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Abstract—Surgical-tool joint detection from laparoscopic im-
ages is an important but challenging task in computer-assisted
minimally invasive surgery. Illumination levels, variations in
background and the different number of tools in the field
of view, all pose difficulties to algorithm and model training.
Yet, such challenges could be potentially tackled by exploiting
the temporal information in laparoscopic videos to avoid per
frame handling of the problem. In this paper, we propose a
novel encoder-decoder architecture for surgical instrument joint
detection and localization that uses 3D convolutional layers to
exploit spatio-temporal features from laparoscopic videos. When
tested on benchmark and custom-built datasets, a median Dice
similarity coefficient of 85.1% with an interquartile range of 4.6%
highlights performance better than the state of the art based
on single-frame processing. Alongside novelty of the network
architecture, the idea for inclusion of temporal information
appears to be particularly useful when processing images with
unseen backgrounds during the training phase, which indicates
that spatio-temporal features for joint detection help to generalize
the solution.

Index Terms—Surgical-tool detection, medical robotics, com-
puter assisted interventions, minimally invasive surgery, surgical
vision.

I. INTRODUCTION

M INIMALLY invasive surgery (MIS) has become the
preferred technique to many procedures that avoids the

major drawbacks of open surgery, such as prolonged patient
hospitalization and recovery time [1]. This, however, comes
at the cost of a reduced field of view of the surgical site,
which potentially affects surgeons’ visual understanding, and
similarly restricted freedom of movement for the surgical
instruments. [2]. To improve the surgeons’ ability to perform
tasks and precisely target and manipulate the anatomy, it is
crucial to monitor the relationship between the surgical site
and the instruments within it to facilitate computer assisted
interventions (CAI).
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Fig. 1: Each surgical tool is described by five joints (coloured
dots) and four connections (black lines). LTP: Left Tip Point,
RTP: Right Tip Point, HP: Head point, SP: Shaft point and
EP: End Point.

CAI promises to provide surgical support through advanced
functionality, robotic automation, safety zone preservation
and image guided navigation. However, many challenges in
algorithm robustness are hampering the translation of CAI
methods relying on computer vision to the clinical practice.
These include classification and segmentation of organs in the
camera field of view (FoV) [3], definition of virtual-fixture
algorithms to impose a safe distance between surgical tools
and sensitive tissues [4], and surgical instrument detection,
segmentation and articulated pose estimation [5], [6].

Surgical-tool joint detection in particular has been investi-
gated in recent literature for different surgical fields, such as
retinal microsurgery [7] and abdominal MIS [8]. Information
provided by algorithms can be used to provide analytical
reports, as well as, as a component within CAI frameworks.
Early approaches relied on markers on the surgical tools [9] or
active fiducials like laser pointers [10]. While practical, such
approaches require hardware modifications and hence are more
complex to translate clinically but also they inherently still
suffer from vanishing markers or from occlusions. More recent
approaches relying on data driven machine learning such
as multiclass boosting classifiers [11], Random Forests [12]
or probabilistic trackers [13] have been proposed. With the
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Fig. 2: Ground-truth example for shaft point (circle) and shaft-
end point connection (rectangle). We used the same pixel
number (rd) for both circle radius and rectangle thickness,
highlighted in green.

increasing availability of large datasets and explosion in deep
learning advances, the most recent work utilizes Fully Con-
volutional Neural Networks (FCNNs) [5], [14]. Despite the
promising results using FCNNs, a limitation is that temporal
information has never been taken into account, despite the
potential for temporal continuity as well as articulation fea-
tures to increase the FCNN generalization capability and also
capture range.

A first attempt of including temporal information has been
proposed in [15], where a 2D FCNN model is coupled with
a spatio-temporal context learning algorithm for surgical joint
detection. A different strategy could be to employ 3D FCNNs
for direct spatio-temporal information extraction, which has
been shown to be effective for action [16] and object [17]
recognition, as well as for surgical-skill assessment [18]. In
this paper, we follow this paradigm and propose a 3D FCNN
architecture to extract spatio-temporal features for instrument
joint and joint-pair detection from laparoscopic videos ac-
quired during robotic MIS procedures performed with the da
Vinci R© (Intuitive Surgical Inc, CA) system. We validate the
new algorithm and model using benchmark data and a newly
labelled dataset that we will make available.

