
A Formal Approach for the Analysis of BPMN Collaboration Models
Flavio Corradinia, Fabrizio Fornaria, Andrea Polinia, Barbara Rea,∗, Francesco Tiezzia and
Andrea Vandinb
aUniversity of Camerino, Via Madonna delle Carceri 7, 62032 Camerino, Italy
bSant’Anna School of Advanced Studies, Piazza Martiri della Libertá 33, 56127 Pisa, Italy

ART ICLE INFO
Keywords:
BPMN
Collaboration
Verification
Model Checking
Statistical Model Checking

ABSTRACT
BPMN collaboration models have acquired increasing relevance in software development since they
shorten the communication gap between domain experts and IT specialists and permit clarifying the
characteristics of software systems needed to provide automatic support for the activities of complex
organisations. Nonetheless, the lack of effective formal verification capabilities can hinder the full
adoption of the BPMN standard by IT specialists, as it prevents precisely check the satisfaction of
behavioural properties, with negative impacts on the quality of the software. To address these issues,
this paper proposes BProVe, a novel verification approach for BPMN collaborations. This combines
both standard model checking techniques, through the MAUDE’s LTL model checker, and statistical
model checking techniques, through the statistical analyser MULTIVESTA. The latter makes BProVe
effective also on those scenarios suffering from the state-space explosion problem, made even more
acute by the presence of asynchronous message exchanges. To support the adoption of the BProVe
approach, we propose a complete web-based tool-chain that allows for BPMNmodelling, verification,
and result exploration. The feasibility of BProVe has been validated both on synthetically-generated
models and on models retrieved from two public repositories. The performed validation highlighted
the importance and complementarity of the two supported verification strategies.

1. Introduction
A business process model describes a set of activities

that an organisation should perform to fulfil a specific busi-
ness goal [48]. Furthermore, it is possible to use the so-
called collaborations to describe the coordination of pro-
cesses belonging to different organisations willing to cooper-
ate to achieve a shared goal. As it happens for any modelling
activity, the description of the reality of interest through the
usage of a modelling notation permits to reduce the commu-
nication gap between the various users of the model, keep-
ing the focus just on those aspects are considered relevant for
the specific objective. In this respect, collaboration models
help maintain the modeller’s attention on the alignment of
the internal behaviour of a set of processes concerning inter-
process communication.

Business process modelling has been initially introduced
for documentation purposes by business analysts, but it shortly
started to be adopted in software development, in partic-
ular about requirements engineering activities [13, 26, 47,
65]. Successively it has gained popularity in the develop-
ment of software systems supporting business process exe-
cution, and as a starting point for model-driven development
of distributed systems [53, 4], as also testified by the emer-
gence of several engines enabling the direct execution of

∗Corresponding Author
falvio.corradini@unicam.it (F. Corradini);

fabrizio.fornari@unicam.it (F. Fornari); andrea.polini@unicam.it (A.
Polini); barbara.re@unicam.it (B. Re); francesco.tiezzi@unicam.it (F.
Tiezzi); andrea.vandin@santannapisa.it (A. Vandin)

ORCID(s): 0000-0002-3620-1723 (F. Fornari); 0000-0002-2840-7561 (A.
Polini); 0000-0001-5374-2364 (B. Re); 0000-0003-4740-7521 (F. Tiezzi);
0000-0002-2840-7561 (A. Vandin)

business process specifications (e.g., Camunda1, Signavio2,
Bonita3).

A similar path has been followed in the last years by the
Business Process Model and Notation (BPMN 2.0) [52], an
Object Management Group (OMG) standard. The notation
emerged as one of the most adopted proposals to define busi-
ness process models. The success of BPMN comes from
its versatility and capability to represent business processes
for different purposes. The notation acquired acceptance,
at first, within the business analysts community, and succes-
sively it has been more and more adopted by IT specialists to
drive the development and settlement of IT systems support-
ing the execution of a specified process model. This shift in
notation usage is particularly relevant, and it poses the basis
for our work. Indeed, the adoption of BPMN for shaping IT
systems and for the application of model-driven approaches
to automatic code generation requires the definition of a for-
mal verification approach to increase confidence in the qual-
ity of implemented software systems [24].

While the research community has devoted a relevant ef-
fort to support verification of single business processes, to
the best of our knowledge, there is still no concrete proposal
supported by tools to analyse large collaborative processes.
On the other hand, modelling of such scenarios has become
more and more common in practice. This is certainly a con-
sequence of the extensive introduction of effective software
system integration technologies, such as REST-based ser-
vices. This has permitted to derive collaborative systems
from the integration of independently developed and man-
aged software, and to figure an API economy where openly

1https://camunda.com
2https://www.signavio.com/
3https://www.bonitasoft.com/

F. Corradini et al.: Preprint submitted to Elsevier Page 1 of 25

https://camunda.com
https://www.signavio.com/
https://www.bonitasoft.com/

A Formal Approach for the Analysis of BPMN Collaboration Models

documented interfaces, for instance adopting OAI4 formats,
are made available and can be accessed using precisely de-
scribed interaction protocols, so to create an ecosystem fos-
tering software system collaborations [36, 64].

In deriving a verification approach for collaborative sce-
narios, which could be used in real contexts, we identified
two additional characteristics that we judged of primary rel-
evance. The first one concerns the fact that a collaborative
scenario is by its very nature a parallel scenario, which then
could easily lead to a possible explosion of the state space to
bemanaged, making traditional verification strategies not al-
ways effective. We initially experimented with such an issue
while running the experiments reported in Section 8 using
the “standard” verification strategy. Therefore, the approach
has been augmented to include a statistical model checking
strategy. The second characteristic refers instead to the typi-
cal difficulties of introducing formal verification techniques
in generalmodelling contexts, where it is often the case that a
modeller does not have a strong background in formal meth-
ods. So, to make accepting the proposed approach easier, we
decided to make available basic verification features via pre-
configured and stereotyped properties. We provide a GUI
where properties can be derived by selecting and compos-
ing the entries made available via a set of pop-up menus.
In such a way, a modeller can start to use and experiment
with our approach even without a clear understanding of the
verified properties. This could help the interested modeller
to acquire confidence in the approach through its usage. It
is worth noticing that the modeller is not asked to modify,
in any way, his/her modelling habits. The approach includes
optionalmechanisms for those users with a good understand-
ing of LTL (Linear Temporal Logic) verification, enabling
them to define and check customised temporal properties.

The resulting verification approach, called BProVe5, is
offered as a web-based tool-chain6 that allows to graphically
observe the results of the verification directly on the mod-
els under scrutiny. The verification component is provided
as a REST web service that, thanks to the BPMN standard
usage, allows to check properties of BPMNmodels indepen-
dently from the modelling environment used to create them.
The web service has also been integrated within an Eclipse
plugin, allowing its integration in the Eclipse platform.

We have extensively validated the effectiveness of the
BProVe verification approach by running scalability tests on
ad-hoc designed and synthetically generated models, as well
as on models from two open repositories “BPM Academic
InitiativeModel Collection (BPMAI)”7 and “CamundaBPMN
for Research”8. This analysis has shown the potential of
BProVe both on limiting-case scenarios and on realistic ones
and highlighted the advantages of having two analysis en-
gines offering complementary analysis techniques.

Summing up, themost distinctive features of our BProVe
4https://www.openapis.org/
5http://pros.unicam.it/bprove
6http://pros.unicam.it/bprove-web-interface
7https://bpmai.org/download
8https://github.com/camunda/bpmn-for-research

approach are following reported.
1. The use of direct semantics for BPMN models, both

for single processes and collaborations, without re-
quiring any intermediate encoding. This allows for
an easy result exploration, i.e., to graphically inter-
pret the analysis results directly on the actual BPMN
model.

2. An automated formal verification approach that per-
mits the analysis of BPMN collaboration models with
potentially large state spaces by integrating standard
and statisticalmodel checking analysis capabilities. The
need for the inclusion of two different verification strate-
gies emerged after observing the presence of collabo-
rativemodels with large state space for which standard
verification strategies were not able to provide an an-
swer. The validation we performed aimed at assessing
that the inclusion of two different strategies is indeed
valuable, as they show complementary characteristics.
It also permits to enlarge the set of models for which
the approach can provide an answer.

3. The robust, efficient and accessible tool support al-
lowed us to perform an extensive validation of the ap-
proach confirming its scalability and the complemen-
tarity of the two supported analysis techniques. The
tool is offered as a REST service. A web-based front-
end is available, hiding all the formalism involved,
thus enabling the verification as a service paradigm.

The paper is organised as follows. Section 2 provides an
overview of the BPMN standard and of the operational se-
mantics at the basis of our work, using a collaboration sce-
nario exploited as a running example in the rest of the paper.
Section 3 discusses the BProVe approach presenting its main
characteristics. Section 4 describes how properties can be
defined in the BProVe approach, while Section 5 discusses
how they can be verified, and Section 6 exemplifies this on
the running example. Section 7 presents the tool-chain’s ar-
chitecture and user interface. Section 8 illustrates the con-
ducted validation experiments. Finally, Section 9 thoroughly
compares our approach with related works available in the
literature and Section 10 concludes by also touching upon
directions for future work.

2. Background Notions
In this section we introduce the BPMN standard together

with a scenario, used as running example throughout the pa-
per, to illustrate our proposed verification approach. Then,
we introduce the implemented operational semantics at the
basis of BProVe.
2.1. Modelling Collaborations in BPMN

BPMN, an OMG standard [52], is currently acquiring a
clear predominance among the proposed notations to model
business processes thanks to: (i) its intuitive and graphi-
cal notation that is widely accepted by the industry and the

F. Corradini et al.: Preprint submitted to Elsevier Page 2 of 25

https://www.openapis.org/
http://pros.unicam.it/bprove
http://pros.unicam.it/bprove-web-interface
https://bpmai.org/download
https://github.com/camunda/bpmn-for-research

A Formal Approach for the Analysis of BPMN Collaboration Models

academia; and (ii) the support provided by a broad spectrum
of modelling tools.9

Here we discuss the BPMN elements supported by our
approach and reported in Fig. 1. In our proposal, we se-
lected a subset of BPMN elements following the pragmatic
approach of retaining those features most used in practice
[50]. Pools represent participants or organisations provid-
ing details on internal process specifications and related el-
ements. Pools are drawn as rectangles. Tasks represent spe-
cific jobs to be performed within a process. Tasks are drawn
as rectangles with rounded corners. Gateways manage the
flow of a process both for parallel activities and choices.
Gateways are drawn as diamonds and act as either join nodes
(merging incoming sequence edges) or split nodes (forking
into outgoing sequence edges). Different types of gateways
are available: a XOR gateway describes choices, an AND
gateway enables parallel execution flows, an Event-Based
gateway activates its outgoing branches according to the tak-
ing place of catching events, and an OR split gateway which
allows to execute one or more of its outgoing flows. Events
are used to represent something that can happen. An event
can be a Start Event, representing the point from which the
process starts, an Intermediate Event representing something
that happens during process execution (e.g., the sending/re-
ceiving of a message), or an End Event representing the pro-
cess termination. Events are drawn as circles. We also refer
to a particular type of end event, the Terminate End Event,
displayed by a thick circle with a darkened circle inside;
it stops and aborts the running process. Connecting Edges
connect process elements in the same or different pools. A
Sequence Edge is a solid connector used to specify the inter-
nal flow of the process, thus ordering elements in the same
pool, while aMessage Edge is a dashed connector used to vi-
sualise communication flows between organisations. A set
of pools interacting through message exchanges form a col-
laboration model.

The model depicted in Fig. 2 presents a collaboration
process between three participants: a Travel Agency, an Air-
line reservation system, and a Customer. The goal of the
collaboration is to provide a travel offer to a customer and
handle the response. The Travel Agency triggers the col-
laboration process, which elaborates a travel offer and sends
it to a Customer. The Customer evaluates the received of-
fer deciding whether to accept it or to reject it. The Travel
Agency and the Airline handle the customer response, ei-
ther by confirm the booking and handling the payment, or by
terminating their processes. The execution of BPMN mod-
els is based on the notion of tokens, graphically denoted as
black dots labelling BPMN elements (see the start events in
Fig. 2). The presence of such tokens over the start events en-
ables the execution of the three processes (representing the
collaboration’s initial status). Tokens traverse the sequence
edges of processes and pass through their elements enabling
their execution. The notation element’s specific characteris-
tics define the rules to follow to move, consume and generate
tokens.

9Currently more than 50, see www.bpmn.org for a detailed list.

XOR AND

Event-Based OR

Gateways
Start Intermediate End

Start
Message

Intermediate
Message
Catching

End
Message

Intermediate
Message
Throwing

Terminate

Events

Task

Receive Task Send Task

Collapsed
Sub-Process

Activities

P
o

o
l

Connecting Edges

Sequence Flow

Message Flow

Figure 1: BPMN notation (considered elements).

2.2. BPMN Operational Semantics
The interpretation, or semantics, of the BPMN standard

is given in informal natural language. In order to obtain a
formal verification approach for such standard, we had first
to make this semantics formal in [15]. This formal seman-
tics has been then implemented in the form of an executable
interpreter in MAUDE in [17, 18]. The full MAUDE im-
plementation of our BPMN interpreter is available at https:
//github.com/PROSLab/BPMNOS-Maude. In the following, using
our running example, we exemplify the BPMN syntax and
semantics as implemented in MAUDE to allow the reader to
grasp the main concepts behind it.
BPMN syntax in MAUDE

Listing 1 provides part of the textual representation in
our MAUDE interpreter for our running example. Notably,
Listing 1 specifies that the model is in the initial configura-
tion as depicted in Fig. 2, with a token in the start event of
each process in the configuration. The complete specifica-
tion of our example is given in Appendix A.

As we can see from Listing 1, a collaboration is speci-
fied using the operator collaboration (Line 1), which takes
a set of pools as arguments (one for each pool in the model).
A pool, defined by means of the operator pool (Lines 2, 8,
and 16), takes as argument its name, a BPMN process identi-
fied by the operator proc, and a set of incoming and outgoing
messages listed after in: and out:, respectively, to communi-
cate with other pools. We can see from Line 6 that a message
is declared using its name ("Offer"), followed by the operator
.msg, in turn followed by an integer denoting the number of
tokens present at the message element. The BPMN seman-
tics, indeed, makes use of the token concept to intuitively de-

F. Corradini et al.: Preprint submitted to Elsevier Page 3 of 25

www.bpmn.org
https://github.com/PROSLab/BPMNOS-Maude
https://github.com/PROSLab/BPMNOS-Maude

A Formal Approach for the Analysis of BPMN Collaboration Models

C
us

to
m

er

Offer
Received

Offer
Rejected

Check
Offer

Is offer
interesting?

Book
Travel

Reject
Offer

Booking
Confirmed

Pay
Travel

Payment
Confirmation

Received

Travel
Paid

No

Yes

Tr
av

el
 A

ge
nc

y

Offer
Needed

Offer
Cancelled

Make
Travel
Offer

Booking
Received

Offer Rejection
Received

Confirm
Booking

Payment
Received

Order
Ticket

Ticket
Ordered

A
irl

in
e

Ticket
Order

Received

Handle
Payment

Is payment
successful?

