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Abstract
Chemotherapy with anthracycline-based regimens remains a cornerstone of treatment of many solid and blood tumors but 
is associated with a significant risk of cardiotoxicity, which can manifest as asymptomatic left ventricular dysfunction or 
overt heart failure. These effects are typically dose-dependent and cumulative and may require appropriate screening strate-
gies and cardioprotective therapies in order to minimize changes to anticancer regimens or even their discontinuation. Our 
current understanding of cardiac damage by anthracyclines includes a central role of oxidative stress and inflammation. The 
identification of these processes through circulating biomarkers or imaging techniques might then be helpful for early diag-
nosis and risk stratification. Furthermore, therapeutic strategies relieving oxidative stress and inflammation hold promise to 
prevent heart failure development or at least to mitigate cardiac damage, although further evidence is needed on their efficacy, 
either alone or as part of combination therapies with neurohormonal antagonists, which are the current adopted standard.
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Cardiotoxicity manifesting as asymptomatic left ventricu-
lar (LV) dysfunction or overt heart failure (HF) is a major 
adverse effect of chemotherapy for cancer [1, 2]. In a recent 
analysis from the CARDIOTOX Registry, which prospec-
tively evaluated 865 patients undergoing anticancer therapy 
associated with a moderate to high risk of cardiotoxicity, as 
many as 38% of patients displayed overt cardiotoxicity over 
a 24-month follow-up, with severe cardiac disease occur-
ring in 3% [3]. These last patients had a mortality rate of 23 
deaths per 100 patients-year.

Introduced in the 1960s, anthracyclines (ANT) are 
among the most potent and prescribed chemotherapeutics 

for the treatment of haematological and solid tumors. The 
most used drug of this class is doxorubicin (DOX), also 
known as adriamycin, with several other molecules used, 
including daunorubicin, epirubicin, and valrubicin. LV 
dysfunction and HF are well-established, typically dose-
dependent, and cumulative adverse effects of ANT, and 
may require changes to anticancer regimens or even their 
discontinuation[1]. HF has a 5% incidence in patients 
receiving a cumulative DOX dose of 400 mg/m2, increas-
ing to 48% with a cumulative dose of 700 mg/m2, but even 
low doses (such as 100 mg/m2) may cause cardiac dysfunc-
tion [4]. In addition to the cumulative dose, major risk fac-
tors include the administration schedule, other cardiotoxic 
therapies (such as trastuzumab or paclitaxel), mediastinal 
irradiation, and history of heart disease [1]. Cardiotoxic 
reactions to ANT may be acute (i.e., occurring during drug 
administration), subacute, or chronic. However, recent 
findings challenge this old classification, suggesting that 
anthracycline-induced cardiotoxicity is potentially a con-
tinuous phenomenon, starting with myocardial cell injury, 
followed by progressive functional decline, progressively 
leading to overt HF [5, 6]. Patient susceptibility to ANT 
is highly variable, with many patients tolerating therapeu-
tic dose of ANT without long-term complications, while 
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others showing ANT-dependent cardiotoxicity even after 
the first dose. Some patients may develop cardiotoxicity at 
a total cumulative dose of ANT corresponding to 300 mg/
m2, or even lower, while others have no significant cardiac 
alterations, despite being exposed to doses up to 1000 mg/
m2 [4].

Therapies for neurohormonal antagonism are currently 
recommended for patients with a normal LV ejection frac-
tion (LVEF) and cardiovascular risk factors scheduled to 
undergo therapy with cardiotoxic agents, although this evi-
dence derives from a limited number of studies [7, 8].

The development of cardiotoxicity by ANT may be par-
tially explained by the induction of oxidative stress and 
inflammatory responses [4]. A deeper knowledge on these 
processes might disclose new possibilities for early detection 
of cardiac damage (through circulating biomarkers or imag-
ing findings related to inflammation) and offer new therapeu-
tic strategies, complementary to the use of neurohormonal 
antagonists (Fig. 1).

