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Abstract: The advent of Cloud Computing and Big Data brought several changes and innovations in the landscape of
database management systems. Nowadays, a cloud-friendly storage system is required to reliably support data
that is in continuous motion and of previously unthinkable magnitude, while guaranteeing high availability and
optimal performance to thousands of clients. In particular, NoSQL database services are taking momentum
as a key technology thanks to their relaxed requirements with respect to their relational counterparts, that are
not designed to scale massively on distributed systems. Most research papers on performance of cloud storage
systems propose solutions that aim to achieve the highest possible throughput, while neglecting the problem of
controlling the response latency for specific users or queries. The latter research topic is particularly important
for distributed real-time applications, where task completion is bounded by precise timing constraints.
In this paper, the popular MongoDB NoSQL database software is modified introducing a per-client/request
prioritization mechanism within the request processing engine, allowing for a better control of the temporal
interference among competing requests with different priorities. Extensive experimentation with synthetic
stress workloads demonstrates that the proposed solution is able to assure differentiated per-client/request
performance in a shared MongoDB instance. Namely, requests with higher priorities achieve reduced and
significantly more stable response times, with respect to lower priorities ones. This constitutes a basic but fun-
damental brick in providing assured performance to distributed real-time applications making use of NoSQL
database services.

1 Introduction

The importance and disruptive capabilities of
Cloud Computing have become increasingly evident
throughout the last decade for the development of
modern web applications. Indeed, it is a technol-
ogy that offers to any-size business organizations the
tremendous benefits of relieving them from the bur-
den of investing into dedicated datacenters. Albeit
a number of studies (Ara et al., 2019; Lettieri et al.,
2017) apply high-performance computing techniques
to distributed and cloud applications for the purpose
of achieving the highest possible performance, only
a few works focus on providing customizable end-to-
end service-level objectives with differentiated QoS
offered to different users/customers. While increas-
ing the overall throughput of a system brings naturally
to a decrease of its average response-time, the trade-
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off between throughput and response-time becomes
evident when designing services that need to balance
throughput maximization and quick reaction to asyn-
chronous real-time requests: the former calls for ap-
proaches based on aggregating many requests into big
batches to be processed at once with minimum over-
heads, and the use of long intermediate buffers so that
worker threads minimize their idle times; whilst the
latter requires preemptible short-lived activities that
can be suspended if higher-priority ones arrive, and
the use of small buffers so to minimize the processing
latency of individual requests. Designing distributed
software systems seeking the right balance between
these requirements is all but trivial.

Scenarios that would benefit the most from a de-
sign supporting differentiated per-user/request perfor-
mance are those where highly heterogeneous types of
applications need to submit requests to the same com-
ponent(s). For example, a database system in a cloud
datacenter that needs to serve heavyweight requests
for batch or high-performance applications, alongside
lightweight requests coming from soft real-time appli-



cations that need to react promptly to user interaction
or asynchronous conditions, such as on-line gaming
or collaborative editing of documents.

In this paper, focusing on the field of storage sys-
tems, the problem is addressed by using the priori-
tized access principle, a trade-off widely adopted in
the design of real-time systems: higher priority activ-
ities are allowed to take resources earlier than lower
priority ones, and sometimes even able to preempt
them by revoking their resource access in the mid-
dle of a task, or to starve them for arbitrarily long
time windows. While the priority-based access tech-
nique by itself may not be enough to achieve pre-
dictable performance, when coupled with strong real-
time design principles and analysis it is possible to
ensure correct operation and sufficient resources to
all hosted real-time activities (Buttazzo et al., 2005).
In this context, NoSQL database services are taking
momentum as a key technology for replicated and in-
finitely scalable data storage services, thanks to their
often reduced consistency and functionality require-
ments with respect to their relational counterparts.