Confirm
Payment

Payment
Confirmed

No

Yes

Offer Travel Rejection Confirmation Payment

Order
Paymento Confirmation

Figure 2: A collaboration model. Tokens denote an initial state (adapt. from [25, p.130]).

1 collaboration(

2 pool("Customer" ,

3 proc(startRcv (enabled , " e1 " . 0 , "Offer".msg 0) |

4 task(disabled , "e1" . 0 , "o1". 0, "Check Offer ")|

5 ProcElements

6) , in: "Offer" .msg 0 andmsg IMsgSet , out: OMsgSet) |

7
8 pool("Travel Agency" ,

9 proc(start(enabled , "e2". 0) |

10 taskSnd (disabled , "e2" . 0 , "o2" . 0 ,

11 "Offer" .msg 0 , "Make Travel Offer") |

12 ProcElements

13) , in: IMsgSet , out: "Offer" .msg 0 andmsg

14 "Order" .msg 0 andmsg OMsgSet) |

15
16 pool("Airline" ,

17 proc(startRcv (enabled , "e3". 0 , "Order" .msg 0) |

18 ProcElements

19) , in: "Order" .msg 0 andmsg IMsgSet , out: OMsgSet)

20).

Listing 1: Sketch of MAUDE encoding of model in Fig. 2.

scribe the execution flow. We note that the operator andmsg
is used to compose sets of messages, while eventual further
messages are denoted in Listing 1 by a place-holder IMsgSet
to represent incoming messages, and OMsgSet for outgoing
ones.

A BPMN process is specified using the operator proc,
having as argument the set of BPMN elements (separated by
|) that composes it. For example, Lines 3-5 show the pro-
cess of the Customer. Similarly to what has been done for

messages, for the sake of readability in the listing we ex-
plicitly report only the elements depicted in the left-most
part of the pools in Fig. 2, while we use the place-holder
ProcElements to denote the other elements. The control flow
is specified by the presence of tokens assigned to each pro-
cess element. Process elements are allowed to act only when
enabled, which means they hold a token. In Line 9 we see
that the start element of the pool Travel Agency is enabled,
meaning that it has a token in input (denoted by the black
dot within the start event in Fig. 2), and hence it is allowed
to initiate the process. Even if the start events of Customer
and Airline (Lines 3 and 17) have a token, they are not al-
lowed to initiate until the corresponding messages are re-
ceived. The topology of the process is defined by the edges
specified as arguments of the process components. In the
example, the start node of the Customer (operator startRcv
in Line 3) is connected via sequence edge e1 to the input of
the task (operator task) defined in Line 4, whose output is
in turn connected to other elements in ProcElements via se-
quence edge o1. The start node of the Travel Agency (opera-
tor start in Line 9) is connected via sequence edge e2 to the
input of the task (operator task in Line 10), whose output is
in turn connected to the other elements in ProcElements via
sequence edge o2. Finally, the start node of the Airline (op-
erator startRcv in Line 17) is connected via sequence edge
e3 to the other elements in ProcElements via sequence edge
o3. Sequence edges that have an associated value 0 do not
include any token.

F. Corradini et al.: Preprint submitted to Elsevier Page 4 of 25

A Formal Approach for the Analysis of BPMN Collaboration Models

BPMN semantics in MAUDE
InMAUDE, the semantics is specified in terms of rewrit-

ing rules which are exhaustively applied by pattern matching
on each generated state, starting from the initial one, until no
new states can be generated. A rewriting rule has the follow-
ing form: crl [Label] : Term-1 => Term-2 if Condition(s) .

The keyword crl stands for ‘conditional rewriting rule’,
whose optional name is specified in the square brackets. The
body of the rule, Term-1 => Term-2, specifies that if Term-1

can be matched on the part of a state; then a new state can be
obtained by (i) removing thematched part from the state, and
(ii) adding Term-2 to the remaining part of the state. In the
example, one of such terms can be the entire collaboration, a
pool, a process, or a BPMN element. The if defines a guard
that has to be satisfied by the considered state to enable the
application of the rule. In case no condition is required, then
the if clause is omitted, and the keyword rl is used in place
of crl.

The BPMN semantics we defined is multi-layer, mean-
ing that it has rules for collaborations (layer 4) that depend
on rules for pools (layer 3), which in turn depend on rules
for processes (layer 2), triggered by rules for single BPMN
elements (layer 1). Roughly, the semantics is given in this
form: if a BPMN element el1 can evolve in an element el2,
then a process proc1 containing el1 can evolve in a process
proc2 obtained by replacing el1 with el2, and similarly for
the higher layers, if necessary keeping into account interac-
tions with other processes or pools. This can be mimicked
in MAUDE using the conditions if el1 => el2 and if proc1 =>

proc2 as sketched in Listing 2.

crl [SketchOfRuleForProcesses] :

el1 | RestOfProcess =>

el2 | RestOfProcess if el1 => el2 .

crl [SketchOfRuleForPools] :

pool("Name",proc(proc1)) =>

pool("Name",proc(proc2)) if proc1 => proc2 .

Listing 2: Sketch of rules for part of processes and pools
semantics.

3. The BProVe Approach
In the Introduction, we have discussed the rationale of

combining business process management and software de-
velopment. In this section, we concentrate onmodelling and
analysis, which are activities usually completed in an itera-
tive way until reaching a stable version of the model at the
basis of the software system to be developed. In particular,
we present how the BProVe approach allows shortening the
distance between modelling and analysis supporting all the
phases of the model development cycle reported in Fig. 3.
Model Design

ModelDesign involves stakeholders in collecting domain
requirements to produce a model suitable to represent as-
is or to-be scenarios within organisations. Our BPMN col-

Model
Design

Result
Report

Property
Definition

Property
Verification

Figure 3: Development cycle of models.

start

Task D

Task C

End 1

End2

Task A

Task B Task E

End 3

start

Task D

Task C

Task A

Task B Task E
End

Figure 4: A non well-structured process model.

start

Task D

Task C

End 1

End2

Task A

Task B Task E

End 3

start

Task D

Task C

Task A

Task B Task E
End

Figure 5: A well-structured process model.

laboration model and corresponding semantics give specific
support for representing processes of different organisations
which interact to achieve a common goal.

The BProVe approach makes it possible to reason di-
rectly in terms of BPMN models with an arbitrary topol-
ogy without making any assumption on the structure of the
collaboration model (i.e., well-structuredness, which asks
for the proper composition of nested structures [27]). This
gives us the possibility to analyse both well-structured and
unstructured models available in the literature [19]. As an
example, the process in Fig. 5 is the well-structured version
of the unstructured process in Fig. 4. Notice, the notion of
well-structuredness is extended from processes to collabora-
tions requiring to be satisfied by all the processes involved in
a collaboration [19]. By using BProVe, the analysis can be
done directly on the designed models, including poorly de-
signed models, without any redesign imposed by the analy-
sis techniques as other verification approaches require (e.g.,
[31]). Modellers are free to represent the reality they per-
ceive up to their modelling experience [56], hence the mod-
elling activity results to be less complex [41] and more ex-
pressive [57, 58].
Property Definition

Property Definition relates both the internal character-
istics of a single process in a collaboration and the whole
collaboration. This holds both for generic properties that
are well-established in the business process domain, such as
soundness [25] and safeness [1], and for ad-hoc properties

F. Corradini et al.: Preprint submitted to Elsevier Page 5 of 25

A Formal Approach for the Analysis of BPMN Collaboration Models

specifically defined for given application scenarios.
Soundness can be described as the combination of three

basic properties concerning the behaviour of a processmodel:
(i) Option to Complete: any running process instancemust

eventually complete;
(ii) Proper Completion: at themoment of completion, each

token of the process instance must be in a different end
event;

(iii) No dead activities: any activity can be executed in at
least one process instance.

On the other hand, safeness refers to the occurrence of no
more than one token at the same time along the same se-
quence edge. The satisfaction of these properties is gener-
ally considered a minimum guarantee to avoid unexpected
behaviours [67].

Besides system-independent properties, such as the ones
mentioned above, we also consider application-dependent
properties specifically defined for the given application sce-
nario. Such kind of properties are relevant both at the pro-
cess level, i.e., considering the execution of tasks within a
single process, as well as at the collaboration level, i.e., con-
sidering the effects of message exchanges. As a relevant ex-
ample, and in relation to the model reported in Fig. 2, we
refer to the following properties/queries.
(P1) Does the start of the ConfirmBooking task in the Travel

Agency pool implies that the same task will sooner or
later complete (Property 1)?

(P2) Does the completion of a specified task in the Airline
pool, say Handle Payment, implies the completion of
another task in the same pool, say Confirm Payment
(Property 2)?

(P3) If the Customer has sent the payment to the Travel
Agency, may it happen that the corresponding confir-
mation, by the Airline, is never received (Property 3)?

BProVe directly allows the verification of soundness and safe-
ness properties for any model, as well as it gives the possibil-
ity to specify and verify application-dependent properties.
Property Verification

Property Verification enables to check the considered prop-
erties detecting behavioural issues of the model. To do that,
the model behaviour is systematically explored to establish
if a property of interest formally holds [6].

In checking properties, BProVe offers two different anal-
ysis techniques, i.e. LTLmodel checking and statistical model
checking, as alternative and, in some cases, complementary
means to analyse BPMN models.

The LTL model checking technique we use is the one
supported by the MAUDE LTL model checker [30]. It al-
lows for an exhaustive exploration of the model reachable
states and provides a reliable response in the case of systems
with a finite state space. However, model checking tech-
niques are known to be affected by the state-space explosion

Figure 6: MultiVeStA’s approach to path selection.

problem, where a model generates so many states that model
checking cannot complete in a reasonable amount of time, or
may fail due to high memory requirements. Indeed the de-
sign of models with large state spaces is not uncommon in
the context of business process modelling. Therefore, in or-
der to be able to provide a valid response in those cases, we
resort to a simulation-based technique known as statistical
model checking (SMC) [2, 45, 46]. This allows to analyse
the model by running a finite number of finite executions,
so to provide statistical evidence on the satisfaction or vi-
olation of a property. In other words, SMC allows to infer
information on the entire state space while looking only to a
reduced set of states at a time obtained via multiple simula-
tions. An SMC analysis consists in performing independent
simulations as long as a required level of statistical accuracy
has not been reached.

The SMC technique we use is supported by MULTI-
VESTA [61]. It enables us to easily associate a discrete uni-
form probability distribution to the states that can be reached
in one step from a specific state, allowing for probabilistic
simulations. The approach is depicted in Fig. 6: from the
current state of the model we compute all (N) states reach-
able from it in one step. Each such state gets assigned the
same probability (1

N) of being chosen as next state of a simu-
lation. This is further discussed in Section 5.2. We note that
this approach to path selection allows to introduce a form of
fairness within our approach, which is not considered when
using the MAUDE LTL model checker. In MULTIVESTA,
any time a state is (re-)visited in a different simulation or
during the same one (e.g., for the presence of a loop in the
flow) the choice of the actual next state is done using the
same probabilistic distribution. Therefore, the continuous
occurring of this situation will hardly result in the process
always executing the same path, so we can assume that in
the presence of a choice which gets repeated, sooner or later
all the paths will be explored. The fairness assumption is
reasonable in the context of workflow management since all
choices are made (implicitly or explicitly) by applications,
humans or external actors. Indeed, we use a fair scheduler
in order to resolve all forms of non-determinism and choose
probabilistically the states to be considered as next state in
each simulation (see, e.g., [9] for a similar approach in the
MAUDE context). In general, SMC tends to be faster and

F. Corradini et al.: Preprint submitted to Elsevier Page 6 of 25

A Formal Approach for the Analysis of BPMN Collaboration Models

more scalable than model checking, with a price to pay in
accuracy for not covering the entire state space of a system.
Result Report

Result Report makes possible to report the result of the
verification. Model checking techniques usually generate
counterexamples which witness that a given property does
not hold. In this way, it can be shown whether a given model
satisfies or not a certain property [6].

BProVe takes advantage of such counter-example gener-
ation by signalling to the end-user the model execution that
falsifies the analysed property. BProVe enables formal rea-
soning at the level of BPMN model, so that diagnostic in-
formation and counter-example can be directly reported on
the BPMN diagram in a way that is understandable by pro-
cess stakeholders. This is especially useful when many par-
ties interact on the basis of the models. BProVe differs from
other approaches which typically provide counter-examples
on low-level representations in third-party formalisms, thus
hindering the interpretation of verification results at BPMN
level; we provide examples of such approaches in Section 9.

Upon the interpretation of verification results, the de-
signer can decide whether to restart or conclude the process.

4. Properties Definition
As stated in Section 3, BProVe enables the verification of

properties over BPMN collaborations. To ease the definition
of properties we have defined in MAUDE some recurrent
predicates representing high-level BPMN-related concepts.
In this section, we first describe the MAUDE predicates and
how on top of themwe define (i) LTL formulae to be verified
with the MAUDE LTL Model Checker and (ii) MultiQua-
TEx queries to be verified by the MULTIVESTA statistical
model checker. Anyone can extend our approach by writing
in MAUDE new predicates, formulae and queries.
4.1. MAUDE Predicates

The definedMAUDE predicates are evaluated over a sin-
gle state of the model execution: in our case a configura-
tion of the collaboration model. Here we introduce some
MAUDE predicates we have used to define the LTL formu-
lae to be verified with the MAUDE LTL Model Checker. In
particular, we consider the predicates used in checking the
running example against the properties in Tables 1-2 and the
MultiQuaTEx queries in Listings 8-12.

processCompletion. It is used for the implementation of
the Option to Complete property, to check whether it is pos-
sible to reach a configuration with tokens only on end events
implying that the process of a specific organization (OrgName)
completed the execution. The property is encoded as shown
in Listing 3: processCompletion evaluates to true if at least
one end event, in the considered state, has been enabled and
no other token remains in the process, apart from end ele-
ments.

noProperCompletion. It is used for the implementation
of the Proper Completion property, to check if the process of
a specific organization (OrgName) completes with more than

ceq collaboration(

{CollAction1}

pool(OrgName ,

proc({ Action1}ProcElements1 |

end(enabled , IEName . IEToken)

),in: inputMsgSet ,out: outputMsgSet

) | Coll1

) |= processCompletion(OrgName) = true

if noTokenPresent(ProcElements1) = true .

Listing 3: Definition of the processCompletion predicate.

one token on the same end event. The property is encoded as
shown in Listing 4: noProperCompletion evaluates to true if at
least one end event has been enabled and it has more than one
token. The first condition noTokenPresent(ProcElements1) eval-
uates to true if there is no token assigned to the set of process
elements named ProcElements1. The second and third condi-
tions, noMessagePending(outputMsgSet) =/= 0 and noMessageP

ending(inputMsgSet) =/= 0, evaluate to true whether a to-
ken related to a message exchange is still pending. The last
condition OEToken > 0 evaluates to true whether a token is
present on the considered end event; note that this end event
has already a token assigned since its state is set to enabled.
The predicate has been appropriately defined also for Message
end and Terminate end events; for presentation purposes we
report only the definition involving the simple end event.
ceq collaboration(

{CollAction1}

pool(OrgName ,

proc({ Action1}ProcElements1 |

start(disabled , OEName . OEToken) |

end(enabled , OEName . OEToken)

),in: inputMsgSet ,out: outputMsgSet

) | Coll1

) |= noProperCompletion(OrgName) = true

if noTokenPresent(ProcElements1) = true

/\ (noMessagePending(outputMsgSet) =/= 0

or noMessagePending(inputMsgSet) =/= 0) /\ OEToken > 0.