For the present review, we performed a search on Pub-
Med and EMBASE in May 2020 with the following terms: 
“anthracycline” OR “doxorubicin” AND “cardiotoxicity” 
OR “cardiac damage” OR “heart failure” OR “cardiac fail-
ure.” The reference list of relevant articles was also searched; 
only articles published in English were included. Given the 
design of this work as a narrative review, no formal criteria 
for study selection or appraisal were enforced.

Oxidative stress and inflammation 
as possible contributors to cardiac damage

ANT cardiotoxicity is believed to derive from DNA damage, 
inhibition of protein synthesis and mitochondrial biogen-
esis, induction of apoptosis, inflammation and generation 
of reactive oxygen species (ROS). The myocardium has a 
high mitochondrial density [9], and the propensity of ANT 
to accumulate in the mitochondria promotes their retention 

Fig. 1  Central illustration. Oxidative stress and inflammation in anthracy-
cline cardiotoxicity.18F-FDG PET, 18F-fluoro-D-glucose positron emission 
tomography, CMR cardiovascular magnetic resonance, DPP4i dipeptidyl-
peptidase 4 inhibitor, hs-CRP high-sensitivity C-reactive protein, IgE 

immunoglobulin E, IL interleukin, MPO myeloperoxidase, ROS reactive 
oxygen species, SPECT single-photon emission computed tomography, 
TAOS total antioxidant status, TNFα tumor necrosis factor alpha, TTE 
transthoracic echocardiogram
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in cardiomyocytes. Here, ANT metabolites interfere with 
the translation of iron sequestrating proteins, thus increas-
ing intracellular free iron, which leads to the generation of 
highly reactive iron-ANT complexes, capable of starting 
redox cycling and promoting excessive autophagy [10–12]. 
ANT may also easily intercalate into mitochondrial DNA, 
because of its circular and covalently closed structure, fur-
ther promoting mitochondrial respiratory chain dysfunction 
[13–15]. Finally, ANT may directly activate ROS-producing 
enzymes. Notably, ROS generation is usually associated 
with the production of equally dangerous reactive nitrogen 
species (RNS). Indeed, ANT have been found to increase the 
activity of inducible nitric oxide synthase (NOS), which can 
foster RNS generation [16, 17]. Once antioxidant defences 
have been overwhelmed, ROS may react with lipids, pro-
teins, and DNA, leading to the disruption of mitochondrial 
integrity and function that may ultimately cause cell death 
[18]. ROS-dependent cellular damages may induce inflam-
mation, which is a crucial mechanism in HF development. 
Interestingly, phenylalanine-butyramide (a synthetic deriv-
ative of the short-chain fatty acid butyric acid) has been 
recently shown to reduce oxidative stress and mithocondrial 
dysfunction in a murine model of ANT cardiotoxicity [19].

ANT therapy is also associated with induction of nuclear 
factor-κB (NFkB) and tumor necrosis factor alpha (TNF-
α). Furthermore, several Toll-like receptors (TLRs), a class 
of pattern recognition receptors involved in innate immune 
response initiation and induction of cytokines secretion, are 
activated and promote the activation of adaptive immunity 
cells (for instance, TLR4 activates T helper-1 cells) [4, 20]. 
Furthermore, through transcription factor modulation, ANT 
increase NLRP3 expression, thus stimulating the release of 
the proinflammatory interleukins (IL)-1β and IL-6 [21]. 
Additionally, ANT-dependent inhibition of cyclooxyge-
nase and lipoxygenases reduces cardiac availability of anti-
inflammatory mediators (such as prostacyclins), promoting 
cardiac damage [22, 23].

Cardiomyocyte damage and death further amplify the 
inflammatory cascade and oxidative stress described above, 
involving cytokines, cardiomyocytes, immune, and endothe-
lial cells. This vicious cycle induces the functional and 
structural alterations (cardiac hypertrophy, fibrosis, electri-
cal abnormalities) observed in HF.