1.1 Contributions

In this paper, an approach is presented to support
differentiated per-client/request performance in Mon-
goDB, a well-known open-source NoSQL database
widely used in cloud applications. A special API is
introduced to let clients declare their needed service
priority, and modifications to the MongoDB backend
daemon allow for prioritizing requests with higher
priorities. The result is a set of modifications to
MongoDB allowing for a differentiated performance
mechanism that creates an on-demand prioritized ac-
cess channel with reduced response times. These
changes integrate well with the internal architecture
of the base software without affecting the expected
performance and reliability capabilities when not in
use. In order to become usable in a production envi-
ronment, the proposed approach has to be completed
with a formal performance analysis and an appropri-
ate multi-user access-control model, which are sub-
jects of future work.

1.2 Paper Organization

This paper is organized as follows. In Section 2,
related work in the research literature is briefly dis-
cussed. In Section 3, a few background concepts
and terminology useful for a better understanding of
the paper are recalled. In Section 4, our proposed
approach to support differentiated per-client/request
performance levels in MongoDB is presented. In Sec-

tion 5, experimental results are discussed, gathered
on a real platform running our modified MongoDB
on Linux, demonstrating the effectiveness of the ap-
proach in tackling the problem introduced above. Fi-
nally, conclusions are drawn in Section 6, along with a
brief discussion of possible further work on the topic.

2 Related Work

This section includes a summary of the research
literature related to real-time and scalable data stores,
and well-known mechanisms for optimizating their
performance in practical cloud deployments.

2.1 Real-Time Database Systems

In the research literature, a real-time database system
(RTDBS) (Kao and Garcia-Molina, 1994; Bestavros
et al., 1997; Lindström, 2008) is a data storage and
retrieval system designed in a way that it is possible
to rely on a predictable timing of the operations re-
quested by clients. This in turn enables the possibility
to design real-time applications or services with pre-
cise guarantees regarding their execution times and
their ability to respect their timing constraints, like
deadlines. Research efforts in this area complemented
research on scheduling of processes on the CPU (But-
tazzo et al., 2005; Baruah et al., 2015), with investi-
gations on scheduling of transactions. This is a com-
plex area where different requirements may have to
be considered: from maximization of throughput and
efficient execution vs fairness trade-offs, as generally
required in general-purpose systems, to predictable
execution and prioritization of clients, as needed in
real-time systems. Real-time database systems found
applications in a number of traditional hard real-time
application domains, ranging from mission control
in aerospace to process control in industrial plants,
telecommunication systems and stock trading (Kang
et al., 2007). A number of challenges was typi-
cally due to the high seek latency of traditional ro-
tational disks, a problem either tackled using special
disk access scheduling techniques coupled with suf-
ficiently pessimistic analysis techniques, or avoided
using memory-only database systems (Garcia-Molina
and Salem, 1992). In the last decade, the introduc-
tion in industry of SSD drives caused a major shift
of the panorama, getting rid of the high seek latency
problem, albeit predictability is impaired by the often
non-disclosed sector allocation, prefetch and caching
logic within the drive controllers. Another problem
is the presence of dynamic workload conditions, that
pushed towards the adoption of adaptive feedback-



based scheduling techniques (Amirijoo et al., 2006;
Kang et al., 2007). Unfortunately, the great focus of
real-time database research on hard real-time systems,
and the necessarily pessimistic analysis accompany-
ing their design, causing poor utilization at run-time,
caused these systems to remain of interest only in a
restricted domain area.

2.2 Scalable Real-Time Data Stores

Recent developments of highly scalable cloud infras-
tructures, with sophisticated and highly adaptive per-
formance monitoring and control techniques that are
deployed in cloud systems, raised a certain interest
in cloud-hosted database systems also for real-time
applications, particularly soft real-time ones. Here,
the focus on big-data workloads that do not focus
on a single system, coupled with high-performance
and high-reliability requirements forcing the adop-
tion of data sharding and replication techniques,
caused an increasing interest in dropping the typi-
cal feature-richness of relational databases, in favour
of NoSQL architectures (Jing Han et al., 2011; Li
and Manoharan, 2013) that implement essentially re-
liable/replicated distributed hash tables with the abil-
ity to ingest arbitrarily high volumes of data, scaling
at will on several nodes. A commercial database that
is almost unique in this context is DynamoDB1 from
AWS, a fully managed 24/7 NoSQL data store for
AWS customers. Its major selling point is the abil-
ity to declare a desired per-table read and write oper-
ations per second, and the system is able to guarantee
these requirements with a per-request latency lower
than 10ms with a high probability.

