival meningioma resection is

known to be among the most technically challenging

neurosurgical procedures, due to the meningioma prox-

imity to major blood vessels that serve key and vital

nervous structures [12].

As preserving large vessels is of primary importance

for lowering postoperative morbidity, an assistive robotic

device could be used to filter surgeons’ unintended move-

ments of the human hand and prevent entering forbid-

den regions such as vascular structures [47].

Examples of assistive devices developed for forbidden-

region robotic control include neuroArm [61,60], a magnetic-

resonance-compatible robot for image-guided, ambidex-

trous microneurosurgery. Cooperative control for preci-

sion targeting in neurosurgery was explored in [5,6]. In

[62,59] and in [22], cooperatively controlled robots were

proposed with applications in retinal surgery.

Recently, handheld robotic systems have been pro-

posed [24]. Compared to teleoperated and cooperative

systems, the biggest advantages of handheld systems

are (i) intuitive operation, (ii) safety, and (iii) econ-

omy [4]. Moreover, handheld tools have the strong ad-

vantage of offering the same intuitive feel as conven-

tional unaided tools. This results in improving the like-

lihood of acceptance by the surgeon [24].

Among handheld tools, the Navio PFS [37] is a sculpt-

ing tool designed for knee arthroplasty. The system

combines image-free intraoperative registration, plan-

ning, and navigation for bone positioning. KYMERAX

has been designed for laparoscopic applications [25].

The system is made of a console, two handles, and inter-

changeable surgical instruments that can be attached to

the handles.

Micron [38] has emerged as a powerful actively sta-

bilized handheld tool for applications in retinal vessel

microsurgery. Micron is equipped with an optical track-

ing system and a microscopy stereocamera vision sys-

tem. Despite Micron control for tremor compensation

being widely investigated (e.g. [38]), forbidden-region

virtual-fixture control has been investigated only for

retinal microsurgery applications [7]. In [7], vessel seg-

mentation and tracking are performed using simultane-

ous localization and mapping [13].

However, more advanced solutions to the problem

of vessel segmentation have been proposed in the last

years, with a growing interest in deep-learning strate-

gies [18]. Deep learning allows fast and accurate seg-

mentation also in the presence of challenging vascular

architectures, such as bifurcations, and of high noise

level and intensity inhomogeneities, typical of microscopy

images recorded during surgery [44].

In this context, the goal of this work is to investigate

the use of deep learning to perform fast and accurate

vessel segmentation from microscopy images as to im-

plement reliable forbidden-region virtual-fixture Micron

control. In this paper, we specifically focus on providing

accurate vascular segmentation and, to control Micron,

we exploit the control strategies presented in [38].

The paper is organized as follows: Sec. 2 surveys ves-

sel segmentation strategies, with a focus on deep learn-

ing. Sec. 3 explains the proposed approach to vessel-

collision avoidance. Sec. 4 deals with the experimental

protocol used to test the proposed methodology. Re-

sults are presented in Sec. 5 and discussed in Sec. 6.

Finally, strength, limitations and future work of the

proposed approach are reported in Sec. 7.

2 State of the art

Despite the most popular vessel segmentation approaches

in the past being focused on deformable models (e.g. [8,

10]) or enhanced approaches (e.g. [17,56,69,9]), in the

last years researchers are focusing more and more on

machine learning. A comprehensive and up-to-date re-

view of blood vessel segmentation algorithms can be

found in [44].

There are two main classes of machine learning ap-

proaches: unsupervised and supervised. The former finds

models able to describe hidden arrangements of image-

derived input features, while the latter learns data mod-

els from a set of already labeled features.

Among supervised segmentation models, convolu-

tional neural networks (CNNs) have emerged as a pow-

erful tool in many visual recognition tasks [27,55,23]. A

CNN is a feed-forward artificial neural network inspired

by the organization of the human visual cortex.

The typical use of a CNN for vessel segmentation

is based on pixel–wise classification: each pixel in the

image is assigned to the class vessel or background. The

CNN is either used to extract image features then clas-

sified with other supervised model approaches [65,64,

21], or trained to directly obtain the pixel classification

by encoding one or more fully-connected layers [53,58,

35].

More complex architectures have been recently pro-

posed to directly deal with the segmentation task [34,

40,20]. A quite innovative solution is exploited in [43,

11,41], where fully convolutional networks (FCNNs) are

used for vessel segmentation. With respect to classifi-

cation CNNs, FCNNs allow faster training time, lower
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(a) Handle and moving platform

(b) System setup

Fig. 1 (a) Micron handle and moving platform on which
infrared LEDs (highlighted in red) are mounted for Micron
tip tracking. (b) Micron tip tracking system (ASAP), stereo-
cameras for microscopy image acquisition and 3D reconstruc-
tion and Micron are shown.

computational cost during the testing phase and higher

segmentation performance.