Biomarkers of oxidative stress 
and inflammation

Serum biomarkers have been studied as tools for risk strati-
fication before ANT therapy, early detection of subclinical 
cardiac damage during treatment, or identification of late 
effects. The majority of studies have focused on cardiac 

troponins and natriuretic peptides (NPs), which have been 
recommended as tools for therapy monitoring [1].

Evidence on biomarkers of oxidative stress and inflamma-
tion is sparse and mostly derives from single-center studies. 
The increase in serum ROS (determined by measuring the 
radical species produced by a specific reaction, which are 
directly proportional to the quantity of lipid peroxides) and 
the decrease in glutathione peroxidase displayed a correla-
tion with the reduction in strain rate peak, and serum ROS 
levels were the only independent predictive variable of sys-
tolic dysfunction at multiple regression analysis [24]. In a 
phase II trial on 49 cancer patients receiving epirubicin and 
either telmistartan or placebo, telmisartan was able prevent 
ANT-induced increase in serum IL-6 and ROS levels [25]. 
Total antioxidant status (TAOS) represents the sum of all 
measurable antioxidant within plasma and body fluids. In a 
study on 29 acute leukemia children on ANT, TAOS levels 
decreased in parallel with the cumulative ANT dose [26].

C-reactive protein (CRP) is a nonspecific marker of 
inflammation produced by the hepatocytes in response to 
IL-6 released from macrophages and T cells. Several stud-
ies reported a significant elevation of CRP [27] and high-
sensitivity CRP (hs-CRP) [28–31] following ANT-based 
chemotherapy, but only one study demonstrated a modest 
association between hs-CRP increase and echocardiographic 
evidence of cardiotoxicity [31], and therapies counteract-
ing ANT-related cardiotoxicity do not seem to alter hs-CRP 
levels [32].

Myeloperoxidase (MPO) is a proinflammatory enzyme 
expressed by neutrophils and involved in ROS production 
and lipid peroxidation. In one study on 78 cancer patients 
receiving doxorubicin and trastuzumab, a transient increase 
in MPO levels following chemotherapy predicted subsequent 
development of LVEF decline; among several biomarkers, 
the combination MPO and troponin I identified a subgroup 
of patients at higher risk of cardiotoxicity [30]. A following 
study from the same group confirmed the predictive value 
of MPO for ANT cardiotoxicity [31].

Inflammatory mediators TNFα and ILs have not emerged 
as robust biomarkers of ANT cardiotoxicity. Serum TNF 
and soluble TNF receptors I and II levels do not seem to 
change in response to ANT-based chemotherapy [24, 33, 
34]. Similar results have been reported for IL-1β [24]. Con-
versely, IL-6 levels increased significantly following epiru-
bicin administration and correlated with reduction of peak 
strain rate at echocardiography, a marker of early systolic 
dysfunction [24].

Sawaya et al. [35] and Armenian et al. [36] evaluated 
the predictive role of soluble suppression of tumorigenesis 
2 (sST2), a biomarker released mainly by extracardiac tis-
sues in response to inflammatory and fibrotic stimuli, for 
early and late cardiotoxicity in cancer survivors treated with 
ANT-based regimens. Both studies showed that sST2 levels 
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were slightly above normal range at baseline, but did not 
change significantly during the follow-up and did not cor-
relate with the evolution of echocardiographic parameters. A 
recent study reported a significant increase in sST2 follow-
ing ANT administration to breast cancer patients, although 
no difference in sST2 were observed between patients who 
developed a decline in LVEF and those remaining clinically 
stable [37].

Multiomics approaches have tried to trace the molecular 
fingerprint of ANT cardiotoxicity in order to identify novel 
biomarkers able to predict this complication. For example, 
a proteomic profiling approach showed that higher base-
line immunoglobulin E (IgE) levels were associated with a 
lower risk of chemotherapy-induced cardiotoxicity, possibly 
because of a lower degree of activation of the Th1 response 
[38].

