
User Plane Function Offloading in P4 switches for
enhanced 5G Mobile Edge Computing

Francesco Paolucci∗, Davide Scano†, Filippo Cugini∗, Andrea Sgambelluri†,
Luca Valcarenghi†, Carlo Cavazzoni‡, Giuseppe Ferraris‡, Piero Castoldi†

∗CNIT, Pisa, Italy. †Scuola Superiore Sant’Anna, Pisa, Italy. ‡Telecom Italia, Turin, Italy
∗Corresponding author: francesco.paolucci@cnit.it

Abstract—This demo shows a 5G X-haul testbed enhanced
with P4 switches implementing the offloading of the User
Plane Function module. The P4 code includes GTP protocol
encapsulation/decapsulation function, fully configurable N3-N6-
N9 steering, and advanced online monitoring of the experienced
latency metadata.

Index Terms—P4, SDN, UPF, offloading, BMv2, beyond-5G.

I. INTRODUCTION

In the foreseen edge cloud architecture, selected 5G func-
tions in the Multi-access Edge Computing (MEC) may be of-
floaded to dedicated programmable hardware, or, alternatively,
to a programmable network device already existing in the 5G
infrastructure (e.g., a programmable switch). Such function
offloading strategies are of extreme interest for the deployment
of 5G and beyond networks, where the overall offered network
capacity will need to sustain extremely low latencies, not
always achievable through software virtualizations at the IT
platforms (edge, cloud). To this goal, the Software Defined
Networking (SDN) network programmability at the data plane
level, resorting to the platform-agnostic and high-level P4
language, may play a key role to enable 5G functions directly
inside SDN network devices [1]. Recent research trends are
exploring selected hardware offloading solutions. For example,
FPGA implementation of offloading the GPRS Tunnelling
Protocol (GTP) function in the MEC platforms are proposed
in [2], or slicing solution based on programmable switch in [3]
and, finally, stateless translations of GTP protocol in Segment
Routing version 6 in [4]. Offloading of 5G virtualised Radio
Access Network (vRAN) functions to programmable hardware
has been also proposed [5].

In this demo, an implementation of UPF offloaded in a P4
switch running on the Behavioral Model version 2 (BMv2) [6]
is shown. The demonstration includes the description of the
main functions implemented at the UPF P4 switch: 1) the GTP
User plane (GTP-U) encapsulation/decapsulation functions, 2)
the automatic forwarding and steering functions serving all
the required UPF interfaces resorting to simple flow entry
configurations, 3) the configurable monitoring of selected GTP
flows performance such as the online latency experienced at

This paper has been supported by TIM under the cooperation agreement
with Scuola Superiore Sant’Anna for the 5G MISE trial in Bari and Matera
2018-2022, and by the BRAINE Project, funded by ECSEL Joint Undertaking
under grant agreement No. 876967. This paper was carried out in the frame-
work of the Department of Excellence in Robotics and Artificial Intelligence
funded by MIUR to Scuola Superiore Sant’Anna.

gNodeB UPF

Data Net Data Net

UPF

N3

GTP

N9

GTP

N6

IP

N6
IP

access edge cloud center cloud

�����

���

��

�	
��
�	

��

�	
��
�	

��

�����

���

��

�	
��
�	

��

�	
��
�	

��

Fig. 1. Functional view of the User Plane Function: interfaces and connec-
tivity in the 5G architecture.

the switch. The same P4 code is utilized to deploy different
P4 switch in a comprehensive network testbed to demonstrate
the efficiency and the versatility of the UPF offload functions.
During the demo, scalability performance are shown through
latency monitoring when a high amount of 5G traffic flows
are enforced.

II. P4 USER PLANE FUNCTION

Fig. 1 shows the UPF functional view in the 5G MEC
architecture. Typically, UPF is implemented as a cloud/edge
application (running as a virtual machine or a container in
the IT space). The main role of the UPF is to map incoming
and outgoing traffic connecting distributed gNodeB and the
gateways to the edge-cloud segment and the metro/transport
network. To guarantee the correct mapping between IP flows
and the selected gNodeB in both downlink and uplink direc-
tions, each IP or layer-4 flow needs to be mapped in a GTP
tunnel to reach the desired gNodeB, where the 5G stack will
be applied to exploit the radio link to the mobile end user.
Moreover, in the case of multiple gateways, as depicted in
Fig. 1, different GTP tunnels are configured and swapped at
each hop to map the correct destination gateway address. The
interfaces involved in the GTP-U mapping and de-mapping
operations are the following:

• Interface N6, connecting the Data Net to the first UPF
gateway, carrying IP packets;

• Interface N3, connecting the gNodeB to the UPF, carrying
GTP-U tunnelled packets;

• Interface N9, connecting different UPFs, carrying GTP-U
tunnelled packets.