Listing 4: Definition of the noProperCompletion predicate.

aTaskRunning. It is used for the implementation of the
No Dead Activities property, which establishes that a given
task can be set, at least once, in the status running (mean-
ing that the task is currently being executed). If this prop-
erty holds for all the tasks in the model, then the model
does not have dead activities. The property is encoded as
shown in Listing 5: aTaskRunning evaluates to true if a label
running(TaskName) is produced.
eq collaboration(

{collab(OrgName ,running(TaskName))}

Coll1

) |= aTaskRunning(TaskName) = true .

Listing 5: Definition of the aTaskRunning predicate.

safeState. It is used for the implementation of the safe-
ness property, which verifies that on each sequence edge

F. Corradini et al.: Preprint submitted to Elsevier Page 7 of 25

A Formal Approach for the Analysis of BPMN Collaboration Models

there is at most one token. The property is encoded as shown
in Listing 6: safeState evaluates to true in states that satisfy
the auxiliary function noMultipleToken, which checks that no
more than one token is present on each sequence edge.

ceq collaboration(

pool(OrgName ,

proc({Action1}ProcElements1),

in: inputMsgSet ,out: outputMsgSet

) | Coll1

) |= safeState(OrgName) = true

if noMultipleToken(ProcElements1) = true .

Listing 6: Definition of the safeState predicate.

Besides soundness and safeness, we also consider ad-hoc
properties for the given application scenario. The MAUDE
predicates we use are: aTaskComplete, satisfied if a speci-
fied Task in the Collaborationwill always complete; aBPool-
SndMsg (resp. aBPoolRcvMsg), satisfied if a specifiedmes-
sage is always sent (resp. received).

These predicates had to be slightly modified when per-
forming statistical model checking. Essentially, as shown in
Listing 7, we had to change the predicates so that they would
evaluate to either 1.0 or 0.0 rather than true or false depend-
ing on whether the predicate is satisfied or not.

ceq rval(collaboration(

{CollAction1}

pool(Org1Name ,

proc(

{Action1}ProcElements1 | end(enabled , IEName . IEToken)

),in: inputMsgSet ,out: outputMsgSet

) | Coll1

) , processCompletion(Org1Name)

) = 1.0

if noTokenPresent(ProcElements1) = true .

Listing 7: Definition for MULTIVESTA of the processCom-
pletion predicate.

4.2. LTL formulae
The abovementionedMAUDE predicates are used to de-

fine LTL formulae [55] that can be checked on BPMN speci-
fications using our BPMN interpreter and the MAUDE LTL
model checker [30]. The formulae we show here are ob-
tained as a composition of the following basic operators:

• <> �, where the operator <> (corresponding to the LTL
operator F) is used to verify if a formula � eventually
holds. That is, in any possible execution path we al-
ways encounter a state where � holds.

• [] �, where the operator [] (corresponding to the LTL
operator G) is used to verify if a formula � globally
holds. That is, � holds in all states encountered in any
possible execution path.

• � -> ', where the operator -> is the standard boolean
implication.

Table 1
LTL Model checker: soundness and safeness.

Property LTL formula

Soundness (i): Option to Complete [] processStart(orgName) − >
<>processCompletion(orgName)

Soundness (ii): Proper Completion [] ∼ noProperCompletion(orgName)

Soundness (iii): No Dead Activities [] ∼ aTaskRunning(taskName)

Safeness [] safeState(orgName)

We discuss next the LTL formulae corresponding to the
Soundness and Safeness properties as shown in Table 1.

Option To Complete. This property relies on predicate
processCompletion. It checks whether it is possible to reach
a configuration with tokens only on end events implying that
the process of an organization completed its execution.

Proper Completion. This property requires that the pro-
cess of an organization always correctly completes its execu-
tion. In particular, we check that we never reach a state that
satisfies the predicate noProperCompletion, i.e. a state with
an erroneous completion. This is stated in the corresponding
formula in Table 1, which checks that the predicate does not
hold in any state of any execution of the model.

NoDead Activities. This property relies on the predicate
aTaskRunning, which evaluates to true if the considered task
has status running in the current state. Note that the corre-
sponding formula in Table 1 actually verifies the opposite
condition: it checks that the predicate does not hold in any
state of any execution of the model. Therefore, if this for-
mula is not satisfied, then there exists at least a state in at
least one execution where the considered task has status run-
ning. In other words, if the formula is false for a task, then
that task is not a dead activity. Furthermore, this formula has
to be evaluated for all tasks in the model: if the formula is
false for all the tasks in the model, then the model does not
have dead activities.

Safeness. This property relies on predicate safeState and
checks if the property holds for all the states of each model
execution.

Concerning the verification of application-dependent prop-
erties, some predefined properties in our approach are re-
ported in Table 2. They allow to check whether:

1. having a task in the running state implies that the task
will sooner or later complete (passing from the state
running to complete);

2. the completion of a task implies the completion of an-
other task highlighting a relation between those tasks;

3. the exchange of messages between different processes
is happening correctly.

Anyone can use and combine the predicates implemented in
MAUDE to express more complex LTL formulae.
4.3. MultiQuaTEx query

As later discussed in Section 5.2, MULTIVESTA requires
queries to be evaluated to 1 or 0 (corresponding to true or
false, respectively) in each simulation. Herewe present queries
used by MULTIVESTA based on MAUDE predicates from
Section 4.1, modified in order to evaluate to 1 or 0 rather

F. Corradini et al.: Preprint submitted to Elsevier Page 8 of 25

A Formal Approach for the Analysis of BPMN Collaboration Models

Table 2
LTL Model checker: scenario-dependent properties.

LTL formula

1 [] (aTaskRunning("Confirm Booking") ->

(<>aTaskComplete("Confirm Booking")))

2 [] (aTaskComplete("Handle Payment") ->

(<>aTaskComplete("Confirm Payment")))

3 [] (aBPoolSndMsg("Customer", "Payment") ->

(<>aBPoolRcvMsg("Customer","PaymentConfirmation")))

than true or false, respectively. The query used in MUL-
TIVESTA to check Option to Complete is given in Listing
8. This is written in MultiQuaTEx, MULTIVESTA’s query
specification language [61]. The upper part of the listing
(Lines 1-8) defines a response operator.10 This evaluates to
1 in a simulation if in the first nSteps simulation steps, ev-
ery time we first encounter a state where the state observa-
tion premise holds, then we also encounter a state where the
state observation conclusion holds. In particular, the oper-
ator Response takes care of evaluating premise observations,
while a second operator (ObsAtStep, Lines 10-17) is used to
evaluate conclusion observations. Finally, Lines 19-20 state
that we want to study property Response in the first N steps of
simulation, using processStart("OrgName") as premise, and
processCompletion("OrgName") as conclusion. The parameter
N comes from the fact that MULTIVESTA considers bounded
properties. In all experiments in this paper we have set N as
300 as we empirically found that it is adequate to consider
’most’ of the behaviour of the models analysed in this paper.
We empirically obtained value 300 by considering some of
the largest models in the repositories and performing single
simulations and SMC analysis iteratively by increasing the
value of such parameter. We chose a value after which the
results stabilized.

MULTIVESTA runs several simulations and keeps track
of the results of the property evaluation. In the lower part of
Listing 8 we ask MULTIVESTA to make an evaluation of the
processCompletion property.

1 Response(nSteps ,premise ,conclusion) =

2 if { s.rval(premise) == 1 }

3 then # ObsAtStep ({ nSteps},{premise},{ conclusion })

4 else if { (s.rval("steps") >= nSteps) }

5 then { 1 }

6 else # Response ({ nSteps},{premise},{ conclusion })

7 fi

8 fi ;

9
10 ObsAtStep(nSteps ,premise ,conclusion) =

11 if { s.rval(conclusion) == 1 }

12 then # Response ({ nSteps},{premise},{ conclusion })

13 else if { (s.rval("steps") >= nSteps) }

14 then { 0 }

15 else # ObsAtStep ({ nSteps},{premise},{ conclusion })

16 fi

17 fi ;

18
19 eval E[Response ({N}, {" processStart (" OrgName ")"},

20 {" processCompletion (" OrgName ")"})] ;

Listing 8: MultiQuaTEx definition of Option to Complete.
10For more details on this property pattern we refer, e.g., to https://

matthewbdwyer.github.io/psp/patterns/response.html

The query used to check Proper Completion is given in
Listing 9. The upper part of the listing specifies the operator
Reach, a simpler version of the ObsAtStep one from Listing 8
which focuses on studying just the reachability of states sat-
isfying a given property (does observation obs evaluates to
1?). In particular, Reach evaluates to 1 in a simulation if in
any of the first nSteps it meets a state where obs evaluates
to 1. Lines 2-3 check whether the condition is met in the
current state. Otherwise, if the number of permitted sim-
ulation steps has been reached it evaluates to 0 (Lines 4-5),
or it triggers the execution of a new step of simulation and
re-evaluates Reach in the next simulation step (the # opera-
tor in Line 6 is a one-step next operator, which triggers the
execution of a step of simulation). MULTIVESTA runs sev-
eral simulations and keeps track of the results of the prop-
erty evaluation. In the lower part of Listing 9 we ask MUL-
TIVESTA to make an evaluation of the noProperCompletion

property for simulations of maximum length of N steps.

1Reach(nSteps ,obs) =

2if { s.rval(obs) == 1 }

3then { 1 }

4else if { (s.rval("steps") >= nSteps) }

5then { 0 }

6else # Reach({ nSteps},{obs})

7fi

8fi ;

9
10eval E[Reach({N},{" noProperCompletion (" OrgName ")"})];

Listing 9: MultiQuaTEx definition of No Proper Comple-
tion.

The queries used to check No Dead Activities and Safe-
ness are implemented similarly to Listing 9.

Ad-hoc properties may be handled as well by MULTI-
VESTA. As an example, the queries from Table 2 can be ex-
pressed as shown in Listings 10, 11 and 12. The first query
checks whether a Task identified by a name “TaskName”
with status “running” will eventually reach the status “com-
pleted”. The second query checks whether the completion of
a Task identified by a name “Handle Payment” (with status
“completed”) implies the completion of another task named
“Confirm Payment” (with status “completed”). The third
query checks whether the sending of a message “Payment”
from pool “Customer” implies the receiving of a message
“Payment Confirmation” from the same pool. The three queries
have a similar structure. For example, Listing 10 is defined
as Listing 8 with the exception that Lines 19-20 state that
we want to study property Response in the first N steps of
simulation, using aTaskRunning("TaskName") as premise, and
aTaskComplete("TaskName") as conclusion. This property cor-
responds to Property 1 of Table 2 because aTaskRunning and
aTaskComplete alternate for a given task, meaning that a task
cannot get twice or more times in status running (resp. com-
plete) without getting in status complete (resp. running).

Listing 11 is similar to Listing 10, but wemodify Response.
We use a variable premObs which takes value 1 if we meet a
state where the premise holds (Line 7), and is reset to 0 as
soon as a state satisfying the conclusion is met (Line 5). In

F. Corradini et al.: Preprint submitted to Elsevier Page 9 of 25

https://matthewbdwyer.github.io/psp/patterns/response.html
https://matthewbdwyer.github.io/psp/patterns/response.html

A Formal Approach for the Analysis of BPMN Collaboration Models

1 Response(nSteps ,premise ,conclusion) =

2 if { s.rval(premise) == 1 }

3 then # ObsAtStep ({ nSteps},{premise},{ conclusion })

4 else if { (s.rval("steps") >= nSteps) }

5 then { 1 }

6 else # Response ({ nSteps},{premise},{ conclusion })

7 fi

8 fi ;

9
10 ObsAtStep(nSteps ,premise ,conclusion) =

11 if { s.rval(conclusion) == 1 }

12 then # Response ({ nSteps},{premise},{ conclusion })

13 else if { (s.rval("steps") >= nSteps) }

14 then { 0 }

15 else # ObsAtStep ({ nSteps},{premise},{ conclusion })

16 fi

17 fi ;

18
19 eval E[Response ({N}, {" aTaskRunning (" Confirm Booking ")"},

20 {" aTaskComplete (" Confirm Booking ")"})] ;

Listing 10: MultiQuaTEx definition of Property 1 in Tab. 2.

all other states we just perform a new simulation step with-
out modifying the variable Line 8). The evaluation for each
simulation terminates as soon as we reach the required simu-
lation steps (Lines 2-3). In particular, we return 1 - premObs,
becausewewant to return 1 in all simulations inwhich all oc-
currences of the premise (aTaskComplete("Handle Payment"))
are followed by an occurrence of the conclusion (aTaskComple
te("Confirm Payment")).

1 Response(nSteps ,premise ,conclusion ,premObs) =

2 if { (s.rval("steps") >= nSteps) }

3 then { 1.0 - premObs }

4 else if { s.rval(conclusion) == 1 }

5 then # Response ({ nSteps},{premise},{ conclusion },{0})

6 else if { s.rval(premise) == 1 }

7 then # Response ({ nSteps},{premise},{ conclusion },{1})

8 else # Response ({ nSteps},{premise},{ conclusion },{premObs })

9 fi

10 fi

11 fi;

12
13 eval E[Response ({N},{" aTaskComplete (" Handle Payment ")"}, {"

aTaskComplete (" Confirm Payment ")"} ,{0})] ;

Listing 11: MultiQuaTEx definition of Property 2 in Tab. 2.

Listing 12 has same structure as Listing 10. However, we
use aBPoolSndMsg("Customer", "Payment") as premise, while
for conclusionwe use aBPoolRcvMsg("Customer","PaymentConf
irmation") (see Lines 8-9). This corresponds to Property 3
of Table 2 because amessage that has been sent (aBPoolSndMsg)
should also be received (aBPoolRcvMsg).

1 Response(nSteps ,premise ,conclusion) =

2 Same as Listing 10.
3
4 ObsAtStep(nSteps ,premise ,conclusion) =

5 Same as Listing 10.
6
7 eval E[Response ({N},

8 {" aBPoolSndMsg (" Customer", "Payment ")"},

9 {" aBPoolRcvMsg (" Customer","Payment Confirmation ")"})] ;

Listing 12: MultiQuaTEx definition of Property 3 in Tab. 2.

5. Verification
The analysis techniques featured by BProVe are based on

the state space exploration capabilities offered by our BPMN
interpreter implemented in the MAUDE language.