More recently, in the area of distributed com-
puting in cloud infrastructures, an increasing at-
tention has been given by researchers and indus-
try practitioners to real-time stream processing ser-
vices (Wingerath et al., 2016; Basanta-Val et al.,
2017; Kulkarni et al., 2015). These are services de-
signed for immediate processing of data as it comes
from sources like IoT devices or data stores, in a way
that the computation results are made available with
a short latency from when new data becomes avail-
able. These systems are developed using specialized
platforms on top of which complex analytics perform-
ing continuous queries (Babu and Widom, 2001) can
be realized in the form of arbitrary topology of pro-
cessing functions to be applied to each incoming data
item, distributed throughout the network. Cloud tech-
nologies let these systems scale easily to tens or hun-
dreds of nodes. Often, performance and latency con-
trol is heuristically achieved by applying elastic scal-

1See: https://aws.amazon.com/dynamodb/.

ing to individual functions in the topology. A few
works (Theeten et al., 2014; Li et al., 2016) tried to
build empirical performance models of these system,
so to employ more precise control logics for the end-
to-end performance.

2.3 Performance Optimizations

Database practitioners are used to a number of tricks
to fine-tune the configuration of the runtime envi-
ronment to maximize performance (Navrátil et al.,
2020). For example, for databases running on the
Linux operating system (OS), it is typical to drop
the default Ext4 file-system (FS) used by most dis-
tributions, in favour of faster solutions like XFS2, a
high-performance, scalable file-system originated on
SGI IRIX. This comes at the very acceptable cost of
losing some flexibility in FS management operations
that may not be needed on production servers (RHE,
2020; Navrátil et al., 2020). Another useful configu-
ration of servers that need to host memory-intensive
workloads (as needed to host several virtual machines
or database systems), is the one of reserving in the
OS a portion of the main memory to huge pages3.
This is a hardware mechanism generally available
in modern architectures, that allows for the manage-
ment of memory pages of different sizes, often 2MB
pages (and more rarely also 1GB pages) in addition
to the standard 4KB ones. This allows for decreasing
the pressure on the memory pages descriptor cache,
and it becomes particularly effective when there are
memory-hungry processes that need to allocate big
amounts of RAM, like in the case of KVM processes,
each hosting an entire virtual machine, or database
processes, that need to optimize read performance
by caching large quantities of data in RAM. As a
drawback, huge pages reduce the granularity at which
memory can be allocated and assigned by the OS to
the running processes, thus it is used on big multi-core
servers with plenty of RAM available.

Systems with a Non-Uniform Memory Architec-
ture (NUMA) have a number of nodes, where each
node includes a set of CPUs and a memory controller
with a fastpath switching logic, so that memory from
the same node can be accessed faster than the one
from different nodes. On these systems, it is com-
monplace to configure the OS and the software so
to deploy a complex software along with most of its
memory pages within the same node, to maximize the
throughput.

2More information at: https://www.kernel.org/doc/

html/latest/admin-guide/xfs.html.
3More information at: https://www.kernel.org/doc/

Documentation/vm/hugetlbpage.txt.



Traditionally, real-time systems have been using
priorities to distinguish among processes with vari-
ous urgency requirements, and CPU schedulers have
been exposing to the user-space APIs like the standard
nice4 mechanism and the setpriority() system call
of POSIX OSes, for use by general-purpose applica-
tions. However, these have been wildly customized
in individual OSes with heuristics that dynamically
catch and prioritize interactive workloads over batch
computations, causing a somewhat unpredictable be-
havior. Therefore, real-time systems have been re-
lying on much more predictable real-time scheduling
extensions like the SCHED_RT and SCHED_FIFO POSIX
disciplines (POS, 2004), made available through the
sched_setscheduler() syscall. Some works (Kim
et al., 2017) proposed to engineer better heuristics
able to differentiate among long-running batch data-
intensive activities versus short-lived interactive ones,
within the Linux kernel, to dynamically tune pri-
oritization of the disk scheduler in serving I/O re-
quests issued by various tasks, or just adopt a dif-
ferent weighted fair queueing strategy (Valente and
Avanzini, 2015) to differentiate among competing
tasks. The Linux kernel has the ionice5 subsystem to
tune the priority associated to disk requests, similarly
to the nice one mentioned above. These tricks can
be useful to maximize the average performance of a
database server, however in order to support differen-
tiated levels of service depending on per-user/request
requirements, the software needs to be changed, ap-
plying non-trivial modifications to the request pro-
cessing and handling code path, as proposed in this
paper, to be added to other certainly useful mecha-
nisms at the disk access layer, like the just mentioned
ones.