The paper is organized as follows: Sec. II presents the
structure of the considered instruments and the architecture of
the proposed FCNN. In Sec. III we describe the experimental
protocol for validation. The obtained results are presented in
Sec. IV and discussed in Sec. V with concluding discussion
in Sec. VI.

II. METHODS

A. Articulated surgical tool model and ground truth

We consider two specific robotic surgical tools in this
paper, EndoWrist R© Large Needle Driver and EndoWrist R©

Fig. 3: Sliding window algorithm: starting from the first video
frame, an initial clip with Wd frames (dotted red line) is
selected and combined to generate a 4D datum of dimensions
image width x image height x Wd x 3. Then the window
moves of Ws frames along the temporal direction and a new
clip (dotted blue line) is selected.

Monopolar Curved Scissors, however, the methodology can
be adapted to any articulated instrument system.

Our instrument model poses each tool as a set of connected
joints as shown in Fig. 1: Left Tip Point (LTP), Right Tip Point
(RTP), Head Point (HP), Shaft Point (SP) and End Point (EP),
for a total of 5 joints. Two connected joints were represented
as a joint pair: LTP-HP, RTP-HP, HP-SP, SP-EP, for a total of
4 joint pairs.

Following previous work, to develop our FCNN model
we perform multiple binary segmentation operations (one per
joint and per connection) to solve possible ambiguities of
multiple joints and connections that may cover the same image
portion (e.g. in case of instrument self-occlusion) [5]. For each
laparoscopic video frame, we generated 9 separate ground-
truth binary detection maps: 5 for the joints and 4 for the
joint pairs (instead of generating a single mask with 9 different
annotations which has been shown to perform less reliably).

For every joint mask, we consider a region of interest
consisting of all pixels that lie in the circle of a given radius
(rd) centered at the joint center [5]. A similar approach was
used to generate the ground truth for the joint connections.
In this case, the ground truth is the rectangular region with
thickness rd and centrally aligned with the joint-connection
line. An example for SP and SP-EP link is shown in Fig. 2.

The input to our 3D FCNN is a temporal clip (i.e., set of
temporally consecutive video frames) obtained with a sliding-
window controlled by the window temporal length (Wd) and
step (Ws). A visual representation of the sliding-window is
shown in Fig. 3. Starting from the first video frame, the first
Wd images are collected and used to generate a 4D data
volume of dimensions frame height x frame width x Wd x 3,
where 3 refers to the spectral RGB channels. The window
then moves Ws frames along the temporal direction and a
new temporal clip is generated resulting in a collection of M
4D clips.



2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2917163, IEEE Robotics
and Automation Letters

COLLEONI et al.: DEEP LEARNING BASED ROBOTIC TOOL DETECTION AND ARTICULATION ESTIMATION WITH SPATIO-TEMPORAL LAYERS 3

Fig. 4: Proposed network architecture. Dashed arrows refer to skip connections. Conv3D-BN-Relu: 3D convolution followed by
batch normalization (BN) and rectified linear unit (Relu) activation. Strided Conv3D: 3D convolution. Strided Deconv3D: 3D
deconvolution. Concatenation: joining two inputs with the same shape to assemble a unique output. Due to the impossibility
to represent the 4D output (width x height x Wd x 3), where Wd is the number of frames in a temporal clip, we joined the
nine (joint+connection) masks in a single image. Input and output dimensions are reported.