3 Methods

In this section, we describe the proposed approach to

safety improvement in neurosurgery through vessel col-

lision avoidance. We designed a forbidden-region virtual

fixture strategy to control Micron and prevent its tip

from colliding with vascular structures. To retrieve ves-

sel segmentation, we used the deep-learning approach

presented in Sec. 3.2. The vessel 3D reconstruction and

registration to the Micron reference system are explained

in Sec. 3.3. Finally, the control strategy is reported in

Sec. 3.4.

3.1 Micron architecture

As introduced in Sec. 1, Micron is an actively stabi-

lized handheld surgical robot [68,67,4,66]. The Micron

handpiece contains a Gough-Stewart manipulator that

uses piezoelectric micromotors to move the tool rela-

tive to the handpiece in 6-degrees-of-freedom (DOF),

Fig. 2 Fully convolutional neural network architecture ex-
ploited for vessel segmentation. Conv: Convolution; Pad:
Padding; ReLU : Rectified linear unit; MaxPool: Max pool-
ing; Up–Conv: Up-convolution; Copy: Copy layer. The num-
ber of feature maps are shown on top of the boxes.

Fig. 3 The vessel surface can be discretized as a set of points
laying on I circumferences. The ith(i ∈ [0, I − 1]) circumfer-
ence (Ci) was characterized by its center 3D position (Ci),

orientation (N̂i) and radius (Ri).

commanding tip motion covering a 4×4mm cylindrical

workspace. Micron has two sets of infrared LEDs, of

which three are mounted on the moving platform and

three are fixed to the handle. The moving and fixed

platforms are showed in Fig. 1(a). The LEDs are opti-

cally tracked by a custom-built tracking system called

Apparatus to Sense Accuracy of Position (ASAP) [39].

The ASAP provides Micron position and orientation

with a resolution of 4 µm in a 27cm3 workspace [67].

The Micron real-time control loop runs at 1000 sam-

ples/s, and has a closed-loop bandwidth of 50 Hz. Mi-

cron implements tool stabilization by commanding the

tool tip to track a low-pass filtered version of the hand

[38]. The Micron microscopy stereocamera vision sys-

tem is equipped with two Flea2 1024×768 cameras (Point

Grey Research, Inc., Richmond, B.C.). The complete

Micron setup, comprising Micron, ASAP and the stere-

omicroscope used for image acquisition, is shown in

Fig. 1(b).
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Table 1 Nomenclature relative to the 3D reconstruction.

Symbol Meaning
Ci ith circumference that approximates the 3D vessel surface section
Ci 3D center position of Ci

N̂i 3D orientation versor of Ci

Ri radius of Ci in space
Lci 2D center position of Ci in the left image plane
Lri radius of Ci in the left image plane
Lei 2D rightmost vessel edge position on Ci associated to Lci the left image plane
Rci 2D center position of Ci in the right image plane
Rri radius of Ci in the right image plane
Rei 2D rightmost vessel edge position on Ci associated to Rci in the right image plane
Ei 3D point on Ci obtained triangulating Lei and Rei

Fig. 4 3D reconstruction algorithm workflow. First, the homography transformation (H) between the left and right image
planes is computed. After homography computation, our assumption is that the 3D shape of vessels can be approximated by
a bent tubular structure with variable radius. Thus, the vessel surface in 3D can be discretized as a set of points lying on I
different juxtaposed circumferences (Ci, i ∈ [0, I − 1]). From the (left) segmented image, the 2D position of the center (Lci)
and the 2D corresponding rightmost vessel edge point (Lei) of Ci are computed ∀i. From Lei and Lci, the homography is
used to estimate the 2D position of the center (Rci) and edge point (Rei) of Ci (i ∈ [0, I− 1]) in the right image plane. Direct
linear transformation is used to triangulate and obtain Ci and Ei. From Ci and Ei, the 3D vessel radius Ri and direction
N̂i are computed, ∀i. Once Ci, N̂i and Ri are known, Ci is automatically identified. Uniform sampling is used to sample 36
equally spaced points on Ci. The set of 36 points on Ci, ∀i, represents the 3D vessel surface point cloud.

3.2 Vessel segmentation algorithm

As introduced in Sec. 2, FCNNs have been successfully

used for vessel segmentation [43,11,41].

In particular, we investigated the U-shaped FCNN

(Fig. 2) architecture proposed in [55]. The architecture

in [55] outperformed other FCNNs in the literature for

the task of neuron segmentation in microscopy images.

Despite the FCNN being proposed for neuron segmen-

tation, our hypothesis is that the FCNN can be success-

fully exploited also for our vessel segmentation task, as

both axons and vessels have similar tubular architec-

tures.

