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Abstract: A programmable P4 node performing neural network acceleration is demonstrated. The 

node implements both traffic feature extraction and neural networking computations. Cyber security 

use case targeting DDoS attack detection is deployed. 
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1. Introduction 

Bringing in-network Artificial Intelligence (AI) is hot topic in the development of cloud and edge nodes capable of 

performing high-speed forwarding. The idea of offloading specific functions to intelligent Software Defined 

Networking (SDN) devices is nowadays reaching a consensus, especially targeting packet-optical edge and 5G 

scenarios. In these cases, a number of functions related to traffic tagging, encryption, tunnelling, monitoring, and 

security can significantly benefit from programmable resources of a network element (switch pipeline, network 

interface card – NIC), thus reducing dedicated CPU resources as well as network latency/jitter due to virtualization 

and CPU/storage resource contention. 

However, so far, AI acceleration has been delegated to specific hardware platforms, programmed independently 

with AI-specific languages and libraries (e.g., PyTorch and TensorFlow).  

The P4 language, the de-facto SDN data plane programmability language, besides edge network telemetry [1], 

provides stateful processing [2] and computation capabilities. Such potentials can be exploited to define and 

implement a neural network inside a programmable SDN switch, regardless of the hardware platform used to deploy 

the switch. This means that the P4 SDN framework can be used as a unified programming language for both 

forwarding and AI elaborations. Moreover, the P4 capabilities to create and update selected features used for the neural 

network are numerous. For example, all the packet protocol layer header fields, but also specific metadata referred to 

traffic statistics or event occurrences may be utilized by the P4 switch as an input to a neural network running inside 

the same switch. Finally, leveraging on wire-speed programmable P4 ASICs has the potential to guarantee 

unprecedented performance to AI acceleration. So far, a pioneering preliminary proposal to apply P4 for AI has been 

considered in the Network Interface Cards (NIC) using simplified binary neural networks [3]. 

In this demo, we show an implementation of a neural network based on int8 elements running inside a P4 switch 

suitable for edge networking. The considered use case is cyber security, where the switch is able to tag malicious 

traffic referred to a number of different attack types, including distributed denial of service (DDoS) attacks. 

2. Demo overview 

Fig. 1 depicts the functional scheme of a P4 switch implementing a neural network. Besides the implementation of 

the required Layer 1-7 network headers (e.g., Ethernet, IP, TCP), the ingress switch pipeline has been selected as the 

candidate section where to implement the neural network. When the packet enters the switch, it is first parsed to extract 

all the required protocol header values. Then, all the packet features required by the neural network, enclosed within 

a P4 packet metadata structure, called nn_meta, are updated for the considered packet. The features may be stateless 

(e.g., packet header field) or stateful (e.g., cumulated statistics referred to a set of traffic packets previously processed). 

In the case of stateful features, P4 enables the utilization of registers and counters that may be allocated and updated 

upon packet processing. The feature updates are triggered by matching the desired traffic flows within a number N of 

dedicated flow tables. At the end of update, the nn_meta instance encloses all the packet features required by the 

neural network and the packet is subject to the neural network. More precisely, the nn_meta set is submitted to a macro 

action that implements the neural network. 

The neural network is implemented as 3 layers of neurons. Each neuron is defined in the nn_meta as an int8 element. 

At the first layer, each related neuron output is computed as the weighted sum of all the inputs followed by an 

activation function, the rectified linear unit (ReLU) which simply sets all negative values to zero. At the other layers, 

each neuron output is subject to the same operations using the output values of the last layer, using different weights. 

Each neural network weight, used to determine whether an input stimulus is excitatory or inhibitory, is a parameter of 

the macro action and is submitted as control plane flow entry. The last layer produces the outputs of the neural network, 

that will be written again in the nn_meta instance. In the considered implementation use case, the output is boolean 

and identifies benign and attack packets. This way, a last flow table called enforcer matches the neural network output 



value imposing, e.g., different forwarding to the packets, thus realizing online segregation between benign traffic and 

attack traffic, which will be diverted to a specific out-of-band output interface for further traffic analysis and for 

dropping operation.  

The demo will show the detailed implementation of the node, including the key P4 code sections, along with a live 

lab session. The live session will include a traffic source generating a portion of the traffic traces obtained by the 

UNSW-NB15 Network Intrusion Detection data set, the data set utilized to perform the training of the P4 switch [4], 

profiling a number of intrusion attacks, including DDoS. The considered P4 software switch is the Behavioral Model 

version 2 software switch programmed via P4 version 16. The switch will be configured as a typical edge gateway 

element with four optical ethernet interfaces. With reference to Fig. 1, interface 1 is the uplink towards the xHaul 

network receiving packets to be processed, interface 2 is connected to the local edge node, interface 3 is connected to 

an isolated network, interface 4 is connected to the SDN control plane. The switch will perform traffic segregation for 

traffic received at interface 1, allowing online traffic inference and redirecting the malicious traffic to interface 3, 

while allowing forwarding for benign traffic towards the edge using interface 2. The switch will be equipped with 

internal metadata extraction features and postcard-based telemetry, capable to retrieve online monitoring of selected 

features, processing time, switch latency. Moreover, a dedicated PyTorch visual application will show the network’s 

learning phase as a function of training iteration. 