3 Background Concepts

This section provides a brief introduction to the
MongoDB software, along with details of the CFS
Scheduler within the Linux kernel. These are useful
for a better understanding of the modifications per-
formed to MongoDB.

3.1 MongoDB

MongoDB is an open-source document-oriented
data store often appreciated in comparative stud-
ies (Palanisamy and SuvithaVani, 2020) due to its

4More information at: https://www.kernel.org/doc/

html/latest/scheduler/sched-nice-design.html.
5More information at: https://www.kernel.org/doc/

html/latest/block/ioprio.html.

flexibility and ease to use, while offering all the ca-
pabilities needed to meet the complex requirements
of modern applications. The name MongoDB derives
from humongous, which can be literally translated to
“extraordinarily large", to highlight its capability to
store and serve big amounts of data. This ability to
efficiently handle large-scale traffic, which is a typ-
ical use-case for content-delivery services, is some-
thing that relational database technologies are not able
to easily achieve: for instance, the MongoDB access
speed is 10 times higher than the MySQL one, when
the data exceeds 50GB (Rubio et al., 2020). Mon-
goDB stores documents in a format called BSON,
a binary-encoded serialization of JSON designed to
be efficient both in storage space and scan-speed.
A BSON document contains multiple named fields
and an automatically generated identifier to uniquely
identify it. A field comprises three components: a
name, a data type and a value. BSON supports com-
plex JSON data types, such as arrays and nested doc-
uments, but also additional types like binary, inte-
ger, floating point or datetime. Documents are kept
in schemaless tables, called collections, allowing for
heterogeneous documents to coexist in the same col-
lection (although similarity is recommended for index
efficiency). The users interact with the database sys-
tem using a query language expressed in JSON that
is supplied via API libraries, called drivers, avail-
able for all the major programming languages. Mon-
goDB supports data durability/availability and easy
horizontal scaling through replication and sharding:
the first consists in deploying multiple physical copies
of the same database, which together form a replica
set, while the second consists in deploying a cluster
of different databases, called a sharded cluster, each
storing a subsets of data distributed according to user-
defined criteria.

3.2 Linux Scheduler / POSIX Niceness

A typical multi-tasking OS has to service multiple
runnable thread or process, often generically referred
to as tasks (Anderson and Dahlin, 2014), making
sure that each one gets equal opportunity to execute.
The component responsible for granting CPU time to
the tasks is the scheduler, which chooses the execu-
tion order via a scheduling policy. For instance, the
Linux kernel provides a scheduling framework that
comprises three categories, each suitable for specific
use cases: fair scheduling for general-purpose appli-
cations, fixed-priority and reservation/deadline-based
scheduling for real-time scenarios. The two latter cat-
egories are used in typical embedded real-time sce-
narios where the total real-time workload is known



upfront, and failing a proper analysis on the require-
ments would cause problems that could compromise
the functioning of the entire system. However, there
are studies (Cucinotta et al., 2019) exploring applica-
bility of these scheduling strategies to deploy highly
time-sensitive applications in Cloud infrastructures.

The default Linux scheduler, the Completely Fair
Scheduler (CFS) (Wong et al., 2008), tries to elim-
inate the unfairness of a real CPU by emulating an
ideal, precise multi-tasking CPU in software: namely,
a CPU where each task/thread runs in parallel and it is
given an equal share of “power". This scheduler tack-
les the problem by giving CPU access to the task that
waited the most. In particular the scheduling order is
defined according to the lowest vruntime, a per-thread
multi-factor parameter that measures the amount of
“virtual" time spent on the CPU. There are several
parameters taken into account when computing this
value, one of these being the nice level. This alters the
scheduling order by weighting the vruntime value: a
numerically large nice value increases the willingness
of a thread to give precedence to others. The valid
range of nice level values is between -20 (highest pri-
ority) to 19 (lowest priority). Negative nice values
are usually only available to privileged tasks, but it is
possible to make them accessible to unprivileged ones
as well, by proper configuration of the permissions in
limits.conf6.