The FCNN consisted of a contractive (descending)

path and an expansive (ascending) one. The contractive

path consisted of the repeated application of two 3×3

convolutions (Conv), each followed by a rectified linear

unit (ReLU) and a 2×2 max-pooling (MaxPool) op-

eration with stride 2 for downsampling. At each down-

sampling step, the number of feature channels was dou-

bled. Every step in the expansive path consisted of an

upsampling of the feature map with a 2×2 up-convolution

(Up–Conv) that doubled the size of the feature map

and halved the number of feature channels, followed by

two 3×3 convolutions and a ReLU each. The copy lay-

ers (Copy), peculiar of the exploited architecture, were

introduced in the expansive path to retrieve the infor-

mation lost in the contractive path due to the MaxPool

operations. In the original work [55], the introduction
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of Copy proved to be particularly useful for improving

segmentation accuracy.

Our FCNN topology had only four out of the five

original layers described in [55], as our hypothesis was

that reducing the number of layers shortens the time

consumption. To investigate this hypothesis, during our

experimental protocol we investigated three FCNN topolo-

gies, i.e. with four, five and six layers, as described in

Sec. 4. At the final layer, a 1×1 Conv was used to map

each feature vector to our two classes (0: background,

1: vessel).

For training purposes, ADAM [26] was used. ADAM

is an algorithm for first-order gradient-based optimiza-

tion of stochastic objective functions and is based on

the adaptive estimates of lower-order moments. The

method is computationally efficient, has little mem-

ory requirements and is invariant to gradient diagonal

rescaling.

Image segmentation was performed on the left mi-

croscopy image.

3.3 3D reconstruction algorithm

To compute the 3D vessel position in the Micron refer-

ence frame, we acquired vessel images from the surgi-

cal microscope (Fig. 1(b)). Following [67], the camera

calibration was performed by matching the points cor-

responding to the Micron tip projections on the image

planes of the two cameras and the real Micron tip co-

ordinates acquired with the ASAP positioning system.

First, we computed the homographic transforma-

tion (H) between the left (L) and right (R) images using

speeded up robust features (SURF) [3] and the fast li-

brary for approximate nearest neighbors (FLANN) [48].

Once H was computed, our assumption was that

the 3D shape of vessels can be approximated by a bent

tubular structure with variable radius, as is commonly

done in the literature [18]. Thus, the vessel surface in 3D

can be discretized as a set of points lying on I circum-

ferences with different radius. The ith(i ∈ [0, I−1]) cir-

cumference (Ci) was characterized by its center 3D po-

sition (Ci), orientation (N̂i) and radius (Ri), as shown

in Fig. 3.

To compute Ci, N̂i and Ri, the vessel segmentation

mask was thinned with the Zhang Suen algorithm [29]

to obtain the vessel centerline. Each ith pixel of the cen-

terline (Lci) represented the 2D projection of Ci in the

left image plane. The 2D radius (Lri) of the projection

of Ci in the left image plane was determined using the

Euclidean distance transform [16]. The versor of each

radius was computed as the normal to the tangent of

the centerline computed in Lci. Once the versor and Lri

were obtained, we retrieved the 2D coordinates of the

rightmost point (Lei) on the vessel edge associated to
Lci. We applied the H transformation to Lci and Lei

∀i to obtain the corresponding approximated centerline
Rci and edge Rei points ∀i on the right image.

Using the direct linear transform [14], we triangu-

lated Lci and Rci ∀i, obtaining Ci, ∀i. We did the same

for Lei and Rei, obtaining the 3D edge point Ei,∀i. We

then estimated Ri as the 3D distance between each Ci

and Ei. To obtain N̂i, we computed the tangent to the

3D vessel centerline in each Ci. We used the finite dif-

ferences approach to approximate the tangent. Moving

average of order 3 was then applied to the Ni,∀i for

smoothing purposes. Once N̂i, Ci and Ri were calcu-

lated ∀i, the Ci i ∈ [0, I−1] was obtained with uniform

circumference sampling with 36 points (ipj), j ∈ [0, 35].

The workflow of the 3D reconstruction algorithm is

shown in Fig. 4. The nomenclature list that describes

the 3D reconstruction algorithm is reported in Table 1.