Imaging findings related to inflammation

Several imaging techniques allow to assess the presence and 
extent of inflammation and to monitor its evolution over time 
(Table 1). In the acute phase, imaging findings may vary from 
a subclinical injury with preserved LVEF [5] up to extensive 
involvement and cardiogenic shock [39]. Echocardiography 
represents the first-line imaging technique, but subtle systolic 
abnormalities may not be recognized during the early phases of 
the disease. In the setting of ANT cardiotoxicity, strain echocar-
diography may not only detect subtle alterations but also predict 
subsequent myocardial dysfunction; therefore, its use in every-
day clinical practice is recommended by current guidelines [40].

The main limitation of echocardiography is that it can 
assess myocardial damage only through its impact on sys-
tolic function. Conversely, cardiac magnetic resonance 
(CMR) allows not only to reproducibly estimate biven-
tricular volumes and systolic function but also to assess 

the presence, extent, and pattern of distribution of myo-
cardial edema, fat, and fibrosis [41–43]. T2-weighted fast-
spin-echo sequence is a robust technique in inflammation 
imaging, allowing to noninvasively detect with a millimet-
ric spatial resolution the presence of areas of myocardial 
inflammation in various inflammatory cardiomyopathies 
including early-phase ANT cardiotoxicity [28]. More 
recently, novel parametric mapping techniques such as T1 
and T2 mapping have shown their potential in the early 
identification of ANT cardiotoxicity in both preclinical 
[44] and clinical settings [45].

Single-photon emission computed tomography 
(SPECT) has been used to assess LV geometry and func-
tion in patients receiving ANT [46] but is performed 
very rarely because of the radiation exposure of patients 
requiring follow-up examinations, and the low agree-
ment between SPECT and CMR estimates of LVEF [47]. 
18F-Fluoro-D-glucose positron emission tomography (18F-
FDG PET) has the unique ability to characterize myo-
cardial metabolism [48], which may be helpful for early 
detection of cardiotoxicity as increased glucose uptake 
[49]. The role of 18F-FDG PET is currently limited to the 
research setting.

Following the acute phase, serial CMR examinations 
may document the evolution of myocardial inflammation 
and its sequelae. Myocardial scar can be detected as late 
gadolinium enhancement (LGE) in post-contrast T1 gradient 
echo sequences. Various LGE patterns and estimates of LGE 
prevalence have been reported in ANT-related cardiotoxic-
ity [50, 51], likely because of the small study size, and their 
heterogeneous enrolment criteria and treatment regimens. 
Both reparative fibrosis and interstitial fibrosis have been 
described. In children with subclinical ANT cardiotoxicity, 
T1 mapping showed an expansion of extracellular spaces, 
correlating with cumulative ANT dose and exercise capac-
ity [52]. In a cohort of adult cancer survivors, myocardial 
T1 elevation occurred independently of the underlying 

Table 1  Imaging techniques to assess myocardial inflammation and its consequences in patients receiving anthracyclines (ANTs)

2D/3D two-/three-dimensional, 18F-FDG PET, 18F-fluoro-D-glucose positron emission tomography, CMR cardiac magnetic resonance, LGE late 
gadolinium enhancement, LV/RV left/right ventricle, TTE transthoracic echocardiography

Acute/chronic phase, roles of imaging Imaging technique Main findings in ANT cardiotoxicity

Acute phase:
- Early detection of cardiac damage
- Prognostic stratification

(2D/3D) TTE LV/RV regional/global systolic dysfunction; diastolic dysfunction
(2D/3D) strain TTE Subclinical LV/RV systolic dysfunction
CMR LV/RV regional/global systolic dysfunction; LV/RV hyperintensity in 

T2w sequences; LGE; increase in regional/global T1 and T2 map-
ping values

SPECT LVEF decrease
18F-FDG PET Increased glucose uptake

Chronic phase:
- Detection of cardiac damage
- Follow-up of known cardiomyopathy

TTE LV/RV regional/global systolic dysfunction; diastolic dysfunction
CMR LV/RV regional/global systolic dysfunction; LGE
SPECT LVEF decrease
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neoplasm or cardiac comorbidities, and could then be attrib-
uted to the cardiotoxic effect of chemotherapy [53].