4 Proposed Approach

This section describes the internal components
and mechanisms of the MongoDB software that have
been examined and how our proposal integrates with
them. The considered version of the software is the
4.2 one, which can be found on GitHub7.

4.1 MongoDB Internals

A MongoDB database system is designed as a con-
figurable client-server architecture. The main com-
ponent is the mongod service, which performs all the
core database activities: it handles requests, applies
changes to the storage unit and performs the man-
agement and logging processes. Our proposal relies
upon two design choices regarding the default execu-
tion model and the concurrency control mechanism
employed by a mongod instance, which are leveraged
to fully integrate the modifications to the core soft-
ware with minimal overhead:

6More information at: https://manpages.debian.org/

jessie/libpam-modules/limits.conf.5.en.html.
7See: https://github.com/mongodb/mongo/tree/v4.2

Figure 1: FSM modeling the session life-cycle of a client
connection. Highlighted in bold, the Standard RPC transi-
tion path, which corresponds to the following events: wait
for a client request, process it, and send a response back.

1) MongoDB manages networking synchronously:
each incoming connection is given its own dedi-
cated server-side client worker thread to perform
database operations and handle the session life-cycle.
The workflow of such worker threads is modeled
as a finite-state machine (FSM). The main request-
response interaction comprises multiple “walks" over
the transition path called Standard RPC, which cor-
responds to the following events: wait for a request
from the client, process it, wait for a result from the
underlying storage unit, send back a response (Fig-
ure 1). The thread is reclaimed when the connection
is closed. In short, as of MongoDB Version 4.2, it is
safe to assume that a given incoming connection cor-
responds to a dedicated server-side worker thread.
2) MongoDB uses an optimistic version of the Mul-
tiversion Concurrency Control mechanism (Bernstein
and Goodman, 1983), which allows for lock-free con-
current write operations. More specifically, data con-
sistency is enforced by displaying to the connected
users a version of the database at a particular instant
of time, therefore any changes made by a writer will
not be seen by other users until the operation has been
completed without conflicts. A write conflict is the
result of simultaneous updates to the same document,
and is solved by accepting only one write operation as
valid and transparently retrying the other ones. Multi-
ple mongod services can be instantiated on different
physical machines and interconnected via a simple
socket-based, request-response style protocol called
MongoDBWire Protocol to allow for more complex
deployments capable of data redundancy and/or hor-
izontal scalability. A group of independent mongod
instances that maintain the same data set is called a
replica set: the primary node handles all write oper-
ations and records the changes to the data set into an
operations log (in short, oplog); the secondary nodes



replicate the primary’s oplog and apply the changes
asynchronously to their local copies. The members
of a replica set communicate frequently via heart-
beat messages to detect topology changes and react
accordingly: for instance, if the primary node be-
comes unavailable, the replica set goes through an
election process to determine a new one. Both the
primary election and the oplog replication process are
built upon a variation of the RAFT consensus algo-
rithm (Ongaro and Ousterhout, 2016). The oplog is
a fixed-size collection stored in the mongod instance
itself, thus its records are handled as normal docu-
ments, but with a fixed structure. These oplog en-
tries describe the changes applied to the data set in
an idempotent format and are uniquely identified by
the opTime field, a tuple consisting of two values: a
timestamp and a node-specific term that identifies the
primary node that serviced the write operation. There-
fore, this field determines the order in which the oper-
ations are carried out. A secondary mongod instance
performs the replication process using the following
components (as depicted in Figure 2):
1) The OplogFetcher, that fetches oplog entries from
the primary by issuing a number of find and getMore