In fact, given a state of the collaboration under analysis,
the interpreter permits to compute its set of one-step next
states, i.e. all states reachable from the given state in one
execution step, by applying the rewriting rules defining the
BPMN semantics (given in [15]). On the one hand this al-
lows the MAUDE LTL model checker to derive and explore
the whole state-space of the collaboration by considering all
generated one-step next states. On the other hand it allows
the MULTIVESTA statistical model checker to generate sin-
gle execution runs in the form of probabilistic simulations
by iteratively selecting in a probabilistic way a one-step next
state.

In this section, we overview how the twomodel checking
strategies exploited in BProVe use the information produced
by the interpreter to perform the required analysis.
5.1. Verification with the MAUDE LTL Model

Checker
As shown in Listing 13, theMAUDELTLModel Checker

takes as input the initial state of the modelled collaboration
and an LTL formula. In particular, in this case initialState

denotes the term shown in Listing 1, while the considered
LTL formula checks the property Option to Complete on the
process of the Travel Agency pool.

The MAUDE LTLmodel checker computes the required
analysis by executing our interpreter starting from the given
initial state, traversing if necessary the whole state space.
The tool returns true if the property is satisfied, i.e. holds
in all possible executions of the model. Otherwise it returns
false and a counterexample. The counterexample consists in
an execution (a sequence of states) that violates the property.
As discussed later, other components in the BProVe tool-
chain will parse such textual counterexample to map directly
on the BPMN model the example of execution violating the
property.
Maude > red modelCheck(initialState ,

<> processCompletion(Travel Agency)) .

result Bool: true

Listing 13: The MAUDE encoding of an LTL verification
request.

5.2. Verification with MULTIVESTA

From non-determinism to probabilistic simulations
Our BPMN semantics, and therefore our MAUDE in-

terpreter, is inherently non-deterministic, meaning that dif-
ferent rules of the semantics might be applied to different
enabled components of a BPMN specification, leading to a
set of next-step states. As usual (see, e.g. [9, 10, 12, 3, 28]
for some examples in the MAUDE context), in order to ob-
tain probabilistic behaviours out of non-deterministic ones

F. Corradini et al.: Preprint submitted to Elsevier Page 10 of 25

A Formal Approach for the Analysis of BPMN Collaboration Models

we need to resolve this non-determinism. Two main ap-
proaches exist in the MAUDE context: (i) MAUDE specifi-
cations can be enriched with probabilities and quantities (ob-
taining probabilistic rewrite theories [3]) and schedulers are
used to solve the remaining non-determinism (see e.g. [12, 3,
28, 8, 7]); (ii) or probabilistic strategy languages can be used
to associate probabilities to rule applications [10, 9], com-
puting for each state a probability distribution towards its
one-step next states. Both approaches resolve non-determinism
by probabilistic choices. Our proposal combines aspects of
the two approaches as discussed in the following. Intuitively,
with the first approach it shares the use of a Java scheduler
that exploits our MAUDE implementation to generate all
one-step next states of the current one, and then probabilis-
tically selects one of them (as discussed for Fig. 6, if there
are n one-step next states, we select each with probability
1∕n). Instead, from the second approach it takes the idea
of labelling rule applications with probabilities, as it implic-
itly specifies the same probability to every rule application
outgoing from the current state. We made this choice in or-
der to follow a conservative approach, as we did not have
to modify our MAUDE implementation of the BPMN se-
mantics, but we added an external probabilistic scheduler to
resolve non-determinism. Crucially, we decided to avoid to
use the approach (i) where models have to be enriched ex-
plicitly with quantitative aspects (e.g. adding probabilities
to the choices of a XOR gateway) because we are not aware
of model repositories that contain BPMN models enriched
with such quantitative aspects.
MULTIVESTA

Similarly to the MAUDE LTL model checker, MULTI-
VESTA takes in input the initial state of the collaboration
of interest and a MultiQuaTEx query. When performing an
analysis, MULTIVESTA interacts with the probabilistic ver-
sion of our interpreter to run a number of simulations, and
provides as a result the average of the evaluations computed
for each simulation. We consider properties discussed in
Section 4.3, corresponding to those used for the MAUDE
LTL model checker. As discussed, each such property takes
either value 1 or 0 in a simulation, depending on whether it
is satisfied or not in that execution. The number of required
simulations is automatically computed in order to give a re-
sult with a statistical confidence required by the user. In par-
ticular, MULTIVESTA estimates MultiQuaTEx queries ac-
cording to a confidence interval (a, d) provided by the user.
MULTIVESTA estimates the expected value of a MultiQua-
TEx query as the mean x of n samples (taken from n sim-
ulations), with n large enough (but minimal) to guarantee
that the size of the (1 − a) ⋅ 100% confidence interval is
bounded by d. In other words, with statistical confidence
of (1 − a) ⋅ 100%, the actual expected value x belongs to the
interval

[

x̄ − d
2 , x̄ +

d
2

]

.
In order to present in a coherent way the results obtained

using the MAUDE LTL model checker and MULTIVESTA,
if MULTIVESTA returns exactly 1 we interpret it as true: the
property is verified in all considered executions. Otherwise,

we interpret it as false: the property was not verified in at
least one of the considered executions.

6. Result Report on the Scenario
As we know from Section 2, the Soundness property

can be encoded, for both the LTL model checker and the
statistical model checker, as the combination of the result
for three sub-properties: Option to Complete, Proper Com-
pletion and No Dead Activities. The result for those sub-
properties is combined using the logical AND operator to
provide the result for the Soundness property. Notably, these
sub-properties refer to a single process; however, the anal-
yses are carried out on the whole collaboration model, so

C
us

to
m

er

Offer
Received

Offer
Rejected

Check
Offer

Is offer
interesting?

Book
Travel

Reject
Offer

Booking
Confirmed

Pay
Travel

Payment
Confirmation

Received

Travel
Paid

No

Yes

T
ra

ve
l A

ge
nc

y

Offer
Needed

Offer
Cancelled

Make
Travel
Offer

Booking
Received

Offer Rejection
Received

Confirm
Booking

Payment
Received

Order
Ticket

Ticket
Ordered

A
irl

in
e

Ticket
Order

Received

Handle
Payment

Is payment
successful?

Confirm
Payment

Payment
Confirmed

No

Yes

Offer Travel Rejection Confirmation Payment

Order
Paymento Confirmation

Figure 7: Automatic counter-example highlighting for our run-
ning example.

T
ra

ve
l A

ge
nc

y

Order
Ticket

A
irl

in
e Handle

Payment

Confirm
Payment

Reject
Payment

C
us

to
m

er

Pay
Travel

Payment
Received

Ticket
Ordered

Yes

No

Ticket
Order

Received

Is payment
successful? Payment

Confirmed

Payment
Refused

Order

Payment
Confirmation

Received

Travel
Not Paid

Travel
Paid

Payment
Rejection

Payment

Payment Confirmation Reject

Figure 8: Counter-example guided fix of the model in Fig. 7.

F. Corradini et al.: Preprint submitted to Elsevier Page 11 of 25

A Formal Approach for the Analysis of BPMN Collaboration Models

Table 3
Soundness and Safeness analysis of the scenario in Section 2.1.

Property Org/Task Name LTL MC MultiVeStA

Soundness (i)
Option to Complete

Whole model F F
Customer F 0.72

Travel Agency T 1.0
Airline T 1.0

Soundness (ii)
Proper Completion

Whole model T T
Customer T 0.0

Travel Agency T 0.0
Airline T 0.0

Soundness (iii)
No Dead Activities

Whole model T T
Make Travel Offer F 1.0

Check Offer F 1.0
Handle Payment F 0.48

Safeness

Whole model T T
Customer T 1.0

Travel Agency T 1.0
Airline T 1.0

to consider the effects that message exchanges between pro-
cessesmay have on the single process (e.g., the non-reception
of a message may cause a process to deadlock). Therefore,
the sub-properties are checked for each process in the col-
laboration and the results obtained are combined through
the logical AND operator to provide the result for the whole
model.

Table 3 reports the analysis of Soundness and Safeness
over our running example from Section 2.1. We can see that
the property Option to Complete is not satisfied. This is be-
cause the property does not hold for the pool Customer, as
the LTL model checker evaluates it to false. The counterex-
ample generated by the LTL model checker is reported in
Fig. 7. The model in the figure is the same as in Fig. 2; the
only difference is that the executed tasks and the executed
sequence flows are highlighted in red. As discussed in Sec-
tion 7.2, this figure is automatically generated by the graphi-
cal component of our tool-chain. Focusing on the Customer
pool (the top one), we can see that the Customer process
is stuck waiting for the payment confirmation from the Air-
line pool (the bottom one). This message will never arrive
because the Airline process refused the payment. This sit-
uation is something that must be avoided, especially if the
model will be used for the enactment of such a process and
possibly for the development of an application which will
remain stuck waiting for a message.

Considering MULTIVESTA, we can see that it confirms
the analysis of the Option to Complete property. In fact, it
computes value 0.72 for the pool Customer. As discussed in
Section 5.2, we can interpret this result as false. Considering
Proper Completion, we can see that the LTL model checker
evaluates all the corresponding formulae to true, therefore
the model satisfies the property. This is confirmed by MUL-
TIVESTA, which tells us that none of the considered simula-
tions violates Proper Completion (as none satisfies noProp-
erCompletion). As regards property No Dead Activities, we
can see that the LTL analysis states that this property holds
in the model. As discussed in Section 4.2, for each task we
check that it can never be run in the model, and then we
negate the obtained result. The results obtained for each task

Table 4
Properties of Tab. 2 and Listings 10-12 on scenario of Sec.
2.1. Property LTL MC MultiVeStA

1 T 1.0
2 F 0.74
3 F 0.73

are then conjoined making No Dead Activities be evaluated
to true. This is confirmed also by MULTIVESTA. When us-
ing MULTIVESTA we can check this property directly, ob-
taining 1.0 in every simulation where the considered task is
executed at least once. Given that for all tasks we get a value
greater than 0.0, we have that all tasks can be executed, there-
fore we don’t have any dead activity.

Since the soundness property corresponds to combined
values of Option to Complete, Proper Completion and No
Dead Activities, we have that the considered model is un-
sound. In addition, we can see that the model is safe. In fact,
the corresponding LTL formula is satisfied by each pool.
Likewise, MULTIVESTA computes value 1.0 for each pool.

Table 4 reports results for the application-dependent prop-
erties of our scenario. Property 1 is evaluated to true by
both the MAUDE LTL model checker and MULTIVESTA,
implying that once the Confirmation Booking task is in the
running state, it can always reach the completed state. As
regards Property 2, we have that the MAUDE LTL Model
Checker evaluates it to false. This is because the task Handle
Payment can actually be executed without necessarily exe-
cuting first the task Confirm Payment. This is confirmed by
MULTIVESTA, which computes value 0.74. Finally, both
the MAUDE LTL Model Checker and MULTIVESTA state
that Property 3 is violated. This is because even if the Cus-
tomer has sent the payment, it may happen that the corre-
sponding confirmation will never be received.
Result interpretation and model fix

Once the analysis results have been interpreted, eventu-
ally discovered bugs should be fixed running again themodel
design activity, triggering a new iteration of themodel devel-
opment cycle in Fig. 3. Our analysis discovered that prop-
erty Option to Complete is violated for the process of pool
Customer. Fig. 8 depicts a new version of the model focus-
ing only on the parts of the model that have been changed
to fix the problem. The fix has been driven by the coun-
terexample in Fig. 7. In the new model, after the payment
the Customer waits for the payment management involving
Travel Agency and Airline. This is represented by means of
an event-based gateway. If the Airline rejects the offer, the
Customer marks the travel as not paid as soon as the reject
message is received. Otherwise, the payment is confirmed to
the Customer. This new model successfully passes the veri-
fication of the Option to Complete property, as well as of the
overall Soundness property. More in general, a new execu-
tion of Property Verification and Result Exploration activi-
ties confirms that the new version of the model satisfies the
expected and desirable properties.

F. Corradini et al.: Preprint submitted to Elsevier Page 12 of 25

A Formal Approach for the Analysis of BPMN Collaboration Models

Interpreter
 BPMN

Figure 9: Component diagram of the BProVe tool-chain.

7. BProVe Tool-Chain
In this section we provide details on the architecture and

usage of the BProVe verification tool-chain.
7.1. Architecture

BProVe is a tool-chain of open source software. For
using the tool-chain we provide a web interface at http://
pros.unicam.it/bprove-web-interface/ as well as a Virtual-
Box virtual machine containing a local installation of our
tool-chain at http://pros.unicam.it/bprove-testing-machine/.
Additional information about the tool-chain can be found at
http://pros.unicam.it/bprove.

The overall architecture of the BProVe tool-chain is syn-
thesised in the Component Diagram of Fig. 9. It is based
on a standard client/server architecture concerning the pro-
visioning of APIs for a BPMN verification service. Reading
the figure from left to right we can see the following main
components: Modelling Environment, BProVeWebService,
MAUDE Model Checker, MULTIVESTA and BPMN Inter-
preter.

TheModelling Environment component allows to design
BPMN models and to select or specify properties to be ver-
ified. In principle, any BPMN editor can be used as such
component, especially those compliant with the BPMN 2.0
standard such as: bpmn-js11, Eclipse BPMN2 Modeler12,
Camunda Modeler13 and Signavio Editor14. Currently, we
offer two different deploys of the tool-chain using two dif-
ferent BPMN editors. The first one, based on bpmn-js, al-
lows us to make BProVe available as a web application. The
latter is distributed as an Eclipse plug-in and is based on
the Eclipse BPMN2Modeler. Both modelling environments
have been augmented with the possibility to make calls to
the BProVeWebService and to graphically interpret answers
and counterexamples received from it. This de facto enriches
the modelling environments with advanced analysis capabil-
ities for designed models. In particular, we provide a menu
to perform verification by selecting one of the two supported
model checkers. BProVe offers a set of predefined proper-
ties that the user can select and verify without requiring any
specific knowledge of the used analysis techniques. In addi-
tion, for the MAUDE LTL model checker we allow to spec-
ify LTL formulae describing application-dependent proper-
ties. In this case the user might use the predicates defined in
the MAUDE interpreter discussed in Section 4.1.

11https://github.com/bpmn-io/bpmn-js
12https://www.eclipse.org/bpmn2-modeler
13https://camunda.com/products/modeler
14https://www.signavio.com

The Modelling Environment interacts with the BProVe
WebService via HTTP requests. In particular, a verification
request has to include a BPMN model formatted according
to the OMG standard and a property to be checked on the
model. After the reception of the request, the service formats
the BPMN model and the property into the syntax accepted
by the back-end components, and then passes such data to
the requested model checking components (MAUDEModel
Checker or MULTIVESTA). The results of the model check-
ers are successively formatted in an XML file that is returned
to the modelling environment which visualises the results in
natural language. In case a counterexample is returned to
signal a property violation, this is visualized directly on the
model highlighting the erroneous path.