2021 17th International Conference on the Design of Reliable Communication Networks (DRCN)

978-1-6654-2234-5/20/$31.00 ©2021 IEEE

20
21

 1
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 th
e

D
es

ig
n

of
 R

el
ia

bl
e

C
om

m
un

ic
at

io
n

N
et

w
or

ks
 (D

R
C

N
) |

 9
78

-1
-6

65
4-

22
34

-5
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

R
C

N
51

63
1.

20
21

.9
47

73
38

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on August 16,2021 at 13:06:50 UTC from IEEE Xplore. Restrictions apply.

�� �� ��

�� �� ��

Fig. 2. Excerpts of UPF P4 code: GTP encap table (a), GTP encap action(b)(c), GTP decap (d), GTP tunnel swap (e), monitoring report header insertion (f).

III. GTP-U ENCAPSULATION AND DECAPSULATION

In this section we describe the key parts of the P4 code
utilized to implement the UPF GTP-U encapsulation and de-
capsulation. The code includes the Protocol header definitions
(i.e., Ethernet, IP, UDP and GTP), the protocol parsers, the
pipelines with flow tables ad actions.

All the involved protocol headers are defined in the code.
By default, Ethernet is parsed and, in the case of IP header
(checked by means of the ether type field), the IP header is
parsed as well. The code includes also the definition of the
standard UDP and GTP protocol headers. Fig. 2(a) shows
an excerpt of the implemented ingress pipeline. Table ta-
ble encap gtp selects the IP flows to be GTP-encapsulated and
performs packet encapsulation. The execution of this table is
conditional, performed only if the incoming packet is not GTP-
encapsulated (i.e., a standard IP or UDP packet). The match
is performed against the IP addresses and the protocol type.
Additional and finer matches are here possible (e.g., layer-
4 protocol port) and the possible actions are encap gtp and
NoAction. Fig. 2(b) and (c) show the definition of the encapsu-
lation action. Basically, a novel header set (IP+UDP+GTP) is
created in the original packet, resorting to the P4 extra header
handling feature. In the action, the setValid() P4 command
allows to create a new header that will be inserted in the
last offset position pointed by the BMv2 deparser (i.e., old
IP header). In the same action, all the novel headers fields are
updated. In particular specific fields are updated as parameters
configurable through flow entry: the GTP gateways as IP
addresses at the IP layer and the TEID value at the GTP layer.

Decapsulation is performed as follows. In the case of a GTP-
U encapsulated packet received by the switch, the pipeline
switches the packet to the table decap gtp table, triggering
the decap gtp action, both shown in Fig. 2(d). The action sets
the headers of the GTP stack as invalid, thus imposing their
removal from the packet. Preliminary encap/decap latency

chain performance results on the BMv2 soft switch are shown
in Fig. 3(a) and (b) under constant bit rate traffic scenario, in
terms of SDN scalability, i.e., number of flow entries (range
1-10k) and GTP-U offload impact (F+GTP) with respect to
baseline forwarding (F) at different packet lengths (128 and
1200 byte). Results show that in the P4 switch working
range the full encap/decap latency is around 200µs, practically
constant with respect to the flow entry size and with limited
impact with respect to basic forwarding operation.

IV. FULL UPF STEERING AND MONITORING

Besides tunnelling, the P4-based UPF includes traffic steer-
ing options for each possible functional interface pair (N3,
N6, N9) targeting a flow-based design decoupled from the
particularly considered network interface, in order to meet the
independency between logical and physical interfaces, ready
for slicing-based solutions. To allow all the steering options,
forwarding actions (output port selection) have been included
in the existing encap and decap tables, utilizing the same flow
match policies used for GTP operation (i.e., IP addresses+
IP protocol match). This way, the match is independent from
the input network interface and includes the N6-N9 and N6-
N3 GTP sessions. The general design of the ingress pipeline
is unchanged. However, as shown in Fig. 2(e), we modify
the structure of table table decap gtp, defining two mutually
exclusive actions: the existing decap gtp action providing
decapsulation and a novel set output change teid action. The
new action performs two operations: sets the forwarding output
port (standard metadata.egress spec) and swaps the existing
GTP TEID with the TEID value of the new GTP tunnel,
provided as parameter through flow entry. This simple action
implements the N3-N9 swap between two GTP tunnels.

The P4 switch has the capability to extract selected packet
metadata conveying monitoring information, such as the
packet timestamp, the packet hop latency and other switch

2021 17th International Conference on the Design of Reliable Communication Networks (DRCN)

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on August 16,2021 at 13:06:50 UTC from IEEE Xplore. Restrictions apply.