commands to the same endpoint of a user connection.
The entries are returned in batches that are then stored
in a buffer, called the OplogBuffer.
2) The OplogBatcher, which pulls the fetched batches
off the OplogBuffer and creates the next batch of op-
erations to be applied to the local data set replica.
3)The OplogApplier, that applies the batches created
by the OplogBatcher to the local oplog and stor-
age unit. In particular, it manages a thread pool of
writer threads that, for the sake of performance, may
not respect the chronological order of the operations
within a batch by applying them in parallel (thus a
few operations require singleton batches, like the drop

one). Whenever a secondary node finishes replicat-
ing a batch, it notifies the opTime of the last applied
entry to the primary. This is crucial for those scenar-
ios where the users request a certain degree of data
durability (the write-concern level, using MongoDB
terminology): the primary node will wait for a user-
defined number of such notifications before sending
a positive response to a write operation in order to
ensure that the change was replicated to a sufficient
number of nodes. A high write concern value deterio-
rates throughput, while a low one leads to higher risks
of data loss in case of failure. Often, one wants to set
the write concern to ensure that the majority of repli-
cas have safely stored the written data before respond-
ing to the client. An analogous feature for read oper-
ations is also available, the read concern, which in
turn is used to control data consistency. Both options

should be tuned according to the application needs.

Figure 2: The replication process pipeline: a secondary
node fetches the oplog entries from the primary node and
stores them, in batches, into a buffer. Afterward, they are
pulled and arranged in another set of batches which are ap-
plicable in parallel by the writer threads. The latter modify
the local copy of the secondary’s oplog and database.

4.2 RT-MongoDB

The proposed modified version of the MongoDB soft-
ware, called RT-MongoDB, introduces an application-
level notion of priority among concurrent requests, re-
alized exploiting: (i) the nice scheduling parameter
available in the underlying OS scheduler, (ii) a check-
point system described later in this section.

Prioritization is achieved by giving to the user
direct control over the nice value of the underlying
client worker thread that services its requests. In this
way, it is possible to alter the thread scheduling or-
der according to users needs: for instance, the queries
for a real-time task could increase the priority of their
session by setting a lower nice value, thus reducing
the response times even in the presence of an unim-
portant long-lasting query. We assume that the RT-
MongoDB daemon is launched with the capability to
exploit the entire range of nice values. For the sake
of simplicity, the current version of RT-MongoDB re-
duces the range to three values: -20 (high-priority), 0
(normal-priority) and +19 (low-priority). Thanks to
the synchronous execution model, it is trivial to iden-
tify the target thread without incurring in side-effects,
because throughout the whole life cycle of the client
session, the underlying worker thread will be always
the same. For this reason, the terms “high-priority
user" and “high-priority worker thread" will be used
interchangeably in what follows. However, achieving
differentiated performance by just lowering the nice
value for high priority sessions proved to be ineffec-
tive in replicated scenarios where data durability is
enforced. The key issue here is that the primary mon-
god node must wait for a number of replica nodes
to finish replicating the change, before acknowledg-
ing it to the requesting user. Since the replica nodes
are unaware of the nice levels declared on the pri-
mary node, because they are deployed on different
physical machines, they perform an unbiased repli-
cation. To circumvent this problem, RT-MongoDB



employs a soft checkpoint system to temporarily re-
voke CPU access to lower priority worker threads.
It comprises two primitives, check-in and check-out,
that have been integrated in the life cycle of the client
session in order to delimit the start and end point of
the Standard RPC transition path. The idea is to en-
force a prioritized access channel for the time win-
dow required to complete a high priority request by
putting to sleep the competing, lower priority worker
threads. In order to do so, each worker declares their
niceness before servicing the user request (check-in)
to eventually get stopped by the checkpoint system,
if there are higher priority requests already being pro-
cessed. Whenever a worker thread completes a re-
quest, it invokes the check-out primitive to notify pos-
sible blocked threads and eventually wake them up, if
there are no more higher priority requests (Figure 3).
The adjective soft refers to the fact that this mecha-
nism does not interfere with certain threads: namely
those serving the users wishing to declare a different
priority level, the unrelated “service" threads instanti-
ated by the database to manage the deployment, and
those worker threads serving the secondary nodes.
In fact, the oplog fetching operation happens on the
same communication channel that the end-users use
to interact with the storage unit, and thus it is manda-
tory to distinguish between an external, namely an
end-user, and an internal client connection. An acci-
dental revocation of CPU access to a secondary node
would lead to unexpected slowdowns of the entire
system. In conclusion, the checkpoint system pro-
vides a prioritized channel to high priority sessions by
temporarily restricting the CPU access to lower prior-
ity ones.