Therapeutic approaches

Several treatments targeting oxidative stress or inflammation 
have been evaluated as possible approaches to ANT-related 
cardiotoxicity (Table 2). On the other hand, the identification 
of a less cardiotoxic analogous of ANT has proven challeng-
ing [54]; these approaches will not be discussed here.

Antioxidant agents

Dexrazoxane (DEX) is the only drug approved for the pri-
mary prevention of ANT cardiotoxicity. DEX is an iron-
chelator that reduces ROS production by impairing the for-
mation of iron-ANT complexes; this molecule also inhibits 
cardiomyocyte apoptosis by blocking ANT binding to topoi-
somerase IIβ [55]. A significant reduction in cardiac events 
and HF incidence in a cohort of 2177 patients with breast 
cancer exposed to ANT and treated with DEX, without any 
reduction in the antineoplastic efficacy of the chemotherapy 
regimens, has been reported [56]. DEX is currently approved 
in Europe for adults with advanced metastatic breast can-
cer who have received a cumulative dose ≥ 300 mg/m2 of 
doxorubicin or ≥ 540 mg/m2 of epirubicin and would benefit 
from continued ANT-based therapy [1]. Despite some con-
cerns of short- and long-term risks (e.g., myelosuppression, 
acute myeloid leukemia), studies have shown a generally 
safe profile even in younger patients [57–59]. Therefore, a 
recent opening has been made for the use of DEX in patients 
under 18 years requiring high ANT doses (https ://www.ema.
europ a.eu/en/medic ines/human /refer rals/cardi oxane ).

Other antioxidants have been tested [60]. Similar to 
DEX, these molecules are believed to reduce ROS-related 
cardiac damage and, at least partially, inhibit cardiomyocyte 
apoptosis. One of these molecules is vitamin C, which was 
reported to mitigate DOX-induced oxidative and nitrosative 
stress and apoptosis in isolated cardiomyocytes [61], and to 
blunt inflammatory activation, improve systolic and diastolic 
function, and survival in rats exposed to DOX [62]. Simi-
larly, vitamin E relieved oxidative stress in rats, but was not 
sufficient to protect cardiac mitochondrial membranes from 
DOX toxicity [63].

The antioxidant omega-3 polyunsaturated fatty acids 
(PUFA) failed to afford cardiac protection to sheep receiving 
ANT [64], and an open-label, phase II clinical trial showed 
no significant adverse effects and preserved efficacy of 
chemotherapy in patients receiving ANT [65].

Coenzyme Q10 is a fat-soluble electron carrier in mito-
chondria and a coenzyme in different energetic pathways 
[66]. A significant decrease in myocardial content of 

coenzyme Q10 has been observed in ANT-related cardio-
myopathy [67]. Supplementation of this molecule has been 
tested in both pre-clinical studies [68, 69] and small clini-
cal trials [68, 69], whose results do not allow any definite 
conclusion.

Melatonin is a hormone with antioxidant effect that can 
be supplemented with limited adverse effects. Several pre-
clinical studies have investigated the role of melatonin in 
ANT-related cardiotoxicity. Based on a recent meta-analysis 
of 28 studies, melatonin administration appeared safe and 
associated with reduced cardiac damage and mortality [70]. 
N-acetylcysteine has a well-known antioxidant efficacy but 
did not reduce HF occurrence in the only randomized con-
trolled trial (RCT) on patients with solid cancers treated 
with ANT [71]. The antioxidant molecules l-carnitine and 
amifostine seem to not provide any benefit to human patients 
treated with ANT [72, 73].