B. Network architecture

To incorporate spatio-temporal information and features that
are encoded in videos, we use 3D kernels with a 3 x 3 x 3
dimension for non-strided convolution [19]. The 3D con-
volution allows the kernel to move along the three input
dimensions to process multiple frames at the same time,
preserving and processing temporal information through the
network. The architecture of the proposed network is shown
in Fig. 4, and Table I describes the full parameter details. The
framework is similar to U-net, [20] using a modular encoder-
decoder structure. We used a two-branch architecture to allow
the FCNN to separately process the joint and connection
masks [21]. Skip connections [20] are used in the middle
layers and we employ strided convolution instead of pooling
for multi-scale information propagation both up and down.

We perform a double contraction and extension of the
temporal dimension by setting a kernel stride of 2 x 2 x 2
in the middle layers, between the skip connections. This con-
figuration allows the model to refine the temporal information
during the down-sampling (encoder) phase and recover the
lost information on surgical-tool position in the up-sampling
phase [22].

Each module of the network is composed of a first 3 x 3 x 3
convolutional layer that processes the input without modifying
its dimension. The output is then duplicated and separately
processed in the two different branches. In each branch, first
a strided 3D convolution (deconvolution) is applied, halving
(doubling) the spatial dimensions and the temporal dimension
(only middle layers). After that, a 1 x 1 x 1 convolution is
performed to double (halve) the number of image channels.
Finally, the results of both branches are concatenated and
processed in the next module. For every convolution, batch

normalization (BN) is applied on the output [23] and the result
is processed using REctified Linear Unit (Relu) activation. A
sigmoid activation function is applied after the last convolution
in order to obtain the final output for the segmentation step
generating image masks.

The network is trained employing Stochastic Gradient De-
scend (SGD) as the optimizer, which helps the model to avoid
degenerate solutions [24]. The per-pixel binary cross-entropy
loss function (L) is employed for training, as suggested in [5].
L is defined as:

L =
1

NΩ

N∑
n=1

∑
x∈Ω

[pkxlogp̂
k
x + (1 − pkx)log(1 − p̂kx)] (1)

where N is the total number of considered masks, pkx and
p̂kx are the ground truth value and the corresponding network
output at pixel location x in the clip domain Ω of the kth

probability map.

III. EXPERIMENTS

A. Datasets

The proposed network was trained and tested using a
dataset of 10 videos (EndoVis Dataset: 1840 frames, frame
size = 720x576 pixels) from the EndoVis Challenge 20151.
Specifically, we used 8 videos for training and 2 (EndoVis.A
and EndoVis.B) for testing and validation. It is worth noticing
that EndoVis.B has a completely different background with
respect to the 8 training EndoVis videos, differently from
EndoVis.A that has a similar background.

We further acquired 8 videos with a da Vinci Research
Kit (dVRK) (UCL dVRK Dataset: 3075 frames, frame size =

1https://endovissub-instrument.grand-challenge.org/
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TABLE I
Specifications of the proposed network. Kernel size and

stride (kernel height x kernel width x kernel depth) as well
as output dimensions (height (H) x width (W) x Wd (D) x
N◦Channels) of each layer are shown. Wd is the number of
frames that compose a temporal clip. The final output is a
clip of 9 binary maps (one per joint/connection) with the

same dimension of the input.