The remaining components offer the supported analysis
techniques as discussed in Section 5. The MAUDE LTL
Model Checker component consists of a running instance of
MAUDE [14] loadedwith theMAUDEmodules implement-
ing our BPMN interpreter15 and the LTL Model Checker
embedded inMAUDE [30]. Instead theMULTIVESTA com-
ponent consists of a running instance of the statistical ana-
lyzer MULTIVESTA, which interacts with the probabilistic
version of our interpreter discussed in Section 5.2.
7.2. User Interface

The BProVe user interface aims at fostering the usage
of formal verification for BPMN models also to non-experts
of formal methods. In particular, after having designed or
loaded a model in the modelling environment, the user can
access the BProVe functionalities by just pushing a button
we added to the toolbar. As a result, a menu that requires
to select a model to parse is displayed. After the parsing re-
quest is sent to the BProVe WebService, a parsed model is
returned. At this point, the user can request property ver-
ifications, and if he/she does it, the “BProVe Verification”
menu pops up as shown in Fig. 10.

The menu enables to select one of the supported proper-
ties (or define a new one) according to different needs and
expertise of the user. In particular, the menu includes three
different sections permitting to specify properties in different
ways: (i) general domain properties, (ii) application-dependent
properties, and (iii) properties builder. The general domain
properties section embeds a drop-down menu permitting to
select properties that are generally desirable for any BPMN
model. In particular, the user can ask for the verification
of the soundness and safeness properties discussed in Sec-
tion 4. Those properties are evaluated over the whole model.
The application-dependent properties section embeds sev-
eral drop-downmenus which allow the user to select specific
elements in the model (i.e., Pools, Tasks, and Messages) to
check if specific conditions on them are satisfied. In partic-
ular, the “Verification of Task execution” allows to select a
Task and to check whether it will ever reach the statuses “En-
abled”, “Running” or “Completed”. It also allows to verify
whether the execution of a Task implies the execution of an-
other one. The “Verification of Message exchange” allows to

15https://github.com/PROSLab/BPMNOS-Maude.git

F. Corradini et al.: Preprint submitted to Elsevier Page 13 of 25

http://pros.unicam.it/bprove-web-interface/
http://pros.unicam.it/bprove-web-interface/
http://pros.unicam.it/bprove-testing-machine/
http://pros.unicam.it/bprove
https://github.com/bpmn-io/bpmn-js
https://www.eclipse.org/bpmn2-modeler
https://camunda.com/products/modeler
https://www.signavio.com
https://github.com/PROSLab/BPMNOS-Maude.git

A Formal Approach for the Analysis of BPMN Collaboration Models

Figure 10: BProVe web interface.

select Pools and Messages and to check whether a specific
Pool will send a specified Message, or to check whether a
specific Pool will Receive a specified Message. The section
named “property builder” is meant for highly skilled users
able to write LTL formulae. In specifying the property, the
user can make use of the LTL MAUDE operators and can
take advantage of predefined subformulae (see Section 4).

The last section, named “MULTIVESTA Simulation”, al-
lows to switch to another menu which includes the same sec-
tions previously described, but with the possibility of run-
ning property verifications with MULTIVESTA rather than
with the MAUDE LTL Model Checker.16

Finally, verification results are reported in a text area
where the user can also find the time, inmilliseconds, needed
to run the verification. In case the property is violated, the
BProVe service returns a counter-example that can be visu-
alised on the original model highlighting themodel elements
belonging to the corresponding execution path as shown in
Fig. 10.

8. Experimental Evaluation
In this section, we discuss the validation we performed

to assess the scalability and feasibility of the BProVe tool-
chain, considering how the standard and the statistical model
checking techniques complement each other. By scalability
we mean the ability of BProVe to handle the verification of
BPMNmodels with increasing size. This allows us to assess
to what extent the tool can deal with large models and how
its performance degrades as the size of models increases.
By feasibility, instead, we mean the ability of BProVe to be
applicable to real(istic) scenarios. This allows us to assess

16In the MULTIVESTA menu the “Property Builder” section has been
removed, since it requires inserting LTL formulae specifically defined for
LTL model checking.

whether the tool may be useful in practice.
The evaluation we have performed has been then struc-

tured over two main steps. The first one extensively vali-
dated the proposed verification approach by running a scal-
ability analysis via ad-hoc designed and synthetically gen-
erated models. The rationale in using synthetic models was
to do a scalability analysis on models on which we have full
control and to show the tool capabilities in extreme scenar-
ios.

The second one considered models retrieved from two
freely accessible collections ofmodels: the “BPMAcademic
Initiative Model Collection” and the “Camunda BPMN for
Research”. At the time of writing, BPMAI and CAMUNDA
are the most used open repositories of BPMN models to the
best of our knowledge. Different practitioners and students
have designed the models in the repositories during BPMN
training sessions; therefore, they vary in size and usage of
the BPMN notation. The rationale in using existing reposi-
tories of BPMNmodels is to assess the feasibility of BProVe,
showing that it can also process real(istic) models designed
by third-party, without knowing a priori the quality of the
designed models. Experiments have been performed on a
dedicated machine running Ubuntu Linux 18.04.3, equipped
with a processor Intel Core i7-6700HQ (2.60GHz), and 8GB
of RAM.

More details on the set-up and the results of the per-
formed experiments are described in the following. For the
LTLmodel checking analysis we usedMAUDE2.7.117 load-
ing our BPMN interpreter. For the statistical analysis we
used MULTIVESTA, which interacted with the same version
of MAUDE, and with the probabilistic version of our in-
terpreter. MULTIVESTA requires a number of parameters,

17http://maude.cs.illinois.edu/w/index.php?title=Maude_download_
and_installation

F. Corradini et al.: Preprint submitted to Elsevier Page 14 of 25

http://maude.cs.illinois.edu/w/index.php?title=Maude_download_and_installation
http://maude.cs.illinois.edu/w/index.php?title=Maude_download_and_installation

A Formal Approach for the Analysis of BPMN Collaboration Models

which we fixed for all models: we set a block-size of 30 in
relation to how many simulations we ask to run before it-
eratively re-evaluating if the required statistical confidence
has been reached. In case the desired confidence interval is
not reached after performing a block of simulations, MUL-
TIVESTA runs another block of simulations and repeats the
checks. We set the a and d values describing the required
confidence interval (see Section 5.2) to 0.1 and 0.15, respec-
tively. 18 We used the automatic parallelisation feature pro-
vided byMULTIVESTA [54]) using 3 cores of themachine to
parallelise the simulations. Finally we defined a time limit
of 600 seconds considering it as the maximum amount of
time a user, adopting the development model presented in
Section 3, may wait for receiving a response from the tool;
we use this time limit to run our tests and to timeout the com-
putations that exceed such limit.
8.1. Experiment Set-Up on Synthesised Models

To conduct a scalability analysis of our approach onmod-
els of increasingly large ‘size’, we have specifically designed
some families of synthetic models. The need to devise such
families comes from the fact that, although the typical no-
tion of size for a BPMN model refers to the number of its
elements, here we are more interested in the number of its
execution states, which is what mainly affects the verifica-
tion performance. The number of states of BPMN models
may grow not only based on the growth of the number of
elements but also on how they are structured. To cope with
this aspect, we identified four ‘dimensions’ of growth for a
BPMN model:

• sequential growth, where the number of sequential el-
ements of the model increases;

• nesting growth, where the number of nested element
blocks increases;

• internal parallel growth, where the number of parallel
branches within an AND block increases;

• external parallel growth, where the number of pro-
cesses within a collaboration increases.

Therefore, we defined the following families ofmodels whose
elements systematically increase along with one of these di-
mensions. In particular, for the sequential growth, we con-
sidered a family of process models with increasing sequen-
tial tasks. We considered a family of process models with
three branches of exclusive split and joined gateways with
varying nesting for the nesting growth. For internal paral-
lel growth, we considered a family of process models with
a block of parallel split and joined gateway with varying
branches. Finally, we considered a family of collaboration

18The values of 30 and 0.1 for the block-size and confidence a, respec-
tively, have been chosen because are common in statistical estimations (see,
e.g., [44]). The former value comes from assumptions of the law of large
numbers, while the latter comes from the fact that modelers are often satis-
fied with 90% confidence intervals (alternatively 95% or 99% are also used).
Instead, as regards d, we note that all properties are estimated as a value in
the interval [0, 1], therefore a precision of ±d∕2 = 0.075 is reasonable.

models with a pool sending and/or receiving a message with
varying number of pools for the external parallel growth.
Each family contains 6 models. In all the considered mod-
els we added a block of elements that will lead the process
into a deadlock. As a consequence, all the designed mod-
els violate the Option to Complete and the No Dead Activi-
ties properties, and therefore they are not sound. The error
block is reported in Fig. 11 and it has been added in a place
that couldmake hard its identification when themodel grows
in size. This should permit us to identify possible limits of
the different verification strategies. We made all the models
available through the RePROSitory platform [16]19.

Figure 11: Error Block with Deadlock.

The first family, Sequential Tasks, is depicted in Fig. 12.
The baseline model of the family consists of the sequential
composition of a start event, a task, the error block, and end
event. The other models are obtained by iteratively increas-
ing by one the sequentially connected tasks.

Figure 12: Model with sequential tasks.

The second family,Nested Exclusive Branches, is reported
in Fig. 13. The baseline model contains a start event con-
nected to an exclusive split gateway with three branches.
Two of such branches are connected with a task per branch
that merge into an exclusive join gateway, which is in turn
connected with an end event. We say that those elements
have a level of nesting equal to zero. The third branch is at-
tached to the elements at the next level of nesting. At the
highest level of nesting, level N in Fig. 13, we placed the er-
ror block from Fig. 11. We designed the remaining models
by increasing level of nesting, where the elements in higher
levels of nesting are structured in the same way as those in
level 0.

The third family, Parallel Branches, is reported in Fig.
14. The baseline model is composed of a start event con-
nected to a parallel split gateway with two branches and a
single task per branch; the two branches successively merge
into a parallel join gateway. At this point we placed the error
block, then an end event that closes the model. We designed
the remaining models by increasing the number of branches
and tasks between the two parallel gateways.

19https://pros.unicam.it:4200/guest/collection/fabrizio.fornari_
bprove

F. Corradini et al.: Preprint submitted to Elsevier Page 15 of 25

https://pros.unicam.it:4200/guest/collection/fabrizio.fornari_bprove
https://pros.unicam.it:4200/guest/collection/fabrizio.fornari_bprove

A Formal Approach for the Analysis of BPMN Collaboration Models

Figure 13: Model with nested exclusive branches.

Figure 14: Model with parallel branches.

The fourth family, Process Collaboration, is depicted in
Fig. 15. The baselinemodel is composed of three pools. The
first one presents a start event, a send task, a receive task, the
error block and an end event. The second one presents a start
receiving message event, a send task and an end event. The
third one presents a start event, a send task and an end event.
The remaining models are obtained by inserting iteratively
one copy of the intermediate pool before the last pool. In all
models, the pools interact in sequence: the first pool sends
a message to the second one, which sends a message to the
third one, and so on, until getting to the the n-th pool that
sends a message back to the first pool.

Figure 15: Model with multiple processes.

8.2. Results on Synthesised models
By analysing the synthetic models from Section 8.1 we

performed a systematic analysis of the feasibility of our ap-
proach for both analysis techniques. In order to study how
the analysis engines perform in terms of the actual size of the
models, we used the state space generation capabilities of-
fered by MAUDE [14] to compute the size of the state space
of each model. This information, provided in the columns
states in the tables presenting the analysis results, is cru-
cial to properly study the scalability of the approach; in fact,
the cost of verification depends on the size of the semantic
model, which is due not only to the number of elements in
the BPMN diagrams, but also to the degree of parallelism
and non-determinism.

Table 5 reports the verification results, including running
times in milliseconds, for our four families of synthetic mod-
els. To facilitate the comparison, for each experiment we
highlight in bold the best performance between those of the
two engines.
Sequential Tasks & Nested Exclusive Branches. The
first two blocks of lines provide the verification results for the
families Sequential Tasks and Nested Exclusive Branches,
respectively. From a qualitative perspective, the two anal-
ysis engines always compute the same, correct, results. 20
Considering performances, for these two families the LTL
MAUDE Model Checker consistently outperforms MULTI-
VESTA. This is because the selectedmodels have very small
state spaces, containing up to 83 states. In these cases, the
LTL model checker is able to quickly explore all states and
provide a response faster than MULTIVESTA. Exhaustive
analysis techniques like LTLmodel checking are particularly
well suited in these cases.
Parallel Branches & Process Collaboration. Moving
our attention to the families Parallel Branches and Process
Collaboration, shown in the third and fourth block of lines
of Table 5, we note a complementary outcome. We can
observe that the models of such families have much larger
state spaces. In fact, an increase in the number of paral-
lel branches or of pools leads to an exponential increase on
the size of the state space, leading to the well-known state
space explosion problem. In some cases, such a state space
could not even be fully explored within our time limit of 600
seconds, forcing us to add the label T.O. (Time Out) in the
corresponding entries. For these two families, the MAUDE
LTL model checker succeeded in performing the verifica-
tion of all the properties within the time limit of 600 sec-
onds only on models with less than 6 tasks in parallel or 5
pools. We write T.O. (Time Out) in the entries correspond-
ing to analysis that did not terminate in the imposed time
limit and N.A. (Not Available) to indicate that a result is not
available for that property verification. An exception is the
Option To Complete property, which could be computed on

20The verification community refers to model checking techniques that
provide binary True/False outcomes, like Maude’s LTL model checking, as
qualitative, and to those with numeric outcomes, like MultiVeStA’s SMC,
as quantitative. See, e.g., one of the reference books in model checking [6].

F. Corradini et al.: Preprint submitted to Elsevier Page 16 of 25

A Formal Approach for the Analysis of BPMN Collaboration Models

Table 5
Experimental results over synthetic models with the MAUDE LTL model checker and
MultiVeStA.