3.4 Forbidden-region virtual fixture

As shown in the schematic in Fig. 5, the Micron control

command for the forbidden-region virtual fixture was

triggered when the distance (d) between the tool tip

resting position (prest ) (i.e the position of the tip, when

control was not triggered) and the 3D vessel position

(pclosest) closest to the tool tip resting position was

lower than a predefined threshold (dsafety):

d ≤ dsafety (1)

To speed up the estimation of pclosest, we first searched

among the Ci, i ∈ [0, I−1], the point Cī = C̄ closest to

the Micron tip resting position. Then, the point on the

circumferences [Cī−2, Cī+2] were considered. The small-

est distance was then found among the points of these

five circumferences. Once pclosest was found, if the con-

trol law in Eq. 1 was not satisfied, a new Micron goal

position of the tip (pcontrol) was defined. The new goal

position laid on the line passing through pclosest and

the current resting tip position and was at a distance

dsafety from pclosest. Using prest instead of the current

Micron tip position (ptip) to control Micron allowed a

smoother trajectory of the tip, as suggested in [54]. In

our control strategy, we also included tremor compen-

sation as introduced in Sec. 3.1 and explained in [38].

It is worth noting that, as introduced in Sec. 3.1, the

Micron control loop runs at 1000 samples/s, and has a

closed-loop bandwidth of 50 Hz. The pcontrol updating

(i.e. virtual-fixture control) was asynchronous with re-

spect to the real-time control loop, and could be at a
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Fig. 5 The forbidden-region virtual-fixture control algorithm requires computation of the distance d between the tool tip
resting position (prest) and the 3D vessel point (pclosest) closest to prest. prest is the position Micron takes when no control
is triggered. To understand if the control command has to be triggered, first, (left image) the closest point Cī on the 3D vessel
centerline (Ci, i ∈ [0, I − 1], with I equal to the number of centerline points) is found. Then, (central image) pclosest is found
among the points on the circumferences [Cī−2, Cī+2]. Finally, (right image) if d is lower than a predefined threshold (dsafety),
the Micron control is activated and the new Micron tip position (pcontrol) is defined, which lays on the line passing through
pclosest and the current prest and is at a safety distance (dsafety) from pclosest.

Table 2 Training parameters for vessel segmentation.

Parameter Value
Maximum number of iterations 18000
Batch size 10
Learning rate 0.001
Exponential decay rate for the first moment estimates 0.9
Exponential decay rate for the second moment estimates 0.999

Fig. 6 Phantom vascular samples used to test the proposed
approach to vessel collision avoidance using Micron. Phan-
toms are reported in the first two rows. The last row shows
images recorded during real petroclival meningioma surgery.
Vessels are highlighted with respect to the background.

lower rate without greatly compromising the smooth-

ness of voluntary motion that was passed through to

the tool.

4 Experimental protocol

An experimental set-up was developed in order to sim-

ulate Micron–vessel interaction in a surgical environ-

ment. 230 phantoms were created, which contained mod-

eling clay vessels lying on a background obtained from

Fig. 7 Evaluation of the 3D reconstruction algorithm. The
3D cloud was reprojected on the left image plane, obtaining a
set of reprojected points (Lproj). Lproj was made of several

reconstructed circumferences (LĈj with j ∈ [0 : I − 1] and I
the number of reconstructed circumferences) with center Lĉj.

For each LĈj , the 2 extremes were retained, obtaining a new
set of points (lextremesj). The Euclidean distances between
Lextremes and the points of LĈj closest to the vessel mask
(∀j) were computed. Two distances were considered (Ldin
and Ldout), depending on whether the extreme lay inside or
outside the vessel mask, respectively.

microscopy images recorded during real petroclival menin-

gioma surgery. Vessels were different in shape and size,

varying from straight cylinders to structures with vari-

able radius and multiple branches. The diameter of

these structures was created between 2 mm and 4 mm

(median diameter = 2.58 mm). Phantom design was in-

spired by vascular structures recorded during real petro-

clival meningioma surgery images, as shown in Fig. 6.

Each phantom was recorded with the microscope,

obtaining 230 images of size 600× 800× 3 pixels. Chal-
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Fig. 8 Visual samples of vessel segmentation outcomes. The images in the three leftmost columns show phantom vessels,
those in the last three ones show a superficial brain vessel, the petrosal vein and the basilar artery, respectively. Real vessels
are shown by the white arrows. Original RGB images are shown in the first row. The second and third row refer to the
ground-truth manual segmentation and the segmentation outcome, respectively.

lenges in the dataset included inhomogeneous background,

instrumentation in the camera field of view, varying ves-

sel orientation, width and distance from the camera.

To train the FCNN, the dataset was split in 220

training and 10 testing images. Data augmentation was

performed. In particular, to each image in the original

dataset 9 transformations were applied: 45◦, 120◦ and

180◦ rotations, vertical and horizontal mirroring, barrel

distortion, sinusoidal distortion, shearing and a combi-

nation of sinusoidal distortion, rotation and mirroring,

as suggested in [27].

After data augmentation, the augmented dataset

was composed of 2200 training and 100 testing images.

Among the training images, 1800 were used for FCNN

training and 400 for FCNN parameter tuning.

4.1 Parameter settings and implementation

The training images and the corresponding segmenta-

tion masks were used to train the FCNN using Caffe [1].