Kernel (Size / Stride) Output

Encoder

Conv 0 3x3x3 / 1x1x1 H x W x D x 32

2B Strided Conv1 2x2x2 / 2x2x1 H
2

x W
2

x D x 32

2B Conv1 3x3x3 / 1x1x1 H
2

x W
2

x D x 32

Conv1 1x1x1 / 1x1x1 H
2

x W
2

x D x 64

2B Strided Conv2 2x2x2 / 2x2x1 H
4

x W
4

x D x 64

2B Conv2 3x3x3 / 1x1x1 H
4

x W
4

x D x 64

Conv2 1x1x1 / 1x1x1 H
4

x W
4

x D x 128

2B Strided Conv3 2x2x2 / 2x2x2 H
8

x W
8

x D
2

x 128

2B Conv3 3x3x3 / 1x1x1 H
8

x W
8

x D
2

x 128

Conv3 1x1x1 / 1x1x1 H
8

x W
8

x D
2

x 256

2B Strided Conv4 2x2x2 / 2x2x2 H
16

x W
16

x D
4

x 256

2B Conv4 3x3x3 / 1x1x1 H
16

x W
16

x D
4

x 256

Conv4 1x1x1 / 1x1x1 H
16

x W
16

x D
4

x 512

Decoder

2B Strided Deconv1 2x2x2 / 2x2x2 H
8

x W
8

x D
2

x 128

2B Conv1 3x3x3 / 1x1x1 H
8

x W
8

x D
2

x 128

Conv1 1x1x1 / 1x1x1 H
8

x W
8

x D
2

x 256

2B Strided Deconv2 2x2x2 / 2x2x2 H
4

x W
4

x D x 64

2B Conv2 3x3x3 / 1x1x1 H
4

x W
4

x D x 64

Conv2 1x1x1 / 1x1x1 H
4

x W
4

x D x 128

2B Strided Deconv3 2x2x2 / 2x2x1 H
2

x W
2

x D x 32

2B Conv3 3x3x3 / 1x1x1 H
2

x W
2

x D x 32

Conv3 1x1x1 / 1x1x1 H
2

x W
2

x D x 64

2B Strided Deconv4 2x2x2 / 2x2x1 H x W x D x 16

2B Conv4 3x3x3 / 1x1x1 H x W x D x 16

Conv4 1x1x1 / 1x1x1 H x W x D x 32

Conv5 1x1x1 / 1x1x1 H x W x D x 9

720x576 pixels) to attenuate overfitting issues. In fact, with
the inclusion of 3D kernels in the FCNN processing, the
number of FCNN parameters increased by a factor of 3 with
respect to its 2D counterpart. Seven videos were used for
training/validation and one (UCL dVRK) for testing.

Dataset details, in terms of number of train-
ing/validation/testing videos and frames, are reported in
Table II. In Fig. 5 we show three samples from the training
and test set, both from the EndoVis and UCL dVRK datasets.
The UCL dVRK and EndoVis datasets were different in terms
of lightning condition, background, and colour and tools.

As ground truth, we used annotations2 provided for the

2https://github.com/surgical-vision/EndoVisPoseAnnotation

Fig. 5: Sample images from (left and middle) EndoVis and
(right) UCL dVRK datasets for (first row) training (second
row) testing. The images from the two datasets are different
in terms of resolution, light conditions, number of tools in the
field of view, shaft shape and colour.

EndoVis dataset [5], which consisted in 1840 frames, while
we manually labeled one of every three frames of the UCL
dVRK dataset, resulting in 3075 annotated frames. Images
were resized to 320x256 pixels in order to reduce processing
time and the GPU memory requirements. For both datasets,
we selected rd equal to 15 pixels.

The FCNN model was implemented in Keras3 and trained
using a Nvidia GeForce GTX 1080. For training, we set an
initial learning rate of 0.001 with a learning decay of 5%
every five epochs and a momentum of 0.98 [25]. Following
the studies carried out in [26], [27], we chose a batch size
of 2 in order to improve the generalization capability of the
networks. As introduced in Sec. II, our FCNN was trained
using the per-pixel binary cross-entropy as loss function [5]
and stochastic gradient descend as chosen optimizer. We then
selected the best model as the one that minimized the loss on
the validation set (∼10% of the whole dataset).

B. Conducted experiments

In Sec. III-B1 and Sec. III-B2, the two conducted experi-
ments (E1 and E2) are described, respectively.

1) Experiments using different time steps (E1): We in-
vestigated the network’s performance at different Ws, i.e. 4
(Step 4), 2 (Step 2) and 1 (Step 1). Inspired by [16], we always
considered Wd = 8, hence obtaining 1200, 2395 and 4780 4D
data, respectively. Data augmentation was performed, flipping
frames horizontally, vertically and in both the directions, hence
quadrupling the amount of available data and obtaining 4800
(Step 4), 9580 (Step 2) and 19120 (Step 1) 4D data. We then
trained one FCNN for each Ws.