Carvedilol, a β-1, β-2, and α-1 adrenergic receptor 
blocker, has an antioxidant action deriving from the inhi-
bition of the complex 1 of the respiratory chain [74] and 
reduces lipid peroxidation [75, 76]. In a meta-analysis 
including 8 trials and a total of 633 patients, co-treatment 
with carvedilol was associated with a lower rate of both 
HF occurrence and absolute decrease in LV ejection frac-
tion, although the reliability of this conclusion is limited by 
the high degree of heterogeneity in the study populations 
and endpoints [77]. The OVERCOME (preventiOn of left 
Ventricular dysfunction with Enalapril and caRvedilol in 
patients submitted to intensive ChemOtherapy for the treat-
ment of Malignant hEmopathies) study was a small (n = 90 
patients) trial showing a protective role of the combination 
of carvedilol and the angiotensin-converting enzyme inhibi-
tor (ACEi) enalapril in patients with blood neoplasms, 40% 
of whom receiving ANT [78]. Several other studies reported 
the positive effects of ACEi and angiotensin receptor block-
ers in preventing ANT cardiotoxicity, because of their anti-
neurohormonal, vasodilating, and possibly antioxidant and 
anti-inflammatory actions [79–82].

Anti‑inflammatory agents

Secondary anti-inflammatory and potential antioxidant 
properties have been attributed to some molecules routinely used 
in different clinical settings. The anti-diabetic drugs dipeptidyl-
peptidase 4 inhibitors (DPP4i) seem to inhibit inflammatory and 
pro-oxidant pathways. In a rat model of DOX-toxicity, the DPP4i 
sitagliptin antagonized the inflammatory cascade involved 
in ANT cardiotoxicity, reducing cell damage, apoptosis, and 
cytokine levels [83]. A class-dependent effect of DPP4i might be 
postulated given the efficacy of another molecule (teneligliptin) 
in a recent in vitro study [84]. Similarly, the inhibitors of 
the sodium glucose co-transporter 2 empagliflozin and 
dapagliflozin appear to reduce ANT-dependent inflammation 
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and cardiotoxicity in vitro and in vivo [85]. Furthermore, the 
antibiotic dapsone was tested in rats that had received DOX, 
leading to a reduction in heart levels of oxidant factors and 
pro-inflammatory cytokines and a significant amelioration of 

electrocardiographic and electrophysiological parameters, heart 
contractility, and biomarkers concentrations, as well as positive 
effects at the histopathological level [86]. Finally, the potent anti-
inflammatory and anti-oxidant effects of statins might explain 

Table 2  Therapeutic approaches targeting oxidative stress and inflammation for the prevention of anthracycline (ANT)-related cardiotoxicity: 
evidence from preclinical studies and clinical trials

ALL acute lymphoblastic leukemia, BC breast cancer, CM cardiomyocyte, HF heart failure, IL-1 interleukin-1, LV left ventricle, LVEF left ven-
tricular ejection fraction, NHL non-Hodgkin lymphoma, PUFA polyunsaturated fatty acids, RCT  randomized clinical trial, TNFα tumor necrosis 
factor alpha

Antioxidant agents

First Author, year (ref.) Molecule Study design Population Main results

Macedo et al., 2019 [56] Dexrazoxane Meta-analysis Patients with BC from 9 clinical 
trials (n = 2177)

Reduction in cardiac events and 
HF incidence; no effects on the 
efficacy of anticancer therapy

Akolkar et al., 2017 [61] Vitamin C In vitro study Rat CMs Inhibition of pro-oxidant and pro-
inflammatory cascade

Akolkar et al., 2017 [62] Vitamin C Animal study Rats receiving ANT Inhibition of pro-oxidant and pro-
inflammatory cascade, lower 
rates of cardiac damage, systolic 
and diastolic dysfunction

Berthiaume et al., 2005 [63] Vitamin E Animal study Rats receiving ANT No prevention of mitochondrial 
dysfunction and histological 
changes in the heart

Carbone et al., 2012 [64] Omega 3 PUFA Animal study Sheep receiving ANT Exacerbation of ANT cardio-
toxicity

Iarussi et al., 1994 [68] Coenzyme-Q Clinical study (not RCT) Patients with ALL (n = 20) Reduction in LV systolic 
dysfunction and wall motion 
abnormalities