The training parameters are reported in Table 2. The

maximum number of iterations and the batch size were

determined with a trial-and-error procedure. The learn-

ing rate and the exponential decay rates were set as

in [26].

The FCNN was trained on an Amazon Web Server

(AWS) bitfusion Amazon Machine Image (AMI) con-

trolled via SSH. The instance used was a p2.xlarge,

which has 12 EC2 Compute Units (4 virtual cores),

61GB of memory, plus a GPU NVIDIA K80 (GK210).

The FCNN-based segmentation, 3D reconstruction

and virtual fixture control were implemented in C++

using OpenCV1. An Intel Xeon CPU E5-1607 (3.10GHz

with 4 Core), 16 Gb of memory and a GPU NVIDIA

Quadro K420 was used.

4.2 Evaluation dataset and metrics

The segmentation algorithm was tested on the whole

set of 100 testing images. Performance metrics were:

Acc =
TP + TN

n
(2)

Se =
TP

TP + FN
(3)

Sp =
TN

TN + FP
(4)

DSC =
2TP

FP + FN + 2TP
(5)

where TP are the true positive, TN the true negative,

FN the false negative, and FP the false positive pix-

els. We also measured the segmentation computational

time.

To investigate segmentation performance when vary-

ing the number of FCNN layers, we computed the seg-

mentation DSC and measured the relative segmenta-

tion time also for FCNN with five and six layers. We

1 https://opencv.org/
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used the Wilcoxon signed-rank test (significance level

(α) = 0.05) to assess whether significant differences ex-

isted in DSC and segmentation time among the three

configurations (i.e. proposed, with five, and with six lay-

ers). We also analyzed the performance of the exploited

FCNN with four layers when varying the training-set

size. Specifically, we repeated the training using only

the 50% and 70% of the training set, keeping the same

testing set. We then computed the DSC achieved by

the FCNN when using the different training set.

We compared the performance of the exploited FCNN

with three conventional methods in the literature of

vessel segmentation, i.e. [69,17,9], which are among the

most widely used when considering conventional vessel-

segmentation methods [18,44]. All these conventional

methods require parameter tuning: vessel-scale range

for [17], vessel width and orientation for [69,9]. Here,

we tuned these parameters with a trial-and-error pro-

cedure, privileging parameter combinations that gave

the highest DSC. The set parameters were: vessel-scale

range = [5:5:15], vessel width = [5:5:15], vessel ori-

entation = [0 ◦:35◦:170◦). After segmentation, erosion

was applied to remove isolated spots. We computed the

DSC for the conventional-method segmentation and

compared the obtained DSC values with the DSC ob-

tained with the exploited FCNN using the Wilcoxon

signed-rank test (α = 0.05).

We decided to investigate the performance of the

FCNN in classifying real petroclival-meningioma surgery

images. To this goal, we segmented brain vessels from

a portion (∼ 6 minutes long) of a microscopy video

of meningioma surgery. Video frequency was 25 fps and

frame size was 224×288. Besides focusing on superficial
brain vessels (like the phantom ones), we also consid-

ered two other vascular structures: the petrosal vein and

the basilar artery, which are among the most critical

structures to preserve during meningioma surgery, too.

In particular, we extracted and manually segmented: (i)

38 frames of the superficial vessels, (ii) 65 frames of the

petrosal vein, (iii) 56 frames of the basilar artery. These

numbers refer to the total number of frames in which

the vessels were clearly visible and in focus. We decided

to train the same FCNN architecture with three sepa-

rate datasets, one per vascular structure, as the three

considered vascular structures are quite different both

in appearance and in location inside the brain. Thus,

we obtained three FCNN models, each associated to one

vascular architecture. In our preliminary analysis, this

allowed more accurate segmentation than training a sin-

gle FCNN model for segmenting the three structures

simultaneously. It is worth noting that the three vascu-

lar structures appear in different phases of the surgery

[2]. Thus, once the surgical phase is retrieved, e.g. ex-

ploiting the strategy proposed in [63], only the vascular

structure in that phase should be segmented, using the

(trained) FCNN model corresponding to that structure.

In each of the three cases, we split the dataset into 90%

training images and 10% testing images. Data augmen-

tation was performed as with phantoms, i.e. applying 9

different transformations to each image in the original

dataset. We then computed the DSC for evaluating the

segmentation of the three vascular structures.