2) Comparison with the state of the art (E2): For the
comparison with the state of the art, we chose the model
proposed [5], which is the most similar with respect to
ours. We compared it with the model that showed the best
performances according to E1.

3https://keras.io/
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TABLE II
Specification for the dataset used for training and testing purposes. For each video of both the Endovis and the UCL dVRK

datasets, the number of frames is shown.

EndoVis Dataset: 1840 Frames (37.5% Whole Dataset)

Training Set Validation Set Test Set

Video 0 Video 1 Video 2 Video 3 Video 4 Video 5 Video 6 Video 7
Video 8

(EndoVis.A)
Video 9

(EndoVis.B)

210 Frames 300 Frames 250 Frames 80 Frames 75 Frames 75 Frames 240 Frames 75 Frames 300 Frames 235 Frames

UCL dVRK Dataset: 3075 Frames (62.5% Whole Dataset)

Training Set Validation Set Test Set

Video 0 Video 1 Video 2 Video 3 Video 4 Video 5 Video 6
Video 7

(UCL dVRK)

375 Frames 440 Frames 520 Frames 215 Frames 295 Frames 165 Frames 550 Frames 515 Frames

C. Performance metrics

For performance evaluation, inspired by similar work
(e.g. [4], [5]), we compute the Dice Similarity Coefficient
(DSC), Precision (Prec) and Recall (Rec):

DSC =
2TP

2TP + FN + FP
(2)

Prec =
TP

TP + FP
(3)

Rec =
TP

TP + FN
(4)

where TP is the number of pixels correctly detected as
joint/connection and background, while FP and FN are the
number of pixels misclassified as joint/connection neighbors
and background, respectively.

Multiple comparison One-Way ANOVA was performed to
detect significant differences between results achieved when
investigating E1 and E2, always considering a significance
level (α) equal to 0.01.

For fair comparison, we selected Ws = 8 to generate the
3D test sets for both E1 and E2, as to avoid temporal-clip
overlapping.

IV. RESULTS

A. E1 results

The model processing speed was on average ∼ 1 clip
per second. Figure 6 shows the boxplots of the performance
metrics evaluated on the three testing videos. Median DSC
for Step 1, Step 2 and Step 4 were 86.1%, 85.2% and
84.8%, respectively, with InterQuartile Range (IQR) < 10%
in all cases. Our analysis separately considers the performance
on each of the three testing videos, obtaining the results
showed in Table III. Step 1 model achieved the best results
in terms of DSC and Prec on both the EndoVis.A and UCL
dVRK videos (DSC=88.6%, 86.9% respectively), but showed

Fig. 6: Dice Similarity Coefficient (DSC), precision (Prec) and
recall (Rec) obtained when training the proposed network with
Ws = 1 (Step 1), 2 (Step 2) and 4 (Step 4).

TABLE III
Quantitative results of the proposed 3D model trained on the
three datasets, using Ws = 1 (Step 1), 2 (Step 2) and 4 (Step
4). The evaluation for each of the test videos is performed in
terms of median Dice similarity coefficient (DSC), precision
(Prec) and recall (Rec). We highlighted in red the best scores

for every video.

Median Value of DSC(%) / Prec(%) / Rec(%)

EndoVis. A EndoVis. B UCL dVRK

Step 4 85.9 / 82.3 / 89.7 81.3 / 78.8 / 85.3 85.5 / 79.7 / 92.4

Step 2 86.9 / 83.2 / 91.0 83.2 / 80.5 / 86.4 85.5 / 79.4 / 92.7

Step 1 88.3 / 85.4 / 91.9 80.9 / 76.0 / 86.0 86.9 / 82.3 / 92.4
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TABLE IV
Comparison with the state of the art method proposed in [5]. Results are reported for every joint and joint-pair connection in

terms of Dice similarity coefficient (DSC), precision (Prec) and recall (Rec).

