
Slice Isolation for 5G Transport Networks
Chia-Yu Chang∗, Manuel A. Jiménez∗∗, Molka Gharbaoui‡††, Javier Sacido†,

Fabio Ubaldi§, Chrysa Papagianni∗‖, Aitor Zabala†, Luca Valcarenghi‡, Davide Scano‡,
Konstantin Tomakh¶, Alessio Giorgetti‡‡‡, Andrea Boddi§, Koen De Schepper∗

∗Nokia Bell Labs; †Telcaria Ideas S.L.; ‡Scuola Superiore Sant’Anna; §Ericsson Research; ¶MIRANTIS;
‖University of Amsterdam; ∗∗IMDEA Networks Institute; ††CNIT; ‡‡IEIIT-CNR;

Abstract—Network slicing plays a key role in the 5G ecosystem
for vertical industries to introduce new services. However, one
widely-recognized challenge of network slicing is to provide
traffic isolation and concurrently satisfy diverse performance
requirements, e.g., bandwidth and latency. In this work, we
showcase the capability to retain these two goals at the same time,
via extending the 5Growth baseline architecture and designing a
new data-plane pipeline, i.e., virtual queue, over the P4 switch. To
demonstrate the effectiveness of our approach, a proof-of-concept
is presented serving different service requests over a mixed data
path, including P4 switches and Open vSwitches (OvSs).

I. INTRODUCTION

The fifth-generation (5G) marks a paradigm shift beyond
the telecommunication industry, paving the way to provide
ubiquitous connectivity and value-added services to vertical
industries. Therefore, a comprehensive set of new use cases
comes into the picture with diverse service requirements, rang-
ing from substantial bandwidth needed by ultra HD streaming
to stringent low-latency urged by haptic interaction. To this
end, one key requirement for 5G is to provide verticals with
networking environment tailored to their needs.

In this manner, the network slicing notion arises as one
critical feature to serve the diverse 5G ecosystem. In practice,
each network slice can be accounted as a part of the in-
frastructure, comprising virtualized resources, virtual/physical
network functions, and network services, configured to support
some service’s Key Performance Indicators (KPIs). Moreover,
network slicing in 5G benefits from both Network Functions
Virtualization (NFV) and Software Defined Networking (SDN)
techniques for fast service deployment and simplified life-
cycle management, exposing a standard interface to each
tenant for deploying and managing network services.

However, one basic requirement for network slice instances
running over the same physical infrastructure is slice isolation;
that is they need to be operated independently without one
part being affected by the internal operations or performance
of another. Several levels of isolation between network slices
are introduced in [1]. Among them, traffic and bandwidth
isolation are pivotal for network applications. The former aims
to ensure that the data flow of one slice will not move to
another slice sharing the same infrastructure, while the latter
indicates that each slice should not exceed, unless explicitly
instructed to, the total amount of bandwidth allocated to it. In
general, network slice isolation dimensions and solutions are
elaborated in [2] for different network domains. Focusing on
performance isolation, the requirement to meet service KPIs

regardless of congestion level for the rest of the network slices,
we provide a programmable solution ensuring bandwidth and
delay guarantees, as well as traffic isolation, and showcase it
for the transport network domain.

The remaining article is structured as follows. A system
description is in Sec. II, with the introduction to our extensions
to legacy 5Growth baseline platform and data-plane infrastruc-
ture to facilitate performance isolation. We then validate the
solution’s effectiveness over a proof-of-concept presented in
Sec. III. Finally, some concluding remarks are in Sec. IV.

II. SYSTEM DESCRIPTION

A. 5Growth Architecture Extensions for Performance Isolation

Our work is based on the baseline 5Growth architecture,
consisting of three main building blocks: (a) Vertical Slicer
(5Gr-VS), (b) Service Orchestrator (5Gr-SO), and (c) Resource
Layer (5Gr-RL), from top to bottom. Due to space limitation,
we encourage readers to refer to our prior work in [3] for
details. Among them, our focus is on the 5Gr-RL, interacting
with the underlying data-plane infrastructure to provide dif-
ferent resources to network slices. In addition, two specific
plugins for 5Gr-RL are extended to enable network slice
isolation: WAN Infrastructure Manager (WIM) plugin that
enables control of Wide Area Network (WAN) domain and a
Virtual Infrastructure Manager (VIM) plugin for governing the
available computing resources in Data Center (DC) domain.
We highlight our particular extensions as follows:

1) 5Gr-RL extensions: The 5Gr-RL release [4] is extended
to support slice isolation. Specifically, a smart resource orches-
tration algorithm is triggered for each slice, upon receiving a
resource allocation request, mapping the abstracted requested
resource to a Quality of Service (QoS) policy characterizing
the network slice. For instance, the policy can include pa-
rameters like minimum/maximum throughput and maximum
delay. Moreover, it sets up the corresponding alarms using the
monitoring system. The 5Gr-RL southbound interface is also
extended to communicate parameters to the WIM plugin that
is responsible for configuring transport infrastructures.