Model Option to Complete Proper Completion No Dead Activities Safeness

ID States LTL MC MultiVeStA LTL MC MultiVeStA LTL MC MultiVeStA LTL MC MultiVeStA
Res. ms Res. ms Res. ms Res. ms Res. ms Res. ms Res. ms Res. ms

Experimental Results over Sequential Tasks models
t1 16 F 1 F 926 T 1 T 973 F 62 F 4448 T 2 T 973
t2 20 F 1 F 981 T 2 T 980 F 68 F 5757 T 2 T 1018
t3 24 F 2 F 1018 T 3 T 1041 F 63 F 7176 T 3 T 1022
t4 28 F 3 F 1036 T 3 T 1103 F 67 F 8779 T 4 T 1099
t5 32 F 3 F 1083 T 4 T 1174 F 64 F 10441 T 5 T 1159
t6 36 F 4 F 1141 T 5 T 1225 F 65 F 12116 T 6 T 1167

Experimental Results over Nested Exclusive Branches models
e1 12 F 1 F 880 T 1 T 844 F 65 F 2036 T 1 T 867
e2 27 F 3 F 1310 T 5 T 1000 F 68 F 5224 T 6 T 943
e3 41 F 7 F 1513 T 13 T 1050 F 74 F 7960 T 14 T 1022
e4 55 F 12 F 1178 T 24 T 1076 F 84 F 8981 T 26 T 1090
e5 69 F 18 F 1072 T 40 T 1123 F 99 F 5037 T 42 T 1129
e6 83 F 26 F 1123 T 61 T 1175 F 114 F 8712 T 64 T 1154

Experimental Results over Parallel Branches models
p1 54 F 4 F 1064 T 13 T 1072 F 73 F 5946 T 14 T 1121
p2 314 F 9 F 1200 T 176 T 1198 F 231 F 8641 T 172 T 1219
p3 2014 F 21 F 1397 T 2183 T 1396 F 2176 F 12932 T 2194 T 1416
p4 12514 F 44 F 1790 T 24659 T 1861 F 29266 F 19026 T 24773 T 1804
p5 T.O. F 81 F 2436 T 257662 T 2359 F 104030 F 29868 T 260008 T 2229
p6 T.O. F 143 F 3093 N.A. T.O. T 3177 N.A. T.O. F 45118 N.A. T.O. T 3255

Experimental Results over Process Collaboration models
c1 1520 F 4 F 1340 T 656 T 4202 F 474 F 8592 T 449 T 4148
c2 10025 F 6 F 1585 T 3513 T 6272 F 3284 F 10955 T 3470 T 6184
c3 62250 F 8 F 1807 T 25967 T 9191 F 25339 F 13649 T 26508 T 8925
c4 371875 F 10 F 2043 T 186592 T 12728 F 185538 F 16746 T 195246 T 12382
c5 T.O. F 14 F 2306 N.A. T.O. T 16825 N.A. T.O. F 20294 N.A. T.O. T 16315
c6 T.O. F 20 F 2612 N.A. T.O. T 21887 N.A. T.O. F 24057 N.A. T.O. T 21231

all models by the LTL model checker. For such a property
the MAUDE LTL model checker is able to find a counterex-
ample by considering only a small portion of the state-space,
so we have a response on all models without ever generat-
ing their full state spaces. This is enabled by the fact that
the model checker adopts an on-the-fly approach to state-
space generation [34] where the state-space is generated at
need while performing the analysis. Apart for this property,
MULTIVESTA offers better runtime for all models withmore
than about 10000 states, and computes the correct result also
in the cases where the LTL model checker fails to complete
in the time limit. Even if not shown in the table, MULTI-
VESTA was able to analyse within the chosen time limit all
properties up to the twentieth instance of each family.
8.3. Experiments on Models from Open

Repositories
As a proof of concept, we also run a validation of the

BProVe approach onmodels from two open repositories “BPM
Academic InitiativeModel Collection”21 and “CamundaBPMN
for Research”22. We have chosen those repositories because
they have been already successfully used for validation pur-
poses elsewhere (e.g., [11, 68, 62, 43, 60]). In [17, 18] we
used the former repository to evaluate a preliminary version
of our approach and tool-chain, involving only LTL model
checking.

21https://bpmai.org/download/
22https://github.com/camunda/bpmn-for-research

We started from a set of 7639 models from the BPMAI
repository and 3739 from the Camunda repository. From
these sets we filtered out models that could hinder the va-
lidity of our experiment. Especially, we filtered out syntac-
tically invalid models and those that presented issues in the
usage of the BPMN syntax (e.g., elements drawn without a
specified source or a target, or some sequence flows crossing
pool boundaries). The sets have been reduced respectively to
6304 and 2979 models. Given that our focus is on collabora-
tionmodels, we filtered out from the remainingmodels those
with less than 5 elements (which are typically required to
form ameaningful collaboration, i.e. a pool including a start,
a message task and an end event, interacting with an empty
pool) resulting in 5336 and 2961 models. We also removed
models presenting disconnected elements (arguably they do
not represent realistic models) ending up with 4379 models
for the BPMAI repository and 2232models for the Camunda
repository. Out of the final filtered sets of models, we suc-
cessfully processed 2544 and 713 models, respectively. The
remaining models could not be handled by BProVe due to
the presence of not supported elements (e.g., timer events,
conditional events, and compensation events).

In conclusion, we analysed 3257 models which we clas-
sify in Table 6 according to the size of their state spaces. We
analysed all such models using both our analysis engines.
For each class of models, we write in column Best Analysis
Strategy the one that best performed on average as discussed
below. We note that the majority of the models were con-

F. Corradini et al.: Preprint submitted to Elsevier Page 17 of 25

https://bpmai.org/download/
https://github.com/camunda/bpmn-for-research

A Formal Approach for the Analysis of BPMN Collaboration Models

Table 6
Classification of models from open repositories according to
number of states and best performing analysis strategy.

Number
of States

Number of Models Best Analysis
StrategyBPMAI Camunda

1-99 1838 72.2% 52 7.3% LTL MC
100-999 406 16.0% 502 70.4% LTL MC

1000-9999 135 5.3% 132 18.5% LTL MC
10000-79000 37 1.5% 16 2.3% MultiVeStA

>79000 128 5.0% 11 1.5% MultiVeStA

Table 7
Percentages of the BPMAI and Camunda models satisfying the
properties.

Property BPMAI Camunda
Soundness 79,75% 57,69%

- Option To Complete 83,13% 62,25%
- Proper Completion 96,55% 95,69%
- No Dead Activities 89,48% 68,58%

Safeness 95,49% 95,25%

centrated in the first three classes 1-99, 100-999 and 1000-
9999, meaning that their state space did not pose a threat for
the LTL model checker so making it a valid option for such
models. The about 50 models with a state space of size be-
tween 10000 and 79000 could be analysed as well with the
LTL model checker, but MULTIVESTA offered smaller run-
ning times. The about 140 models with state space greater
than 79000 could not be analysed by the LTL model checker
within the time limit of 600 seconds. We deepened our anal-
ysis bymanually inspecting themodels within class>79000.
We found that all of such models, not surprisingly, presented
a high degree of parallelism resulting from the use of such
BPMN elements as AND gateways, OR gateways, and Pools
with message exchange. Given the interleaving nature intro-
duced by these elements on the resulting behaviour, mod-
els become difficult to handle using an LTL model checker
which exhaustively explore the state space. The introduction
of MULTIVESTA allowed us to provide a response also for
such kind of models. We report in Table 7 the results for the
properties verification over the analysed models of the two
open repositories.
8.4. Highlights from the Experiments

The validation performed on the synthetic models high-
lights that MULTIVESTA offers better run-time for all mod-
els with more than about 10000 states (especially those pre-
senting a high degree of parallelism), and computes the cor-
rect result also in the cases where the MAUDE LTL model
checker fails to complete in a fixed time limit. The MAUDE
LTL model checker instead performs better on sequential
models, where the usage of an on-the-fly approach to state-
space generation allows to find a counterexample by consid-
ering only a small portion of the state-space, so providing
a response without ever generating the full state space of a
model. The validation performed on the two open, widely
used repositories confirmed the advantages of having com-
plementary analysis approaches, so to enlarge the set ofmod-

els for which it is possible to get a feedback. The results thus
justify our choice of adding a statistical strategy to the analy-
sis facilities of BProVe. Furthermore, as somehow expected,
this suggests that there is not a best analysis strategy among
the two, but that they should be selected depending on the
characteristics of the considered models.

9. Related Work
The analysis of business processes is a largely investi-

gated topic, and different approaches for the analysis of BPMN
models are available in the literature (e.g., [49, 33, 32, 63]).
In this section we split the research works related to our into
two categories: i) those that map the model to another no-
tation for which analysis techniques have already been con-
solidated, and ii) those that define a custom semantics for
BPMN and that develop specific tools for the analysis.
9.1. BPMN Process Analysis via Mapping to other

Formalisms
The most common formalisations of BPMN resorting to

well-known formalisms are given through the definition of
mappings into Petri Nets [22, 38, 42, 59, 5, 71, 51, 35]. The
Petri Net resulting from the encoding of a BPMNmodel can
serve as input to a Petri Net based verification tool. The
ProM platform is probably the most used environment en-
abling such kind of strategy, since it can embed many com-
ponents adopting an encoding-based approach to verifica-
tion [23].

To analyse a BPMN model with ProM a user has to per-
form the following steps: 1. design a model with an external
tool and export it in the BPMN format; 2. import the BPMN
model into ProM, which then translates it into an internal
PROM format; 3. choose one of the mappings available in
ProM, and request the generation of the corresponding Petri
Net; 4. select the resulting Petri Net, and then choose one
of the analysis tools available in ProM (e.g. Woflan [66])
to analyse the Petri Net model; 5. read and interpret the re-
sponses from the analysis tool, which are referred to the Petri
Net model, and interpret them back on the original BPMN
model. Clearly, the most critical steps in this chain are 3,
4 and 5. Step 3 is critical due to the possible absence of a
rule in the chosen mapping for a specific BPMN element
included in the model. In such a case the tool may miss
to generate the Petri Net, or may generate a Petri Net that
defines a behaviour not fully representative of the original
model. Indeed, while for the basic BPMN modelling ele-
ments the encoding in Petri Nets is rather straightforward,
for other elements such encodings could be cumbersome and
quite challenging to define. For example, the management
of termination end events, permitting to abort a running pro-
cess, is usually not supported by such encodings. This is due
to the inherent complexity of managing non-local propaga-
tion of tokens in Petri Nets. In addition, at the time of writ-
ing, no mapping tool available in ProM is able to properly
translate BPMN Collaboration Diagrams due to the lack of
mapping rules for message exchanges. Moreover, the exis-
tence of different mappings poses the problem of choosing

F. Corradini et al.: Preprint submitted to Elsevier Page 18 of 25

A Formal Approach for the Analysis of BPMN Collaboration Models

one among them for the analysis of a given BPMN model,
or it may lead the user to make more tentatives using the var-
ious mappings, which may produce contrasting verification
results. Step 4 is critical since the possibility to define ad-
hoc properties is often limited, only general properties are
typically supported, and anyway when this is possible the
properties will refer to the elements in the Petri Net and not
to the original BPMNmodel. Step 5 is critical since, as said
above, in case of a property violation the result has to be re-
conducted to the original BPMN model directly by the user.

Other approaches are available in the literature. TheBPA
Analyzer, defined as a module for the tool PromniCAT23,
supports analysis based on BPMNmodels reported in a spe-
cific JSON format. Themodels are translated into Petri Nets,
and the LoLA analyzer is used for verifying properties ex-
pressed in CTL [29].

Corradini et al. supported business process verification
transformingBPMN1.2models into CSP specifications [20].
The solution presents an Eclipse based tool-chain BP4PA24
integrating the modelling environment with the PAT model
checker [21]. The solution has been tested on simple busi-
ness processes related to the Public Administration. Tools
supporting the transformation from BPMN to YAWL Nets
are also available. Ye and Son implemented an open-source
plug-in called BPMN2YAWL that uses ILog BPMN Mod-
eler as a graphical editor to create BPMN models, and im-
plements transformation and verification as ProM 5.0 plug-
in [72]. Both the modeler and the verification tool seem not
anymore available.

Kheldoun et al. [39, 40] proposed an encoding of BPMN
inRecursive ECATNets, expressed in terms of rewriting logic
and analysed using the MAUDE LTL model checker. Even
if we use the same model checker, the approach suffers from
the mentioned encoding problems, and does not consider
neither messages nor the event-based gateway. Moreover,
the approach is tested on three simple examples only, with-
out extensively validating it.

In summary, to the best of our knowledge, our proposal
is the only one fully satisfying the relevant features we listed
in Section 1, while all the proposals in this subsection share
to some extent the issues described for the ProM based ap-
proaches.
9.2. BPMN Process Analysis via Direct

Formalisations
Not many are the approaches that permit to directly con-

duct analysis activities over collaborations expressed with
the BPMN notation. The approach that relates the most to
our is the one proposed by Houhou S. et al. [37], and that is
supported by a tool called fbpmn25. The authors give a di-
rect formalization in First-Order Logic, which is then imple-
mented in TLA+ to enable formal verification using the TLC
model checker from the TLA+ tool box. As it is the case of
BProVe, also fbpmn allows to evaluate properties such as op-

23http://github.com/tobiashoppe/promnicat
24http://bp4pa.sourceforge.net
25https://github.com/pascalpoizat/fbpmn

tion to complete, proper completion, no dead activity, safety,
soundness and message-relaxed soundness. In addition, it
includes the possibility to select seven different communi-
cation semantics for message exchanges, feature that is not
supported in BProVe. Nevertheless, our approach supports
the user in the specification of ad-hoc properties based on
the specific scenario of the BPMN model, and it allows to
be extended to include new properties like the ones reported
in Section 4. This is not possible in fbpmn.

We tested the fbpmn tool over models of the Parallel
Branches and Process Collaboration families in Section 8.1,
focusing on those with a high number of states for which
the BProVe implementation with the LTL Model Checker
could not provide an answer. However, we have to specify
that the implementation of the BPMN semantics that stand
at the basis of the two approaches are different, so perfor-
mance can vary based on the amount of details reported in
the implementation. For instance, with respect to fbpmn,
in our semantics we have the possibility to express different
statuses for tasks (enabled, running, completed, etc.) which
allows us to express more detailed properties (e.g. impli-
cation between the execution of a task and another). This,
on the other hand, contributes to increase the state space
of a model. To provide a fair comparison between the two
tools, we selected in fbpmn the Bag communication seman-
tics, that corresponds to the one implemented in BProVe.
In addition, since the implementation of the Soundness and
Message Relaxed Soundness properties is slightly different
between the two tools, we limited our experiments to the
Safeness property. In Table 8 we reported the results for the
verification of the Safeness property obtained with fbpmn
and those obtained by the BProVe implementation based on
MULTIVESTA. The tools provided the same result for the
safeness property (in fact, all considered models are safe),
but they required different amounts of time. BProVe resulted
capable of handling models of the Parallel Branches family
always in less time then fbpmn. For the Process Collabo-
ration family, fbpmn is able to process models up to c12 in
less time than BProVe, while BProVe starts outperforming
fbpmn from model c13, thus demonstrating a better scala-
bility. Indeed, by increasing the number of parallel branches
in the former family, or the number of pools in the latter, the
verification time of fbpmn increases significantly faster than
that of BProVe.

When comparing the whole tool-chains, it is worth men-
tioning that fbpmn requires to perform several installation
steps before actually being able to use it. In addition, it
comes as a command line tool hardly usable by business
process practitioners. Our tool-chain, instead, is immedi-
ately available to the final user, who can access it from the
previously discussed web front-end. Moreover, all the com-
ponents of our tool-chain are open-source, and a full instal-
lation is provided in a downloadable virtual machine, per-
mitting to anyone to test every part of it without the need
to follow complex installation procedures. Finally, fbpmn
includes some low level technical constraints that hinder its
usability; for example, the collaboration id must be equal to

F. Corradini et al.: Preprint submitted to Elsevier Page 19 of 25

http://github.com/tobiashoppe/promnicat
http://bp4pa.sourceforge.net
https://github.com/pascalpoizat/fbpmn

A Formal Approach for the Analysis of BPMN Collaboration Models

Table 8
BProVe MultiVeStA and fbpmn results for the Safeness prop-
erty.