Median Value of DSC(%) / Precision(%) / Recall(%)

EndoVis.A EndoVis.B UCL dVRK

Architecture 2D Architecture 3D Architecture 2D Architecture 3D Architecture 2D Architecture 3D

LTP 84.0 / 81.0 / 88.8 80.9 / 76.5 / 86.6 44.6 / 36.6 / 58.7 77.6 / 82.7 / 74.7 84.7 / 83.9 / 86.5 85.7 / 83.4 / 87.6

RTP 86.0 / 83.8 / 89.9 86.7 / 87.0 / 86.6 52.3 / 39.2 / 79.0 76.4 / 73.8 / 80.4 82.4 / 78.1 / 88.7 82.0 / 75.2 / 91.3

HP 83.2 / 78.6 / 89.2 80.2 / 75.3 / 86.7 80.6 / 81.7 / 81.5 79.8 / 77.7 / 82.4 88.7 / 88.7 / 89.0 88.8 / 86.8 / 91.3

SP 89.4 / 86.3 / 93.2 86.5 / 83.1 / 92.2 81.3 / 80.2 / 82.4 82.6 / 80.3 / 84.9 91.7 / 89.7 / 94.1 90.3 / 86.8 / 93.5

EP 86.1 / 84.4 / 90.4 86.6 / 86.0 / 87.7 88.0 / 90.0 / 89.3 89.1 / 86.6 / 92.7 58.3 / 42.9 / 91.8 74.0 / 63.5 / 90.2

LTP-HP 88.1 / 86.1 / 90.9 87.7 / 82.9 / 93.2 50.5 / 36.4 / 84.5 81.4 / 76.5 / 88.3 89.0 / 86.8 / 90.9 88.8 / 84.8 / 93.5

RTP-HP 89.3 / 85.9 / 94.5 89.2 / 87.1 / 92.4 45.2 / 29.8 / 92.3 81.3 / 80.8 / 83.1 89.7 / 89.7 / 90.6 88.9 / 85.4 / 93.3

HP-SP 90.1 / 87.7 / 92.1 87.7 / 83.4 / 93.9 78.5 / 74.2 / 83.8 81.7 / 75.1 / 88.8 91.3 / 89.7 / 93.3 89.6 / 85.3 / 94.8

SP-EP 91.1 / 88.5 / 93.5 90.7 / 87.7 / 93.8 91.0 / 88.7 / 93.7 90.9 / 87.2 / 95.4 82.4 / 71.8 / 97.6 87.4 / 80.0 / 96.8

Fig. 7: Visual examples of (left) ground-truth segmentation,
and segmentation outcomes obtained with (center) the network
proposed in [5], and (right) the proposed network for the UCL
dVRK dataset. Red arrows highlight regions misclassified as
joint or connection.

TABLE V
First experiment (E1) One-Way Anova test results.

EndoVis.A EndoVis.B UCL dVRK

DSC
F(2, 429) = 16.85

p-value < 0.01

F(2, 693) = 14.33

p-value < 0.01

F(2, 1533) = 32.73

p-value < 0.01

Prec
F(2, 429) = 15.49

p-value < 0.01

F(2, 693) = 24.59

p-value < 0.01

F(2, 1553) = 84.56

p-value < 0.01

Rec
F(2, 429) = 9.1

p-value < 0.01

F(2, 693) = 4.35

p-value = 0.013

F(2, 1553) = 3.9

p-value = 0.02

the worst performances on EndoVis.B (DSC=80.9%). Step
2 model obtained the highest scores in all the metrics of
EndoVis.B, while Step 4 showed the lowest performance in all
the three test videos. One-Way Anova test always highlighted
significant differences except for EndoVis.B and UCL dVRK
Rec, as shown in Table V.

Since EndoVis.B presented the most challenging back-

Fig. 8: Visual examples of (left) ground-truth segmentation,
and segmentation outcomes obtained with (center) the network
proposed in [5], and (right) the proposed network, for the
EndoVis.B dataset. Red arrows highlight regions misclassified
as joint or connection.

ground, we selected Step 2 dataset to train our model in the
successive experiment.