UPF1 UPF2 UPF3

N3

N9

N6 N6

N6

gNB

Mellanox

F1 F2

F3

mon
mon

teid 1
teid 2 teid 3

Report Interpreter

Grafana
0

100

200

300

400

500

600

0 200 400 600 800 1000 1200

E
2

E
 l
a

te
n
c
y

(u
s
)

Load (Mbps)

F-128 F+GTP-128 F-1200 F+GTP-1200

0

100

200

300

400

500

600

0 200 400 600 800
E

2
E

 l
a

te
n
c
y
 (

u
s
)

Load (Mbps)

1 10 100 1000 10k

a)

b)

c)

Fig. 3. P4 UPF: scalability (a), GTP impact versus baseline forwarding (b), testbed for the offloading demo (c).

parameter states. In this demo, we target the hop latency as
a key monitoring parameter. The latency experienced at each
UPF is a key metric for 5G infrastructures SLA. Thus, instead
of using external generator/analyzers, we rely on extended
P4 switches to extract latency directly. The implementation
is based on postcard-based telemetry, a method used to
extract features at each network node and provide results to a
collector using a dedicated monitoring interface. The postcard-
based telemetry has a simple implementation effort, since no
complex in-band telemetry (INT) solutions are required.

The code selects the flows to be monitored through specific
flow entry. Then, selected packets are mirrored to a monitor-
ing interface. After mirroring, packets are transformed into
Telemetry Report packets including the performance feature
(e.g., the hop latency), see Fig. 2(e). Telemetry Report have
been defined by the P4 consortium and the implementation is
compliant with P4 INT specifications version 1.

V. P4-BASED DEMO

The experimental demo showing the implemented P4 BMv2
switch employing UPF steering and monitoring functions
is hereafter reported. The P4 code has been implemented,
evaluated and validated over the BMv2 software switch [6],
following the v1 model abstract model. The evaluation aims
to validate the steering and provide the monitoring platform
showing live monitored data (in particular, the live latency
experienced at each switch by selected traffic flows). The
validations are performed at the SSSA lab premises, utilizing
BMv2 over bare metal Dell servers (Intel Xeon E5-2643 v3 6-
core, 3.40GHz, 32GB RAM), connected by means of Gigabit
Ethernet interfaces. Three UPF with the same implemented
P4 code are deployed. Traffic flows are generated by the
Spirent N4U. Bidirectional flows F1-F2 implement the N6-
N3-N6 path, while F1-F3 follow the N6-N3-N9-N6 path.
The topology includes all the UPF interfaces and directions
(N3, N6, N9) to evaluate the steering and a Mellanox switch
acts as a gNB transparent node. Monitoring interfaces are

connected to a collector server running a python-based app.
The app performs report packet dissection, timestamps extrac-
tion and hop latency computation. The hop latency is then
associated with the switch id and the flow id of the report
packet and stored in a InfluxDB database for Grafana GUI
online visualization. The demo includes also a live evaluation
of the scalability of the whole system, injecting a variable
number of flow entries related to multiple GTP flows to
evaluate the performance in terms of sustained throughput
and transit latency. All the UPF steering directions have been
validated and the Grafana shows the online hop latency for
the selected flows (N3, N6, N9), successfully validating the
P4 switch code. Such metadata info may be exploited by the
SDN controller, in the case of excessive monitored values,
to perform proactive GTP reconfigurations in order to meet
SLA latency requirements. Note that each flow and interface
may be easily reconfigured just resorting to online flow entry
enforcement, without affecting the P4 code and the processing
of other flows.

REFERENCES

[1] F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F. Cugini, and
P. Castoldi, “P4 Edge Node enabling Stateful Traffic Engineering and
Cyber Security,” IEEE/OSA Journal of Optical Communications and
Networking, vol. 11, no. 1, pp. A84–A95, Jan. 2019.

[2] C. Shen, D. Lee, C. Ku, M. Lin, K. Lu, and S. Tan, “A programmable
and fpga-accelerated gtp offloading engine for mobile edge computing in
5g networks,” in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications Workshops, 2019, pp. 1021–1022.

[3] R. Ricart-Sanchez, P. Malagon, J. M. Alcaraz-Calero, and Q. Wang,
“P4-netfpga-based network slicing solution for 5g mec architectures,”
in 2019 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), 2019, pp. 1–2.

[4] C. Lee, K. Ebisawa, H. Kuwata, M. Kohno, and S. Matsushima, “Perfor-
mance evaluation of gtp-u and srv6 stateless translation,” in 2019 15th
International Conference on Network and Service Management (CNSM),
2019, pp. 1–6.

[5] F. Civerchia, M. Pelcat, L. Maggiani, K. Kondepu, P. Castoldi, and
L. Valcarenghi, “Is opencl driven reconfigurable hardware suitable for
virtualising 5g infrastructure?” IEEE Transactions on Network and Ser-
vice Management, vol. 17, no. 2, pp. 849–863, 2020.

[6] BMv2: https://github.com/p4lang/behavioral-model.

2021 17th International Conference on the Design of Reliable Communication Networks (DRCN)

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on August 16,2021 at 13:06:50 UTC from IEEE Xplore. Restrictions apply.

		2021-07-10T09:10:29-0400
	Certified PDF 2 Signature