Model BProVe MultiVeStA fbpmn
Result Time (ms) Result Time (ms)

Parallel Branches models
p6 T 3255 T 3277
p7 T 4483 T 5550
p8 T 5648 T 12945
p9 T 7703 T 42340

Process Collaboration models
c6 T 21231 T 3589
c7 T 26596 T 4759
c8 T 33029 T 7766
c9 T 36245 T 13636
c10 T 40995 T 10749
c11 T 43654 T 18830
c12 T 45091 T 32786
c13 T 50833 T 77262
c14 T 65120 T 156696

the name of the .bpmn file, which is not common especially
with the Camunda modeler used in the fbpmn’s tool-chain.

In [70, 69] the authors present a tool,26 implemented in
Haskell, that relies on a translation from a subset of well-
formed BPMN 1.2 process diagrams to a CSP-like language
based on the Z notation. The tool permits to check message-
based properties, like consistency between BPMN diagrams
with different levels of abstraction and compatibility between
participants within a business process collaboration. The
benefits of the proposed solutionwere illustrated only through
simple scenarios, without an extensive validation like the
one we conducted on BProVe using synthetic and real-word
models. This tool, differently from BProVe, does not bring
back the verification results directly on the analysed BPMN
model. In addition, the tool usage is limited to models de-
signed with the ILOG JViews BPMN Modeler which is not
anymore available, making the comparison with this tool un-
feasible.
9.3. Detailed Comparison with Other Approaches

Table 9 reports the list of all the BPMN elements that
the various approaches are able to handle. The symbol X
means that the element is correctly represented, X* means
that the element is represented but it is mapped to its sim-
plest variant (e.g., Start Receive Message Event is mapped
and treated as a simple Start Event, User Task is mapped to a
simple Task, etc.), while a cell left blank means that the ele-
ment is not handled. ColumnsM0, M1, M2, M3 refer to four
mappings supported by ProM. M0 (Select BPMN Diagram)
is a plugin by H.M.W. Verbeek that allows ProM to convert a
BPMN file into a BPMN Diagram and then apply other plu-
gins over such representation; M1 (Convert BPMN diagram
to Petri net), M2 (Convert BPMNDiagram to Data Petri net)
andM3 (Convert BPMN to Petrinet) are plugins respectively
by D. Fahland, A. Kalenkova and D. Fahland, and R. Con-

26http://www.cs.ox.ac.uk/peter.wong/bpmn

forti, that can be used to map BPMN Diagrams into Petri
Nets. All the other approaches have been already discussed
in Sections 9.1 and 9.2. Table 9 also highlights the subset of
the supported BPMN notation. We notice that few elements
are supported by all the approaches emphasising a core set
of BPMN elements composed of None Start and None End
events; Task activities; Parallel and Exclusive gateways; and
Sequence flows. Instead, the less supported elements (that
in our table are considered by less than four approaches)
are: Signal Start and Conditional Start events; Terminate
End events; Conditional, Signal and Escalation Intermediate
events; User, Manual, Script, Service Rule Based Activities;
Data Objects; Conditional Default and Association Flows.
Overall, the table underlines the lack of a comprehensive ap-
proach supporting the whole list of elements. Our approach
performs quite well with respect to BPMN elements cover-
ing 61% of the elements in the table, and only [37] performs
better covering 68% of the elements.

Table 10 summarizes the main characteristics of the ap-
proaches relying on encodings from BPMN to another nota-
tion (under the column Encodings) and of the ones relying
on the definition of a direct semantics for BPMN (under the
column Direct Semantics). With the term Predefined Prop-
ertieswe refer to such properties that can be verified over the
encoded model; Custom Properties refers to the possibility
to verify model dependent properties and the possibility to
encode new properties; Tool Support specifies which tool,
if any, supports the approach (N.A. stands for Not Avail-
able); Diagnostic specifies how verification results are re-
ported to the user (e.g. Graphical means that a violating trace
is shown directly over the graphical representation of the an-
alyzed model); Necessary Background refers to the formal-
ism and tools required to use the approach, in the case of
BProVe some knowledge on how to compose LTL formulae
is required only for adding and verifying custom properties
that the user may want to verify over a model; Installation
Process indicates if a user has to install the tool by follow-
ing an automatic procedure, a manual procedure (meaning
that each component of the tool must be installed separately
by the end user), or if he/she does not have to install it at all;
Automated verification indicates whether the property verifi-
cation is fully automatized, meaning that only few clicks are
needed to request the property verification, or if the user has
to perform some additional steps before achieving property
verification.

For the two tables it is evident that there is not a single
best approach. A user may chose the approach based on its
main features (e.g., list of properties it can verify, possibility
to encode his/her own properties, etc.), based on the BPMN
elements used in the model, or even based on the usabil-
ity of the supporting tool. In our case, a tool like BProVe
that requires no installation for being exploited and that al-
lows for a fully automated verification of properties, hiding
the formalism which it relies on, could reasonably be con-
sidered easier to use compared to the other available tools.
Especially, BProVe may be appealing for BPM practitioners
who are not required to go through any manual installation

F. Corradini et al.: Preprint submitted to Elsevier Page 20 of 25

http://www.cs.ox.ac.uk/peter.wong/bpmn

A Formal Approach for the Analysis of BPMN Collaboration Models

Table 9
BPMN elements supported by approaches based on encodings or on direct semantics (X
stands for a correctly represented element, X* for an element represented but mapped to
its simplest variant, a blank cell for an unhandled element).

Encodings Direct Semantics
Notation Element M0 M1 M2 M3 [29] [20] [72] [39, 40] [37] [70, 69] BProVe

Start
Events

None X X X X X X X X X X X
Receive Message X X* X* X* X* X X X X X
Conditional X
Timer X X* X* X* X* X X
Signal X

End
Events

None X X X X X X X X X X X
Send Message X X* X* X* X X X X X
Terminate event X X X
Error X X* X* X* X X

Intermediate
Events

None Throwing X X X X
Message Send X X* X* X X X X X
Message Receive X X* X* X X X X X
Timer X X* X* X X X X X
Error (catch) X X X
Error (throw) X X
Conditional X
Signal X
Escalation X

Activities

Task X X X X X X X X X X X
Send X X X X X X X
Receive X X X X X X X
User X X*
Manual X X*
Script X X*
Service X X*
Rule Based X X*
Loop X X X X X X X
Multiple Instance X X* X* X* X X X
Subprocesses X X* X* X* X X* X* X X* X*

Gateways

Parallel X X X X X X X X X X X
Exclusive X X X X X X X X X X X
Inclusive (split) X X X X X X X X
Inclusive (join) X X X X X X
Event-based X X* X* X X X X X

Data Data Object X

Flows

Sequence X X X X X X X X X X X
Conditional X X X*
Default X X X*
Message X X X X X X X
Association X

Swimlanes Collaboration Pool X X X X X

or configuration steps to require and interpret the verification
of properties over their designed BPMN models.

10. Conclusions and Future Work
The wider adoption of BPMN to support the develop-

ment of software systems asks for a clearer and rigorous in-
terpretation of BPMN models, and in particular of the prop-
erties they satisfy. The adoption of formal verification con-
tributes to strivingmodel-driven software development, con-
tributing to increase software quality. The literature discusses
several approaches for BPMN verification, but available pro-
posals generally miss to consider business process collabo-
rations.

In this paper we propose the BProVe approach to sup-
port the entire model development cycle of BPMN collab-
oration models. BProVe relies on a direct formal semantics

for BPMNmodels, avoiding typical problems of approaches
based on intermediate encodings. Within the BProVe ap-
proach, both standard model checking and statistical model
checking techniques are integrated to effectively support ver-
ification. In particular, the use of statistical model checking
allows to analyse business processes whose behavior gen-
erates large state spaces that are not easily manageable by
classic exhaustive model checking techniques.

The BProVe approach has been instantiated in a com-
plete web-based tool-chain, which makes transparent to the
final user the inner formal layer. Our tool-chain overcomes
the limitation of tools available in the literature, which in
most of the cases are just prototypes mainly used for demon-
stration purposes. Indeed, some of them are not maintained
anymore, becoming practically obsolete due to the develop-
ment of new and incompatible versions of modelling envi-
ronments and programming languages.

F. Corradini et al.: Preprint submitted to Elsevier Page 21 of 25

A Formal Approach for the Analysis of BPMN Collaboration Models

Table 10
Main features of the considered analysis approaches for BPMN models.

Encodings Direct Semantics
Approach [23] [29] [20] [72] [39, 40] [37] [70], [69] BProVe

Predefined
Properties

Option to
Complete,
Proper
Completion,
No Dead
Activities

Soundness,
Weak Soundness,
RelaxedSoundness,
Dead Transitions,
Uncovered
Transitions,
Unbounded Places,
Quasi Liveness,
Liveness,
Transitioncover,
isBounded,
isCyclic,
isFreeChoice,
isExtendedFreeChoice,
isSNet,
isTnet,
isWorkflowNet

Coordination,
Control,
Sharing,
Transparency

Soundness,
Deadlock
Freedom,
No Dead
Task,
Proper
Completion,
No OR-join

Soundness,
Proper
Termination

Soundness,
Message
relaxed
Soundness,
Safeness

Absence,
Universality,
Existence,
Bounded
Existence,
Order,
Precedence,
Response,
Chain
Precedence,
Chain
Response,
Deadlock
freedom

Soundness,
Option to
Complete,
Proper
Completion,
No Dead
Activities,
Message
Relaxed
Soundness,
Safeness

Custom
Properties Supported

Tool
Support

Woflan
Plugin PromniCat Module Eclipse

Plugin N.A. N.A. Standalone N.A.
Web App,
Eclipse Plugin,
Standalone

Diagnostic Textual Textual Textual &
Graphical Textual Graphical Textual Textual &

Graphical

Necessary
Background PN, ProM PN PAT PN, ProM LTL, Maude

RECATNet Haskell CSP,
Haskell

LTL (for
custom
properties)

Installation
Process

Mandatory,
Automatic

Mandatory,
Manual

Mandatory,
Automatic

Mandatory,
Automatic

Mandatory,
Manual

Mandatory,
Manual

Mandatory,
Manual

Not
Mandatory

Automated
Verification Partial Partial Full Partial Partial Partial Partial Full

Both the approach and the tool-chain have been exten-
sively validated to assess their capabilities on realistic sce-
narios, and to possibly highlight scalability issues. Performed
experiments confirmed the opportunity to offer an integrated
verification approach providing complementary support both
to non-deterministic and to statistical verification techniques.

In the future, we plan to continue bringing forward our
program fostering the introduction of formal methods for
modelling and verification of BPMN models. In particular,
we intend to study and define structural metrics that could
permit to establish a priori which verification techniques is
the most suitable for analyzing a given BPMN model. For
instance, a metric based on the degree of parallelism could
suggest the adoption of the statistical approach.

Specification and verification of time constraints and re-
source allocation over BPMN models is certainly an inter-
esting future extension. This will asks to revise the seman-
tics, that currently does not include any information related
to quantitative aspects, and to adapt mechanisms for quanti-
tative analysis to the BPMN context.

References
[1] van der Aalst, W.M., 2000. Workflow Verification: Finding Control-

Flow Errors Using Petri-Net-Based Techniques, in: Business Process
Management. Springer. volume 1806 of LNCS, pp. 161–183.

[2] Agha, G., Palmskog, K., 2018. A Survey of Statistical Model Check-
ing. ACM Trans. Model. Comp. Simul. 28, 6:1–6:39.

[3] Agha, G.A., Meseguer, J., Sen, K., 2006. PMaude: Rewrite-based
Specification Language for Probabilistic Object Systems, in: QAPL.
Elsevier. volume 153(2) of ENTCS, pp. 213–239.

[4] Aldazabal, A., Baily, T., Nanclares, F., Sadovykh, A., Hein, C., Ritter,

T., 2008. Automated model driven development processes, in: Model
Driven Tool and Process Integration, pp. 361 – 375.

[5] Awad, A., Decker, G., Lohmann, N., 2010. Diagnosing and Repair-
ing Data Anomalies in Process Models, in: Business Process Man-
agement Workshops, Springer. pp. 5–16.

[6] Baier, C., Katoen, J.P., 2008. Principles of model checking. MIT
press.

[7] ter Beek, M.H., Legay, A., Lluch-Lafuente, A., Vandin, A., 2015.
Statistical analysis of probabilistic models of software product lines
with quantitative constraints, in: Proceedings of the 19th International
Conference on Software Product Line, 2015, pp. 11–15.

[8] ter Beek, M.H., Legay, A., Lluch-Lafuente, A., Vandin, A., 2016. Sta-
tistical Model Checking for Product Lines, in: Leveraging Applica-
tions of Formal Methods, Verification and Validation: Foundational
Techniques - 7th International Symposium, pp. 114–133.

[9] Belzner, L., De Nicola, R., Vandin, A., Wirsing, M., 2014. Reason-
ing (on) service component ensembles in rewriting logic, in: Speci-
fication, Algebra, and Software. Springer. volume 8373 of LNCS, pp.
188–211.

[10] Bentea, L., Ölveczky, P.C., 2012. A Probabilistic Strategy Language
for Probabilistic Rewrite Theories and Its Application to Cloud Com-
puting, in: WADT, pp. 77–94.

[11] Bergmann, R., Müller, G., 2018. Similarity-based retrieval and au-
tomatic adaptation of semantic workflows, in: Synergies Between
Knowledge Engineering and Software Engineering. Springer. volume
626 of AISC, pp. 31–54.

[12] Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin,
A., 2015. Modelling and analyzing adaptive self-assembly strategies
with maude. Sci. Comput. Program. 99, 75–94.

[13] Campos, A.L., Oliveira, T., 2013. Software processes with bpmn: an
empirical analysis, in: International Conference on Product Focused
Software Process Improvement, Springer. pp. 338–341.

[14] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer,
J., Talcott, C., 2007. All about MAUDE - a high-performance logical
framework: how to specify, program and verify systems in rewriting
logic. volume 4350 of LNCS. Springer.

[15] Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., 2018. A formal

F. Corradini et al.: Preprint submitted to Elsevier Page 22 of 25

A Formal Approach for the Analysis of BPMN Collaboration Models

approach to modeling and verification of business process collabora-
tions. Science of Computer Programming 166, 35–70.

[16] Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., 2019. Re-
PROSitory: a Repository Platform for Sharing Business PROcess
modelS, in: Proceedings of the Dissertation Award, Doctoral Con-
sortium, and Demonstration Track at BPM 2019, pp. 149–153.

[17] Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., Vandin, A.,
2017a. BProVe: a formal verification framework for business pro-
cess models, in: Automated Software Engineering, IEEE Computer
Society. pp. 217–228.

[18] Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., Vandin, A.,
2017b. BProVe: tool support for business process verification, in:
Proceedings of the 32nd IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2017, Urbana, IL, USA, October
30 - November 03, 2017, pp. 937–942.

[19] Corradini, F., Morichetta, A., Muzi, C., Re, B., Tiezzi, F., 2021. Well-
structuredness, safeness and soundness: A formal classification of
bpmn collaborations. Journal of Logical and Algebraic Methods in
Programming 119, 100630.

[20] Corradini, F., Polini, A., Polzonetti, A., Re, B., 2010a. Business Pro-
cesses Verification for e-Government Service Delivery. Information
Systems Management 27, 293–308.