B. E2 results

Table IV shows the results achieved by the proposed model
in comparison with [5], while VI show the same results



2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2917163, IEEE Robotics
and Automation Letters

COLLEONI et al.: DEEP LEARNING BASED ROBOTIC TOOL DETECTION AND ARTICULATION ESTIMATION WITH SPATIO-TEMPORAL LAYERS 7

TABLE VI
Comparison with the state of the art method proposed in [5].

Results are reported in terms of difference between the
proposed and state-of-the-art median values of Dice

similarity coefficient (DSC), precision (Prec) and recall
(Rec). We highlighted in red (positive values) and blue

(negative values) the scores where the two models achieved
substantially different results (≥ ±5%)

∆ Median Value of DSC(%) / Prec(%) / Rec(%)

EndoVis.A EndoVis.B UCL dVRK

LTP -3.1 / -4.5 / -2.2 33.0 / 46.1 / 16.0 1.0 / -0.5 / 1.1

RTP 0.7 / 3.0 / -3.4 24.2 / 34.4 / 1.4 -0.4 / -2.9 / 2.7

HP -3.0 / -3.3 / -2.5 -0.8 / -4.0 / 0.9 0.1 / -1.8 / 2.3

SP -2.9 / -3.2 / -1.0 1.5 / 0.1 / 2.5 -1.4 / -2.9 / -0.6

EP 0.5 / 1.6 / -2.6 1.1 / -3.4 / 3.4 15.7 / 20.6 / -1.6

LTP-HP -0.4 / -3.2 / 2.3 30.9 / 40.2 / 3.8 -0.9 / -2.0 / 2.6

RTP-HP -0.1 / 1.2 / -2.1 36.0 / 51.0 / -9.2 -0.8 / -4.3 / 2.7

HP-SP -2.3 / -4.3 / 1.8 3.2 / 0.8 / 5.0 -1.7 / -4.4 / 1.5

SP-EP -0.3 / -0.8 / 0.3 -0.1 / -1.6 / 1.7 5.0 / 8.2 / -0.8

TABLE VII
One-Way Anova test results for E2.

EndoVis.A EndoVis.B UCL dVRK

DSC
F(1, 286) = 8.21

p-value < 0.01

F(1, 462) = 1031.26

p-value < 0.01

F(1, 1022) = 35.56

p-value < 0.01

Prec
F(1, 286) = 19.33

p-value < 0.01

F(1, 462) = 2028.31

p-value < 0.01

F(1, 1022) = 38.94

p-value < 0.01

Rec
F(1, 286) = 0.09

p-value = 0.76

F(1, 462) = 13.86

p-value < 0.01

F(1, 1022) = 18.32

p-value < 0.01

in terms of difference between the two models. The differ-
ences (∆) of the median performance metrics obtained by the
proposed Step 2 FCNN and the one proposed in [5] are shown
for each joint and connection (e.g. for LTP, results are reported
as ∆DSC(LTP) = DSC3D(LTP) - DSC2D(LTP)).

When considering the UCL dVRK testing video, the pro-
posed FCNN substantially outperformed the state of the art on
EP and SP-EP, achieving ∆DSC differences of +15.7% and
+5.0%. A sample of the performed segmentation for the two
models is shown in Fig. 7 for EP and SP-EP for illustration
purposes.

Finally, the proposed model outperformed [5] on LTP, RTP,
LTP-HP and RTP-HP on EndoVis.B, showing improvements
on ∆DSC of +33%, +24.2%, +30.9% and +36.0% respectively,
while achieving one lower value only for Rec value of RTP-
HP connection. Considering the performances on the whole
test set, the proposed model achieved a median DSC score
of 85.1% with IQR=4.6%. Visual segmentation examples are
shown in Fig. 8. One-Way Anova Test did not show significant
similarities, except for EndoVis.A Rec, as shown in Table VII.