In terms of API, RT-MongoDB offers a new
database command, named setClientPriority, and a
revised version of the runCommand command to sup-
port differentiated performance on per-user and per-
request basis, respectively. Both commands act on the
same mechanisms, carry out the same activities and
support every operation, but the priority declared with
runCommand lasts for a Standard RPC transition only,
thus allowing for a temporary prioritization of the
client session, whereas the setClientPriority declares
the priority of all subsequent requests until the session
is closed, or until the priority is changed again.

5 Experimental Results

The proposed approach has been assessed with a
set of synthetic stress scenarios using a testing frame-
work built for the occasion. The test environment

Figure 3: The same finite-state machine proposed in Fig-
ure 1, but integrated with the checkpoint system. The
primitive check-in declares the nice value of the underly-
ing worker threads that is about to service its client. The
checkpoint system will block it, if higher priority ones are
running. The primitive check-out notifies the conclusion of
a Standard RPC path to the checkpoint system, which will
wake up the lower priority threads, if no more higher prior-
ity ones are running

comprises two twin multi-core NUMA machines in-
terconnected by a 1 gbE connection. The first one
has been used to host a 2-member replica set, core
pinned to different NUMA nodes and configured to
use different independent disks, in order to emulate
a distributed system. The second machine has been
used to host the concurrent users interacting with the
database. Each test follows the same workflow: the
users connect to the replica set, declare their priorities
with the setClientPriority command, and start sub-
mitting concurrently a total of 500 write operations
each, with no wait time between subsequent requests
from the same user.

From a preliminary assessment, it has been ob-
served that, with this test environment, a 2-member
replica set can service a single client request in 200
microseconds on average when data durability is not
enforced, assuming that the database has full control
over the CPU cores and no other concurrent opera-
tion has been issued. Under the same conditions, but
with data durability enabled, the response time rises to
3000 microseconds on average. The rest of this sec-
tion presents a subset of the collected results regard-
ing the distribution of response times over 20 re-runs
of the same test during a portion of the so-called pri-
ority window, namely the time period where a high-
priority user is being serviced. More specifically, the
analyzed results concern the interval where the lower
priority users have yet to be blocked, in order to high-
light the moment where performance differs across
user requests. The chart used for data visualization
is the box-plot with whiskers set to the 5% and 95%



percentiles: each box represents the response time for
a given user per priority level, including an indica-
tive box-plot (the rightmost one) to represent the sce-
nario where no prioritization is enforced. This way,
it is easier to trace the improvements compared to the
original median baseline.
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Figure 4: Boxplots of the response times (on the Y axis)
obtained for a single high-priority client competing with
several normal-priority ones (different boxplots) during the
priority window, compared to the one obtained in the orig-
inal unmodified MongoDB (rightmost boxplot). The top
and bottom subplots refer to scenarios with 8 and 32 total
clients, respectively, with MongoDB configured on 1 core
and write-concern 1.

The first set of box-plots shown in Figure 4
presents the results for the scenario where the pri-
mary node is pinned to one core only, a single user
is declared as high-priority and data durability is not
enforced. The separation between the high-priority
user and the normal-priority ones is quite noticeable,
especially in the crowded 32-users scenario, where
the normal-priority users lose almost a millisecond
with respect to the “no-priority" case and also expe-
rience higher variation, while the high-priority user is
timely serviced. This is the natural course of events,
as depicted in the example timelapse in Figure 5 for
the 8-users scenario, which shows the response times
distribution over time. The normal-priority users are
frequently not allowed to run in order to give prece-
dence to the high-priority users during their priority
window, and to ensure fairness between same-priority
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Figure 5: Example timelapse of a run with 1 high-priority
client and 7 normal-priority ones with MongoDB config-
ured on 1 core and write-concern 1. The location between
dashed vertical lines is the so-called priority window, the
time interval while the high-priority user is serviced.

users. While the unrelated “service" threads run by
the primary node will also give precedence to the
high-priority clients, there are some periodic internal
MongoDB tasks that delay the execution of some re-
quests, causing the visible outliers. They could not be
blocked as done with lower priority worker threads,
not to compromise the database system correct oper-
ation.