Fig. 2 shows the detailed structure of the meta_nn metadata structure. The considered features for the cyber security 

use case are selected from the full set of features of the UNSW-NB15 data set. In particular, stateless features, easily 

extracted by the P4 parsers, are the layer 4 source and destination ports (src_port, dst_port), the IP protocol (IP_proto), 

the packet length (s_bytes), the IP time-to-live (s_TTL), the TCP advertised window (swin). Moreover, two stateful 

features are considered, built resorting to internal P4 counters and registers: the number of packets having the same 

IP source (ct_src_ltm) or destination (ct_dst_ltm) address of the submitted packet within the last processed 100 

packets. The meta_nn structure includes also the int8 neurons. Neurons are computed inside the compute_nn action 

resorting to the P4 arithmetic. The action takes the neural network weights as flow entry parameters. Each neuron is 

computed following the neural network structure, using the weighted summation of the former layer, then quantized 

using a non-linear threshold-based operator. More precisely, the neuron output y is computed as y = σ (I1W11 + …. + 

I8W18 + θ1), where σ(x) is the ReLU non-linear function, Ix are the neurons output of the previous layer (or the features 

values in the case of the first layer), W1x are the weights and θ1 is a bias parameter. Both weights and bias are constant 

values learned by the neural network during the training phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Internal pipelines of the proposed P4 NN switch. Fig.2. P4 metadata and neuron computation. 

 

The neural network (NN) has been previously designed, trained and evaluated using the PyTorch library. Fig. 3 depicts 

a schematic of the developed PyTorch NN model, where different colors in the graph lines represent different weights. 

The model has 8 input neurons, 2 hidden layers with 8 neurons each and an output layer with 2 neurons. As for the 

nonlinearity, the ReLU function has been selected because of its versatility and ease of implementation [5][6]. The 

model has been trained using regular floats with an Adam optimizer over a cross entropy loss function. Then, a post-

training dynamic quantization [7] is applied to convert its parameters to int8 type, i.e. converting weights, bias terms 

and the ReLU activations.  

The choice of using int8 elements for quantization is the result of a tradeoff between ease of computation, memory 

consumption and information loss. Moreover, considering the UNSW-NB15 dataset use case, the use of int8 allows 
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the features from the dataset to be only lightly adapted for the neural computations, since they are already represented 

as integers. In our implementation, only the IP protocol feature has been really modified in order to be represented as 

an integer and not as a string, thus mapping udp as 0, tcp as 127 and all other as 255. 

The main instance of the model has been trained with all the 8 aforementioned features selected from the UNSW-

NB15 Network Intrusion Dataset. To further investigate the impact of such features, two additional instances of the 

model were trained with stateless only or stateful only features, reshaping the input layer with 6 and 2 neurons 

respectively. The accuracy results of all the trained models, and their quantized counterparts, are reported in Tab. 1.  

The results highlight a minimum loss in accuracy on the test set in all cases (up to a few percent) when applying the 

dynamic quantization with int8, outperforming the 85% accuracy achieved by binary NN in [3]. Moreover, the network 

exhibits noticeable learning and generalization capabilities even when trained with stateless or stateful only features, 

with an accuracy drop < 3%. Such results are significant for the design policies related to P4 programmability over 

different software/hardware platforms. For example, results suggest that possible P4 switch implementations may be 

employed using a small set of stateful features, in all cases where there is the need to implement a reduced NN (e.g., 

in software switches). Alternatively, when stateful processing is limited due to memory constraints (e.g., using FPGA), 

it is possible to select a wider set of stateless features only, achieving a 96% accuracy with a very limited performance 

degradation. 

3.  Innovation 

This demo will show the first AI-driven switch operated through SDN/P4 coordinated control and encompassing 

effective in-network AI-analysis. The goal is to show the capabilities to host dedicated neural networking resources 

processing network traffic directly at the networking devices, without involving selected GPU/FPGA resources inside 

the edge/cloud node.  

4. Relevance 

This demo is specifically designed for the OFC audience, mainly telco and cloud/edge operators and vendors, 

interested in the potential innovation capabilities driven by a novel extended SDN data plane programmability 

including coordination and direct enforcing of AI-based analysis.  
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Used Features Trained NN 

Accuracy 

Quantized NN 

Accuracy 

Stateless + 

Stateful (8) 

99.4 % 96.9% 

Stateless only 

(6) 

98.8% 96.6% 

Stateful only (2) 96.8% 96.8% 
 

Fig. 3: Neural Network, line colors represent weights. Tab.1: Accuracy on test set for the as trained and quantized NN. 
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