V. DISCUSSION

A. E1 discussion

The results we obtained on EndoVis.A and UCL dVRK may
be explained considering that the backgrounds in the videos
are very similar to the ones of the videos of the training set,
meanwhile EndoVis.B’s background is completely missing in
the training data domain. The low DSC score achieved by
Step 1 model on EndoVis.B, coupled with the high scores on
the other two datasets, showed that, with high probability, the
model overfitted. Such a conclusion may be expected: despite
the large amount of data, the high correlation between datasets,
due to the use of a temporal step Ws of only one frame, led
the sliding window algorithm to produce a dataset with too
little variability for training a model over a good domain.

The model trained on Step 4 dataset was not able to achieve
competitive results in any of the test videos with respect to the
other models. Since the proposed architecture has a very large
number of parameters (∼ 80000), it needs a huge amount of
data in order to be properly trained. For this reason, the model
achieves lower quality predictions.

The network trained on Step 2 dataset achieved the best
scores for all the considered metrics on EndoVis.B. This
may be explained as Ws=2 strikes a balance between the
amount of data and the similarity between the frames. We
select this model for the successive comparison with the
architecture presented in [5], due to its capability to generalize
on backgrounds not already seen in the training phase.

B. E2 discussion

EndoVis.A was probably the less challenging video in terms
of background complexity and both the proposed and network
showed similar results [5]. When instead the EndoVis.B test
video was considered, the previous model [5] was barely able
to properly recognize and separate tip joints and connections
from the background, achieving poor DSC values and over-
estimating joint/connection detection. This result is visible in
Fig. 8, where multiple tip-points are erroneously detected for
LTP and RTP and double connections for the related joint
pairs.

On the other hand, the results obtained by the 3D network
suggest that the temporal information was exploited to improve
the network generalization capability on unseen backgrounds,
obtaining DSC scores of 77.6% and 76.4% for LTP and RTP,
respectively, as shown in Table IV.

Similarly, the testing performance achieved on the UCL
dVRK dataset by the proposed 3D model outperformed that
achieved by [5]. In fact, as shown in Fig. 7, the background
presented homogeneous portions in terms of texture and color
that were misclaissified as EP when not including temporal
information, while the proposed 3D model showed its ability
to better separate joints and joint-pair connections from back-
ground, achieving a ∆DSC of +15.7% and +5.0% on EP and
SP-EP, respectively.

C. Limitations and future work

An obvious limitation of this study is the limited number of
testing videos, which is due to the lack of available annotated
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data. Nonetheless, this number is comparable to that of similar
work in the literature [5] and we will release the data we
collected for further use in the community. As future work, it
would be interesting to assess the model performance when
varying Wd. Moreover, a larger test set, which will possibly
encode challenges such as smoke and occlusions, should be
collected, annotated and analyzed, too.

A second issue is related to the 2D nature of the esti-
mated joint position. It would be interesting to include da
Vinci R© (Intuitive Surgical Inc, CA) kinematic data in the
joint/connection position estimation. Such information may
be useful to provide a more robust solution for occluded
joints. This is realistic and feasible using dVRK information
but requires careful calibration and data management. While
dVRK encoders are able to provide kinematic data for end-
effector 3D position and angles between robotic-joint axes,
this requires a projection on the image plane to be suitable for
2D tracking, with errors associated to encoders’ precision.

Natural extensions of the proposed work would be to
include the instrument articulation estimation within other
scene understanding algorithms, e.g. computational stereo or
semantic SLAM, in order help with algorithms coping with
the boundary regions between instruments and tissue.

VI. CONCLUSION

In this paper, we proposed a 3D FCNN architecture for
surgical-instrument joint and joint-connection detection in
MIS videos. Our results, achieved by testing existing datasets
and new contribution datasets, suggest that spatio-temporal
features can be successfully exploited to increase segmentation
performance with respect to 2D models based on single-frame
information for surgical-tool joint and connection detection.
This moves us towards a better framework for surgical scene
understanding and can lead to applications of CAI in both
robotic systems and in surgical data science.
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