A similar but smaller improvement can be seen in
the second set of box-plots in Figure 6, which dis-
plays the results for the same two scenarios, but with
data durability enforced. As expected, the values are
higher due to the replication process to which the pri-
mary must undergo. The response times group in two
distinct clusters: it appears that, since the secondary
node replicates the changes in batches, a subset of un-
lucky requests experience higher latency because they
are included in big lower-priority batches.

The last set of box-plots in Figure 7 show how RT-
MongoDB is capable of providing differentiated per-
formance for several users depending on the specified
priority level: high, normal or low. In order to evenly
service every high priority user, the primary node is
allowed to use more than one core. The first scenario
has 2 users for each priority level across high, nor-
mal and low priority, and the primary node is pinned
to a dual-core CPU deployment. The second scenario
considers 4 users for each priority level. In both cases
the write operations are issued with no data durabil-
ity requirement. RT-MongoDB is capable of making
use of the different CPUs and provide almost optimal
latencies for normal-priority and high-priority users,
but it is evident that the high-priority ones experience
less variation, especially in the second scenario.
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Figure 6: Boxplots of the response times (on the Y axis)
obtained for a single high-priority client competing with
several normal-priority ones (different boxplots) during the
priority window, compared to the one obtained in the orig-
inal unmodified MongoDB (rightmost boxplot). The top
and bottom subplots refer to scenarios with 8 and 32 total
clients, respectively, with MongoDB configured on 1 core
and write-concern 2.

6 Conclusions and Future Work

This paper presents an extension to the MongoDB
software that enables differentiated per-user/request
performance among competing clients. Preliminary
results suggest that the technique seems promising for
obtaining a priority-based differentiation of the ser-
vice level received by multiple clients when access-
ing a shared MongoDB instance. This is beneficial
for real-time cloud applications, such online video
streaming or gaming, where more important and/or
critical activities need to be prioritized over less im-
portant ones.

Concerning possible future works on the topic, it
might be interesting to extend the proposed modifi-
cations so to achieve a predictable performance in
accessing the system, letting clients specify a cus-
tom relative deadline within which their submitted
requests should be completed. This might be cou-
pled with a formal performance analysis using real-
world workloads and larger replica sets, and with
the use of more advanced scheduling techniques, like
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Figure 7: Boxplots of the response times (on the Y axis)
obtained in a given time window with several clients dif-
ferentiated by priority levels (different boxplots), compared
to the one obtained in the original unmodified MongoDB
(rightmost boxplot). The top subplot refers to a scenario
with 6 users, with 2 users per priority level. The bottom one
refers to a 12-users scenario, with 4 users per priority level.
Both deployments are configured to offer a core per high-
priority client, in order to service evenly all of them. The
write-concern is 1.

SCHED_DEADLINE, that has been made recently
available in the Linux kernel for real-time workloads.
Other viable paths of investigations are those mixing
prioritization at the CPU scheduling level with the one
at the I/O disk access layer (Valente and Avanzini,
2015), tuning both CPU and block layer schedulers,
trying to avoid priority inversion scenarios (Kim et al.,
2017). In this kind of investigations, performance
monitoring and tuning frameworks like the one pre-
sented in (Malki et al., 2018), supporting MongoDB
among others, may help to gain additional insights
about the points of intervention within the system.
Another future work would be to address the secu-



rity issue of giving access to the proposed feature to
all users, by implementing an access-control mecha-
nism (Sandhu, 1998). In fact, the current prototype
assumes no greediness, but every user could declare
himself as high-priority, making the mechanism inef-
fective. Therefore, the idea is to give to the MongoDB
sysadmin the possibility to restrict the accessible pri-
ority levels, depending on system-wide access-control
configuration settings.
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