To evaluate the performance of the 3D reconstruc-

tion, the 10 testing phantoms were recorded using the

stereo microscope. For each stereoImage, once the vessel

segmentation and 3D reconstruction were obtained as

explained in Sec. 3.2 and Sec. 3.3, respectively, the num-

ber of points (Npoints) of the 3D point cloud (pcloud =

{pcloudi
} with i ∈ [0;Npoints]) was computed. The time

required to reconstruct pcloud was measured, too. Fur-

ther, the pcloud was reprojected on the left image plane,

obtaining a set of reprojected points (Lproj = {Lproji}
with i ∈ [0;Npoints]).

lproj was made of several re-

constructed circumferences (LĈj with j ∈ [0 : I − 1])

with center Lĉj, as shown in Fig. 7. For each LĈj , only

the two extremes (Lextremesj) were retained. The Eu-

clidean distances between Lextremesj and the points

of LĈj closest to the vessel mask (∀j) were computed.

Once the distances were computed ∀j, we split the set

of distances in two subsets, depending on whether the

extreme lay inside (Ldin) or outside (Ldout) the ves-

sel mask, to understand whether we underestimated or

overestimated the true vessel edges.

For the forbidden-region virtual-fixture algorithm

performance assessment, we used Micron to interact at

random with 25 different vascular phantoms for ∼ 80s

per trial. Specifically, in each trial the user randomly
moved the device toward the vascular phantom trying

to touch it. The tunable dsafety was set equal to 2 mm

after discussing with the clinical partners, as this was

the median vessel diameter. We first evaluated, for each

trajectory, the number of times the tool tip entered the

forbidden zone. Specifically, we computed the percent-

age penetration error (err%), which is defined as:

err% =
Ninforbidden

Ncontrol
× 100 (6)

whereNinforbidden is the number of pinforbidden,Ncontrol

is the number of pcontrol, and pinforbidden is defined as:

pinforbidden = {ptip | ‖ptip − pclosest‖ < dsafety} (7)

We decided to express err% as a percentage with re-

spect to the total number of points in which the Mi-

cron control was triggered to exclude Micron position

far away from the safety zone (i.e. for which no control

is required).
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Table 3 Vessel segmentation performance and computa-
tional cost for the 100 testing images. Median, first and third
quartiles are reported for each metric. DSC: Dice similar-
ity coefficient; Se: Sensitivity; Sp: Specificity; Acc: Accuracy;
Time: Computational time [s].

DSC Se Sp Acc Time
First quartile 0.94 0.95 0.99 0.98 0.77

Median 0.96 0.91 0.99 0.99 0.77
Third quartile 0.97 0.96 1.00 0.99 0.78

Fig. 9 Point cloud reprojected on left and right image plane
plotted over the left (left column) and right (right column)
ground-truth vessel segmentation images.

Then, for each trajectory, we computed the absolute

error distance (err):

err = dsafety − ‖pinforbidden − pclosest‖ (8)

The err allowed understanding of how much the Micron

tip entered the forbidden region.

5 Results

Visual samples of vessel-segmentation outcome are shown

in Fig. 8. Table 3 reports median, first and third quartile

Fig. 10 Dice similarity coefficient (DSC) for segmentation
obtained using M1: [69], M2: [17], M3: [9] and the proposed
FCNN-based approach.

Fig. 11 Dice similarity coefficient (DSC) for FCNN-based
segmentation relative to SV: superficial vessels, PV: petrosal
vein, BA: basilar artery and Ph: phantom vessels.

of DSC, Se, Sp and Acc computed for the phantom-

vessel segmentation performed on the 100 testing im-

ages as well as the computational time required for the

segmentation. Segmentation performances were: 0.96

(DSC), 0.91 (Se), 0.99 (Sp) and 0.99 (Acc). The com-

putational time required for segmenting one image was

0.77 s on the deployed GPU. When varying the number

of FCNN layers, no significant differences were found

in DSC, while significant differences were found when

comparing segmentation time. Median segmentation-

time increment was 27% (5 layers) and 67% (6 lay-

ers). When exploiting a reduced training set, the FCNN

segmentation DSC deteriorated from 0.96 to (median)

0.90 (%70 of original training set) and 0.89 (%50 of

original training set).

When analyzing segmentation performance of con-

ventional segmentation methods, we obtained a median

DSC of 0.45 [69], 0.54 [17] and 0.55 [9]. Significant

differences were found when comparing the proposed

FCNN with the three analyzed conventional methods.

Relative boxplots are shown in Fig. 10.
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Table 4 Number of points (Npoints) and computational cost (Time [s]) for each of the 10 reconstructed 3D vessel clouds
considered for evaluating the 3D reconstruction algorithm. Median values are reported, too. The values are reported for the
proposed algorithm and for the 3D reconstruction performed with speeded up robust features (SURF) [3] and the fast library
for approximate nearest neighbors (FLANN) [48]. Significant differences were found when comparing Npoints computed with
the proposed approach and with SURF and FLANN (Wilcoxon signed-rank test (significance level = 0.05)).