2) 5Gr WIM plugin: The WIM plugin enables the in-
teraction between the 5Gr-RL southbound interface and the
Open Network Operating System (ONOS) SDN controller.
Specifically, upon request (i) it exposes to the 5Gr-RL informa-
tion regarding the status of the virtualized network resources
characterizing the SDN network, e.g., virtual links, available
bandwidth and (ii) it allows for requesting the allocation of
virtualized network resources to deploy a network service.978-1-6654-0522-5/21/$31.00 ©2021 IEEE

366

20
21

 IE
EE

 7
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 N

et
w

or
k

So
ftw

ar
iz

at
io

n
(N

et
So

ft)
 |

97
8-

1-
66

54
-0

52
2-

5/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
N

et
So

ft5
15

09
.2

02
1.

94
92

64
6

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on August 16,2021 at 12:55:36 UTC from IEEE Xplore. Restrictions apply.

 P4 target

Slice A

Slice B

Shared
output

Physical
Queue

Non-programmable
traffic management

vQueue

AQM

AQM

Add virtual delay & Queue management

Slice A

Slice B

Slice A

Slice B

 Slice configuration
 Rate limit, Delay limit, AQM, etc.

Aligned behaviour and
control policy along data path

Slice A

Slice B

Individual
Input Register

Register

D
E
P
A
R
S
E
R

P
A
R
S
E
R

Fig. 1: Virtual queue implementation over P4 pipeline

Our extension to WIM plugin [5] allows to handle the
requests that aim to set up network slices with specific QoS
characteristics and also to enforce the performance isolation.
Therefore, new parameters characterizing the slices are added,
such as maximum/minimum bandwidth, maximum burst size,
and Active Queue Management (AQM) parameters for delay
guarantee, etc. After parameter extraction from the request,
the WIN plugin interacts with the SDN controller to set up
the slice and enforce QoS guarantees.

3) 5Gr VIM plugin: The 5Gr-RL manages the VIM
resources (e.g., computing and communication resources)
through the VIM plugin. Particularly, when Kubernetes is used
as the VIM, the corresponding Kubernetes plugin is utilized
for the 5Gr-RL. The VIM plugin first receives the 5Gr-RL’s
compute resource creation requests, translates it, and then
sends it to Kubernetes to create pods inside the Kubernetes
cluster. Note that the initial version of the Kubernetes plugin
does not support VLAN-based networks, while different Con-
tainer Network Interfaces (CNI) must be used by Kubernetes
to support different network technologies. Hence, Multus [6]
CNI is used to connect the pods to the transport network’s
external WIM. Multus is a CNI plugin for Kubernetes that
enables attaching multiple network interfaces to pods, and it
can create a VLAN-based network that connects a physical
port to the pod. Thus, the VIM plugin is extended accordingly
to provide the interface for managing the Multus CNI.

B. Infrastructure Extensions for Performance Isolation

To support the performance isolation, several extensions are
realized in both control-plane (ONOS SDN controller) and
data-plane (Open vSwitch [OvS] and P4 switch).

Firstly, to enforce traffic isolation, we employ the Virtual
Private LAN Service (VPLS), deploying L2 multipoint-to-
multipoint connections over the shared transport network.
The VPLS native ONOS application is employed towards
that end. In addition, to be cross-compatible with data-plane
infrastructure beyond OvS, a re-engineering of the P4 data-
plane is executed to be applicable for P4 switch.

To meet throughput and delay guarantees, we introduce the
virtual queues in the P4 pipeline, as shown in Fig. 1. In short,
a virtual queue models the sojourn time of the queue, as if
the packets arrive at the real queue serving by a link with the
capacity lower than the actual link capacity. Via using virtual

5Growth
 Arch.

DC
domain

 WAN
 domain

Performance-isolated Network Slice B
()

Data-plane switches

PoP A

PoP B

PoP C

ONOS
Kubernetes

(k8s)
VPLS QoSlicing P4 pipeconf

5Gr WIM plugin 5Gr VIM plugin

5Gr-RL

Performance-isolated Network Slice A
(Traffic isolation, Bandwidth and Delay guarantee)

Expose to
Verticals

: OvS: P4 switch
PoP D

Fig. 2: System overview

queues to perform per-slice policing and leveraging P4’s real
queuing latency monitoring capability, we can meet the delay
requirement of each slice. In contrast, basic traffic metering
is used via the OpenFlow protocol over OvSs for bandwidth
guarantee. Such meters can only manage bandwidth and burst
limits by means of color codes (e.g., two rate Three Color
Marker) when thresholds are exceeded.

In addition, we deploy ONOS to control and coordinate
SDN protocols for both P4 switch and OvS. However, ONOS
nowadays only provides traffic isolation across slices, without
the capability of bandwidth and delay guarantees. Therefore,
we introduce the QoSlicing as an application managing both
meters and virtual queues across slices and exposing a unified
interface towards the upper layers. Such application utilizes the
developed P4-pipeconf application as the interpreter to interact
with underlying P4 pipeline, e.g., to obtain virtual queues’
parameters. Finally, as shown in Fig. 2, the performance-
isolated network slices are exposed to verticals across Points of
Presences (PoPs), leveraging the ONOS SDN controller (with
three aforesaid applications) in WAN domain, Kubernetns
cluster in DC domain, and 5Gr-RL with two plugins.