Chen et al., 2016 [69] Coenzyme-Q Animal study Rats receiving ANT Reduction in histological changes 
in the heart

Najafi et al., 2019 [70] Melatonin Systematic review of pre-
clinical studies

28 studies (mostly on mice/rats) Decreased mortality, body weight 
and heart weight, ascites; reduc-
tion of histological changes in 
the heart

Myers et al., 1983 [71] N-acetylcysteine RCT Patients with solid tumors 
(n = 54)

No difference in HF incidence

Waldner et al., 2006 [72] L-carnitine RCT Patients with NHL (n = 40) No difference in HF incidence
Gallegos-Castorena et al., 2007 

[73]
Amifostine Clinical study (not RCT) Patients with osteosarcoma 

(n = 28)
No difference in HF incidence

Kheiri et al., 2018 [77] Carvedilol Meta-analysis Patients with solid or blood 
cancer (n = 633)

Reduction in HF incidence and of 
absolute LVEF decrease

Bosch et al., 2013 [78] Carvedilol/enalapril RCT Patients with blood cancer 
(n = 90)

Preservation of LV systolic 
function

Hiona et al., 2011 [81] Enalapril Animal study Rats receiving ANT Preservation of LV systolic func-
tion and mitochondrial respira-
tory efficacy

Anti-inflammatory agents
Reference Molecule Study design Population Main results
Sheibani et al., 2020 [86] Dapsone Animal study Rats receiving ANT Reduction in cardiac levels of 

prooxidant and proinflammatory 
factors; preservation of cardiac 
function

Sheta et al., 2016 [83] Metformin or sitagliptin Animal study Rats receiving ANT Blunting of inflammatory 
pathways and preservation of 
cardiac function (+ + sitagliptin)

Peng et al., 2019 [84] Teneligliptin In vitro study Rat and human CMs Reduction in CM damage, 
apoptosis, and proinflammatory 
cytokines

Seicean et al., 2012 [87] Statins Retrospective study Patients with BC (n = 628) Reduction in HF incidence and 
cardiac mortality
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the beneficial effects of these molecules in preventing incident 
HF in a cohort of 628 newly diagnosed breast cancer patients 
receiving ANT [87]. An RCT is underway to verify the efficacy 
of atorvastatin in this clinical setting (NCT01988571).

Conclusions and future perspectives

Chemotherapy with ANT-based regimens remains a cornerstone 
of treatment of many solid and blood tumors, but is associated 
with a nonnegligible risk of cardiotoxicity, which may lead over 
time to clinically manifest HF. Our current understanding of car-
diac damage by ANT includes a central role of oxidative stress 
and inflammation. Detection of these processes through circulat-
ing biomarkers or imaging techniques might then be helpful for 
early diagnosis and risk stratification. Furthermore, therapeutic 
strategies relieving oxidative stress and inflammation hold some 
promise to prevent HF development or at least mitigate cardiac 
damage, although further evidence is needed on the efficacy of 
these drugs, either alone or as part of combination therapies with 
therapies for neurohormonal antagonism.

Key points

• Anthracyclines are potent and common chemotherapeu-
tics for hematological and solid tumors but are burdened 
with a serious risk of cardiotoxicity, which may be partly 
mediated by inflammation and oxidative stress.

• Several serum biomarkers related to inflammation and 
oxidative stress (e.g., CRP, myeloperoxidase, glutathione 
peroxidase) have been proposed for risk stratification and 
detection of anthracyclines cardiotoxicity, but evidence 
is still lacking.

• Anthracycline cardiotoxicity can be monitored with 
imaging techniques, e.g., echocardiography, computed 
or positron emission tomography, or cardiac magnetic 
resonance that can document the evolution of myocardial 
inflammation and its sequelae.

• Apart from dexrazoxane, which reduces ROS production, 
no other drug is approved for the primary prevention of 
ANT cardiotoxicity, but several anti-inflammatory and 
antioxidant agents are being investigated.
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