1 2 3 4 5 6 7 8 9 10 Median

Npoints (SURF + FLANN) 4 9 23 31 15 11 16 14 1 10 12.5
Time [s] (SURF + FLANN) 0.10 0.10 0.11 0.13 0.10 0.11 0.13 0.11 0.11 0.12 0.11

Npoints (Proposed) 10906 15190 12058 19654 17710 19186 14362 16630 17746 21778 17170
Time [s] (Proposed) 0.53 0.47 0.47 0.66 0.45 0.49 0.44 0.54 0.64 0.38 0.48

Fig. 12 Distance (d) between Micron tip and 3D vessel point
closest to the Micron tip. d with and without the virtual-
fixture control is reported in green and orange, respectively.

When considering real-surgery images, we obtained

a medianDSC of: 0.76 (inter-quartile range (IQR)=0.03)

for the superficial vessels, 0.71 (IQR = 0.10) for the pet-

rosal vein, and 0.86 (IQR = 0.06) for the basilar artery.

Relative boxplots are shown in Fig. 11.

The number of reconstructed points for each cloud

and the computational cost required to obtained the

clouds are reported in Table 4. A median Npoints of

17170 was obtained, with a median computational cost

of 0.48s. When compared to SURF- and FLANN-based

3D reconstruction, the computational cost was higher

than the one required by SURF and FLANN (0.11s).

However, the Npoints was significantly higher (Wilcoxon

signed-rank test, significance level = 0.05) than the

Npoints obtained using SURF and FLANN, equal to 12.

The median values of Ldin and Ldout, computed among

all the 10 point clouds, were 139.6 µm and 70.4 µm, re-

spectively. The 71% of Lextremes lied inside and the

28% of Lextremes lied outside the vessel mask.

A median value of 114.16 µm, computed considering

both Ldin and Ldout for all the 10 point clouds, was

obtained. Visual samples of the point clouds reprojected

on the left and right ground-truth image are shown in

Fig. 9.

Fig. 13 Sample trajectory for virtual fixture evaluation. The
reconstructed vessel point cloud is represented in blue; the
trajectories with and without the virtual fixtures control are
depicted in green and orange, respectively.

A median err% among the 25 tested Micron tra-

jectories of 24% (IQR = 10%) was obtained. Median

err was 16.9 µm (IQR = 5.86 µm). The d for a sample

trajectory is reported in Fig. 12. Corresponding err%

and err were 21% and 6.7 µm. Sample Micron trajecto-

ries with and without the virtual-fixture are shown in

Fig. 13.

6 Discussion

The segmentation performance (median DSC = 0.96)

proved that the neural network was able to encode the

variability in the simulated surgical environment. Us-

ing a FCNN with only four layers helped reduce the

segmentation computational cost without affecting seg-

mentation performance. The major source of error, as

shown in Fig. 8, was the presence of specular reflec-

tions (i.e. bright and saturated areas) within the ves-

sels. It is worth noting that complex vascular structures

(i.e. bifurcation), which are usually challenging to seg-

ment [18], were correctly segmented.
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As might be expected, the FCNN segmentation per-

formance deteriorated when reducing the training size.

This can be particularly critical when considering real

surgical images. Indeed, the exploited experimental setup

mainly dealt with vascular phantoms, which presented

lower variability with respect to real images. Thus, with

a view on translating the proposed work to actual clini-

cal practice, large training dataset of real images should

be exploited to train the FCNN, as so to encode the

intra- and inter-patient vessel variability. With refer-

ence to recently published work in the literature of

deep learning for medical-image analysis (e.g. [15,52]),

training-size order of magnitude should be ∼ 106, and

we are currently working to build a labeled dataset of

such a size. This was also confirmed by our exploratory

analysis on real images, where DSC values were lower

than the ones obtained for phantoms. This can be at-

tributed both to the complexity of real images and to

the (lower) amount of training data. However, segmen-

tation outcomes were encouraging, as shown in Fig. 8,

suggesting that the proposed segmentation strategy can

be successfully pursued also for real-surgery images once

a larger labeled dataset will be collected. In fact, the

network was able to provide accurate segmentation also

in challenging environments, e.g. where specular reflec-

tions were present and overlaid with the vessel surface.

As a sample case, the image in column 5 of Fig. 8 (which

corresponds to a surgical frame with the petrosal vein)

shows specular reflections overlaid with the vessel sur-

face. Nonetheless, the network was able to provide ac-

curate segmentation, as can be seen by visually com-

paring the segmentation mask with the ground-truth

segmentation. In fact, neural networks are known to be

accurate for the segmentation task also in challenging

environments, e.g. where specular reflections, blur and

occlusions are present [36]. It is worth noting that the

exploited FCNN outperformed conventional methods in

the literature. This is probably due to the fact that ves-

sel phantoms presented different width, orientation and

complex architecture, such as bifurcation and vessel-

kissing. These characteristics are known to strongly af-

fect segmentation results when exploiting conventional

segmentation methodologies [18].