[21] Corradini, F., Polzonetti, A., Re, B., Falcioni, D., 2010b. An
ECLIPSE Plug-In for Formal Verification of BPMN Processes, in:
Communication Theory, Reliability, and Quality of Service, IEEE.
pp. 144–149.

[22] Dijkman, R.M., Dumas, M., Ouyang, C., 2008. Semantics and anal-
ysis of business process models in BPMN. Information and Software
Technology 50, 1281–1294.

[23] van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters,
A.J.M.M., van der Aalst, W.M.P., 2005. The ProM Framework: A
New Era in Process Mining Tool Support, in: Applications and The-
ory of Petri Nets. Springer. volume 3536 of LNCS, pp. 444–454.

[24] D’silva, V., Kroening, D., Weissenbacher, G., 2008. A survey of au-
tomated techniques for formal software verification. Transactions on
Computer-AidedDesign of Integrated Circuits and Systems 27, 1165–
1178.

[25] Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A., 2018. Funda-
mentals of Business Process Management. 2nd edition ed., Springer.

[26] Dumas, M., Pfahl, D., 2016. Modeling software processes using
bpmn: When and when not?, in: Managing Software Process Evo-
lution. Springer, pp. 165–183.

[27] Dumas, M., Rosa, M.L., Mendling, J., Mäesalu, R., Reijers, H.A.,
Semenenko, N., 2012. Understanding business process models:
The costs and benefits of structuredness, in: Ralyté, J., Franch, X.,
Brinkkemper, S., Wrycza, S. (Eds.), Advanced Information Systems
Engineering - 24th International Conference, CAiSE 2012, Gdansk,
Poland, June 25-29, 2012. Proceedings, Springer. pp. 31–46.

[28] Eckhardt, J., Mühlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.,
2012. Stable Availability under Denial of Service Attacks through
Formal Patterns, in: FASE 2012, Springer. pp. 78–93.

[29] Eid-Sabbagh, R.H., Hewelt, M., Weske, M., 2013. A Tool for Busi-
ness Process Architecture Analysis, in: Service-Oriented Computing.
Springer. volume 8274, pp. 688–691.

[30] Eker, S., Meseguer, J., Sridharanarayanan, A., 2004. The Maude LTL
model checker. ENTCS 71, 162–187.

[31] El-Saber, N., Boronat, A., 2014. BPMN Formalization and Ver-
ification using Maude, in: Workshop on Behaviour Modelling-
Foundations and Applications, ACM. pp. 1–12.

[32] Fellman, M., Zasada, A., 2014. State-of-the-Art of Business Process
Compliance Approaches: A Survey, in: Information Systems.

[33] Groefsema, H., Bucur, D., 2013. A survey of formal business process
verification: From soundness to variability, in: Business Modeling
and Software Design, pp. 198–203.

[34] Grumberg, O., Peled, D.A., Clarke, E., 1999. Model checking.
[35] Heinze, T.S., Amme, W., Moser, S., 2018. Static analysis and process

model transformation for an advanced business process to petri net
mapping. Software: Practice and Experience 48, 161–195.

[36] Hesenius, M., Usov, A., Rink, C., Schmidt, D., Gruhn, V., 2019. A
flexible platform architecture for the dynamic composition of third-
party-services, in: Proceedings - 2019 IEEE International Conference
on Software Architecture - Companion, ICSA-C 2019, pp. 210–217.

[37] Houhou, S., Baarir, S., Poizat, P., Quéinnec, P., 2019. A First-Order
Logic Semantics for Communication-Parametric BPMN Collabora-
tions, in: Business Process Management - 17th International Confer-
ences. Springer. volume 11675 of LNCS, pp. 52–68.

[38] Huai, W., Liu, X., Sun, H., 2010. Towards Trustworthy Composite
Service Through Business Process Model Verification, in: Ubiqui-
tous Intelligence & Computing and Autonomic & Trusted Comput-
ing, IEEE. pp. 422–427.

[39] Kheldoun, A., Barkaoui, K., Ioualalen, M., 2015. Specification and
Verification of Complex Business Processes - AHigh-Level Petri Net-
Based Approach, in: Business Process Management. Springer. vol-
ume 9253 of LNCS, pp. 55–71.

[40] Kheldoun, A., Barkaoui, K., Ioualalen, M., 2017. Formal verification
of complex business processes based on high-level Petri nets. Infor-
mation Sciences 385-386, 39–54.

[41] Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J., 2000. On
structured workflow modelling, in: CAISE. Springer. volume 1789
of LNCS, pp. 431–445.

[42] Koniewski, R., Dzielinski, A., Amborski, K., 2006. Use of Petri Nets
and Business Processes Management Notation inModelling and Sim-
ulation of Multimodal Logistics Chains, in: Modeling and Simula-
tion, pp. 28–31.

[43] Lapeña, R., Font, J., Cetina, C., Pastor, Ó., 2018. Exploring New Di-
rections in Traceability Link Recovery in Models: The Process Mod-
els Case, in: CAISE. Springer. volume 10816 of LNCS, pp. 359–373.

[44] Law, A.M., Kelton, D.M., 2015. Simulation Modeling and Anal-
ysis. 5th ed., McGraw-Hill Higher Education, http://www.averill-
law.com/simulation-book/.

[45] Legay, A., Delahaye, B., Bensalem, S., 2010. Statistical Model
Checking: An Overview, in: Proceedings of the 1st International
Conference on RuntimeVerification. Springer. volume 6418 of LNCS,
pp. 122–135.

[46] Legay, A., Lukina, A., Traonouez, L., Yang, J., Smolka, S.A., Grosu,
R., 2019. Statistical Model Checking, in: Computing and Software
Science: State of the Art and Perspectives. Springer. volume 10000
of LNCS, pp. 478–504.

[47] Li, J., Jeffery, R., Fung, K.H., Zhu, L., Wang, Q., Zhang, H., Xu,
X., 2012. A Business Process-Driven Approach for Requirements
Dependency Analysis, in: Business Process Management. Springer.
volume 7481 of LNCS, pp. 200–215.

[48] Lindsay, A., Downs, D., Lunn, K., 2003. Business processes - at-
tempts to find a definition. Information and Software Technology 45,
1015–1019.

[49] Morimoto, S., 2008. A Survey of Formal Verification for Business
ProcessModeling, in: Computational Science. Springer. volume 5102
of LNCS, pp. 514–522.

[50] Muehlen, M.Z., Recker, J., 2008. How Much Language Is Enough?
Theoretical and Practical Use of the Business Process Modeling No-
tation, in: Advanced Information Systems Engineering. Springer. vol-
ume 5074 of LNCS, pp. 465–479.

[51] Mutarraf, U., Barkaoui, K., Li, Z., Wu, N., Qu, T., 2018. Transforma-
tion of Business Process Model and Notation models onto Petri nets
and their analysis. Advances in Mechanical Engineering 10, 1–21.

[52] OMG, 2011. Business Process Model and Notation (BPMN 2.0).
URL: https://www.omg.org/spec/BPMN/2.0/.

[53] Pastor, O., 2017. Model-Driven Development in Practice: From Re-
quirements to Code, in: Theory and Practice of Computer Science.
Springer. volume 10139 of LNCS, pp. 405–410.

[54] Pianini, D., Sebastio, S., Vandin, A., 2014. Distributed statistical
analysis of complex systems modeled through a chemical metaphor,
in: International Conference on High Performance Computing &
Simulation, pp. 416–423.

[55] Pnueli, A., 1977. The temporal logic of programs, in: Foundations of
Computer Science, IEEE. pp. 46–57.

F. Corradini et al.: Preprint submitted to Elsevier Page 23 of 25

https://www.omg.org/spec/BPMN/2.0/

A Formal Approach for the Analysis of BPMN Collaboration Models

[56] Polyvyanyy, A., Bussler, C., 2013. The Structured Phase of Concur-
rency, in: Seminal Contributions to Information Systems Engineer-
ing, 25 Years of CAiSE. Springer, pp. 257–263.

[57] Polyvyanyy, A., García-Bañuelos, L., Dumas, M., 2012. Structuring
acyclic process models. Information Systems 37, 518–538.

[58] Polyvyanyy, A., Garcia-Banuelos, L., Fahland, D., Weske, M., 2014.
Maximal Structuring of Acyclic ProcessModels. The Computer Jour-
nal 57, 12–35.

[59] Ramadan, M., Elmongui, H.G., Hassan, R., 2011. BPMN formalisa-
tion using coloured petri nets, in: Software Engineering & Applica-
tions, ACTA.

[60] Schoknecht, A., Oberweis, A., 2017. LS3: Latent Semantic Analysis-
based Similarity Search for Process Models. Enterprise Modelling
and Information Systems Architectures 12, 2–1.

[61] Sebastio, S., Vandin, A., 2013. MultiVeStA: Statistical model check-
ing for discrete event simulators, in: Performance EvaluationMethod-
ologies and Tools, ICST/ACM. pp. 310–315.

[62] Skouradaki, M., Göerlach, K., Hahn, M., Leymann, F., 2015. Ap-
plication of sub-graph isomorphism to extract reoccurring structures
from BPMN 2.0 process models, in: Service-Oriented System Engi-
neering, IEEE. pp. 11–20.

[63] Souri, A., Navimipour, N.J., Rahmani, A.M., 2018. Formal verifi-
cation approaches and standards in the cloud computing: a compre-
hensive and systematic review. Computer Standards & Interfaces 58,
1–22.

[64] Tan, W., Fan, Y., Ghoneim, A., Hossain, M.A., Dustdar, S., 2016.
From the service-oriented architecture to the web api economy. IEEE
Internet Computing 20, 64–68.

[65] de Vasconcelos, A.M., de la Vara, J.L., Sanchez, J., Pastor, O., 2012.
Towards CMMI-compliant Business Process-Driven Requirements
Engineering, in: Quality of Information and Communications Tech-
nology, IEEE. pp. 193–198.

[66] Verbeek, H.M.W., Basten, T., van der Aalst, W.M.P., 2001. Diagnos-
ing Workflow Processes using Woflan. Comput. J. 44, 246–279.

[67] Weske, M., 2012. Business Process Management - Concepts, Lan-
guages, Architectures, 2nd Edition. Springer.

[68] Wiśniewski, P., Ligkeza, A., 2018. Constraint-Based Identification
of Complex Gateway Structures in Business Process Models, in: Ar-
tificial Intelligence and Soft Computing. Springer. volume 10842 of
LNCS, pp. 788–798.

[69] Wong, P.Y., Gibbons, J., 2011. Formalisations and applications of
BPMN. Science of Computer Programming 76, 633–650.

[70] Wong, P.Y.H., Gibbons, J., 2008. A Process Semantics for BPMN, in:
FormalMethods and Software Engineering. Springer. volume 5256 of
LNCS, pp. 355–374.

[71] Xiu, P., Zhao, W., Yang, J., 2017. Correctness Verification for
Service-Based Business Processes, in: Web Services, IEEE. pp. 752–
759.

[72] Ye, J., Song, W., 2010. Transformation of BPMN diagrams to YAWL
nets. J. Softw. 5, 396–404.

F. Corradini et al.: Preprint submitted to Elsevier Page 24 of 25

A Formal Approach for the Analysis of BPMN Collaboration Models

A. Full Specification of the Running Example in MAUDE
We report in Listing 14 the full MAUDE specification of our running example.

collaboration(

pool("Customer" ,

proc({emptyAction}

startRcv(enabled , "SequenceFlow_11" . 0 , "Offer" .msg 0) |

task(disabled , "SequenceFlow_11" . 0 , "SequenceFlow_12" . 0 , "Check Offer") |

xorSplit("SequenceFlow_12" . 0 , edges("SequenceFlow_13" . 0 and "SequenceFlow_14" . 0)) |

taskSnd(disabled , "SequenceFlow_13" . 0 , "SequenceFlow_15" . 0 , "Rejection" .msg 0 , "Reject Offer") |

end("SequenceFlow_15" . 0) |

taskSnd(disabled , "SequenceFlow_14" . 0 , "SequenceFlow_16" . 0 , "Travel" .msg 0 , "Book Travel ") |

interRcv(disabled , "SequenceFlow_16" . 0 , "SequenceFlow_17" . 0 , "Confirmation" .msg 0) |

taskSnd(disabled , "SequenceFlow_17" . 0 , "SequenceFlow_18" . 0 , "Payment" .msg 0 , "Pay Travel ") |

interRcv(disabled , "SequenceFlow_18" . 0 , "SequenceFlow_19" . 0 , "Payment Confirmation" .msg 0) |

end("SequenceFlow_19" . 0)) ,

in: "Offer" .msg 0 andmsg "Confirmation" .msg 0 andmsg "Payment Confirmation" .msg 0 andmsg emptyMsgSet ,

out: "Rejection" .msg 0 andmsg "Travel" .msg 0 andmsg "Payment" .msg 0 andmsg emptyMsgSet) |

pool("Travel Agency" ,

proc({emptyAction}

start(enabled , "SequenceFlow_21" . 0) |

taskSnd(disabled , "SequenceFlow_21" . 0 , "SequenceFlow_22" . 0 , "Offer" .msg 0 , "Make Travel Offer") |

eventSplit("SequenceFlow_22" . 0 , eventRcvSplit(

eventInterRcv(disabled , "SequenceFlow_23" . 0 , "Travel" .msg 0) |

eventInterRcv(disabled , "SequenceFlow_24" . 0 , "Rejection" .msg 0))) |

taskSnd(disabled , "SequenceFlow_23" . 0 , "SequenceFlow_25" . 0 , "Confirmation" .msg 0 , "Confirm Booking ") |

interRcv(disabled , "SequenceFlow_25" . 0 , "SequenceFlow_26" . 0 , "Payment" .msg 0) |

taskSnd(disabled , "SequenceFlow_26" . 0 , "SequenceFlow_27" . 0 , "Order" .msg 0 , "Order Ticket ") |

end("SequenceFlow_27" . 0) | end("SequenceFlow_24" . 0)) ,

in: "Travel" .msg 0 andmsg "Rejection" .msg 0 andmsg "Payment" .msg 0 andmsg emptyMsgSet ,

out: "Offer" .msg 0 andmsg "Confirmation" .msg 0 andmsg "Order" .msg 0 andmsg emptyMsgSet) |

pool("Airline Process" ,

proc({emptyAction}

startRcv(enabled , "SequenceFlow_30" . 0 , "Order" .msg 0) |

task(disabled , "SequenceFlow_30" . 0 , "SequenceFlow_31" . 0 , "Handle Payment ") |

xorSplit("SequenceFlow_31" . 0 , edges("SequenceFlow_32" . 0 and "SequenceFlow_33" . 0)) |

taskSnd(disabled , "SequenceFlow_32" . 0 , "SequenceFlow_34" . 0 , "Payment Confirmation" .msg 0 , "Confirm Payment ") |

end("SequenceFlow_34" . 0) | end("SequenceFlow_33" . 0)) ,

in: "Order" .msg 0 andmsg emptyMsgSet ,

out: "Payment Confirmation" .msg 0 andmsg emptyMsgSet))

Listing 14: Full specification in MAUDE of the running example

F. Corradini et al.: Preprint submitted to Elsevier Page 25 of 25