The median time required by the FCNN to segment

each image (0.77 s on the deployed GPU) was still not

negligible for real-time control purposes. This problem

may be overcome using a more powerful GPU. Indeed,

during our experiments, the segmentation time was re-

duced by ∼ 1/25 with the Amazon web server (Sec. 4.1)

that we used to perform FCNN training.

The 3D reconstruction algorithm produced dense

point clouds, with a median Npoints of 17170 points,

which was crucial to enable reliable Micron control.

This can be also seen from the visual samples of Fig.

9, where the reprojected points covered the vessel area

homogeneously. The analysis of Ldin and Ldout showed

that the median value of all the distances (114.16 µm)

was two orders of magnitude lower than the median

vessel diameter (2.58 mm). Vessel approximation as a

tubular structure with varying radius is probably among

the main sources of these (even small) reprojection er-

rors. However, modeling vessels as tubular structures al-

lowed a fast 3D reconstruction (median reconstruction

time: 0.48 s), as only vessel centerline had to be recon-

structed. A possible solution to further lower the com-

putational time could be assuming even simpler vascu-

lar architectures (e.g. constant vessel radius) and hav-

ing a parametric expression of the vessel. Considering

that we have already achieved real-time segmentation

performance on a more powerful GPU, we expect that

further reducing the computational cost of the 3D re-

construction algorithm will enable the system to be fast

enough to be used with a human in the loop.

When including tremor compensation and forbidden-

region virtual-fixture control, the error on the tip po-

sition when it entered the forbidden zone was small

(the median err was 16.9 µm). In fact, the median di-

ameter and wall thickness of real brain vessels are ∼
3mm and 0.5mm, the wall thickness of arteries being

slightly larger than that of veins [30,50]. Nonetheless,

err outliers were present due to limits in the range of

motion of Micron. When trying to reach points outside

Micron’s range of motion, the forbidden-region virtual-

fixture control algorithm brought the Micron motors to

saturation. When this was the case, the tip entered the

forbidden zone to a greater depth. It is worth noting

that err was computed considering the reconstructed

vessel 3D point cloud (and not the real 3D vessel posi-

tion, which was not available). Thus, errors in perform-

ing 3D reconstruction potentially affected the estimate

of the penetration error. This should be taken into ac-

count when tuning dsafety, which in our experiments

was one order of magnitude higher than the error in

projecting the point cloud back over the segmentation

images.

Improving the control strategy and the virtual fix-

ture algorithm could be the first natural evolution of

the project. For example, once retrieved, the velocity

of Micron could be used to influence the possible con-

trol choice to adopt. Faster movements of the handle

are more likely to be unwanted and the last tip posi-

tion before the abrupt movement might be maintained.

Moreover, using the center of the range of motion might

help to prevent the saturation of the motors. For exam-

ple, instead of rejecting the tip along the direction be-

tween the closest point of the cloud and the resting po-
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sition of the tip, other directions away from both cloud

and saturation zone might be used. As future work, we

will investigate further strategies that take into account

collision detection and deviation of the robot motion

from predefined anatomical virtual fixtures (e.g. [33,

28,51]). Finally, ergonomics tests with surgeons actu-

ally performing tumor resection while avoiding vessels

in a moving phantom will be performed.

One limitation of the proposed experimental proto-

col can be seen in the fact that phantom images were

used to interact with Micron. When dealing with im-

ages actually recorded during surgery, some more as-

pects have to be taken into account. While illumina-

tion variation does not represent an issue for FCNN-

based segmentation [32], issues arise when dealing with

blurred frames. As deep-learning models work (at least

if considering the layers at the top of the network ar-

chitectures) as edge detectors, vessel segmentation may

not be accurate in case of image blurring. Therefore, to

avoid the processing of blurred frames, frame-selection

strategies, such as the one proposed in [45], should be

integrated. This way, the processing of uninformative

frames, in which vessels are not clearly visible, would

be avoided. Moreover, deblurring techniques (e.g., [49])

could be applied on blurred frames as to retrieve the im-

age informative content and provide accurate segmen-

tation. A further issue is related to vessel occlusion. In

this case, more complex FCNN architecture should be

taken into account, such as [19].

7 Conclusion

The work presented provided a new approach to vessel

avoidance for safe robotic assisted neurosurgery, which

exploits a handheld tool to reliably constrain surgeon

movements outside predefined forbidden zones.

We proved the feasibility of the approach in a sim-

ulated scenario with phantom vessels, obtaining a me-

dian segmentation accuracy of 99% and avoiding the

tool tip penetrating the forbidden region 76% of the

time the control algorithm was active (median pene-

tration depth 2 orders of magnitude lower than vessel

median diameter).
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