III. PROOF-OF-CONCEPT

In the demonstration, we investigate four traffic metrics with
regards to evaluating the performance of network slices. First
is the end-to-end latency by measuring the round-trip time
between two end-points, and the second is the application-
layer throughput by counting successfully received data pay-
load. Moreover, to capture the latency in the data-plane
infrastructure, we also measure two types of delay: virtual
delay and real delay. The former is the latency encountered in
the virtual queue (cf. Fig. 1), and the latter is the experienced
delay of the actual physical queue in the pipeline. Note that
these two types of delay show their importance under different
conditions. A non-zero real delay represents that the physical
queue is built up, while the virtual delay can limit throughput
when link capacity is not saturated.

367Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on August 16,2021 at 12:55:36 UTC from IEEE Xplore. Restrictions apply.

VM 1

VM 2

VM 3

VM 4

VM 5
Data-plane
Switches

VM 6
ONOS SDN controller

VM 7
5Gr-RL

k8s (PoP C)

k8s (PoP D)

k8s (PoP A)

k8s (PoP B)

Veth

VethVeth

Veth

QoSlicingVPLS WIM VIMP4 pipeconf

Data plane

Control plane

Client VPNInternet
Management plane

5Gr-RL can be deployed
non-collocated in other

5GPPP lab (e.g., 5Tonic)

Fig. 3: Proof-of-concept setup

To demonstrate the system in Fig. 2, one server hosting
seven virtual machines (VMs) is installed, with their intercon-
nections and functionalities shown in Fig. 3. There are four
VMs acting as individual host to transmit/receive traffic via
the correspondent PoP, while all data plane switches (OvS and
BMv2) are deployed in VM5 using mininet. Further, VM6 is
served as the ONOS SDN controller with three aforementioned
applications to control underlying data plane switches, and the
5Gr-RL is on VM7 with both VIM and WIM plugins. Finally,
four presented phases in our demonstration are explained as
follows, and the full video can be found in [7]:
Phase I: We first set the link capacity to 72 Mbps and instan-
tiate one network slice A with a single 100 Mbps UDP traffic
flowing from PoP C to PoP A. To show the vanilla behavior
of a network slice, neither bandwidth nor delay guarantee
is applied. We can observe a very large end-to-end latency
(more than 2 second) together with the saturated throughput.
Moreover, a large real delay and almost zero virtual delay
are observed, due to the link capacity full utilization and the
physical queue is filled up.
Phase II: We then activate the performance isolation by
configuring the slice A to guarantee 12 Mbps throughput and
10 ms delay. Since the guaranteed bandwidth is smaller than
the link capacity, less than 1 ms end-to-end latency is observed
together with no real delay, by reason of no physical queue
being built up. In contrast, around 10 ms virtual delay is
experienced using the virtual queue in the P4 pipeline and
it can limit the throughput to the guaranteed 12 Mbps.
Phase III: To see its effectiveness under different guarantees,
we increase the guaranteed throughput to 120 Mbps, exceeding
the 72 Mbps link capacity. We can see that both end-to-end
latency and real delay are bounded to around 10 ms with no
virtual delay. This is due to the congestion at the real link,
and thus virtual queue contributes no virtual delay.
Phase IV: Another network slice B is brought up with traffic
flowing from PoP D to PoP B. Both slices are guaranteed with
48 Mbps throughput, while slice B has 5 ms delay guarantee,
being one half of the 10 ms delay guarantee to slice A. The

Slice
A Bandwidth guarantee: 48Mbps / Delay guarantee: 10ms

Bandwidth guarantee: 48Mbps / Delay guarantee: 5ms
Slice

B

Fig. 4: Proof-of-concept phase IV results

performance of slice A is then limited by the virtual queue
due to its higher delay guarantee, while slice B is limited
by the maximum link capacity and the real queue. As the
results shown in Fig. 4, slice A gets the guaranteed 48 Mbps
throughput with around 10 ms virtual delay, while slice B has
less than 20 Mbps with a larger 4 ms real delay. We can see
that the slice with the most stringent delay bound decides who
suffers from a lower throughput, while such slice prioritization
can be modified with adjusted real queue priorities.

IV. CONCLUSIONS

In this work, we demonstrate that our network slicing
approach can retain traffic and performance isolation providing
bandwidth and delay guarantees, based on our extensions
over the 5Growth architecture and programmable data-plane
infrastructure. Our next goal is to apply the proposed solution
to the 5G validation trials deployed in the context of 5Growth.

ACKNOWLEDGMENTS

Supported by the EC H2020 5Growth project (Grant 856709).

REFERENCES

[1] Z. Kotulski et al., “On end-to-end approach for slice isolation in 5G
networks. Fundamental challenges,” in 2017 Federated Conference on
Computer Science and Information Systems, 2017, pp. 783–792.

[2] A. J. Gonzalez et al., “The Isolation Concept in the 5G Network
Slicing,” in 2020 European Conference on Networks and Communications
(EuCNC), 2020, pp. 12–16.

[3] C. Papagianni et al., “5Growth: AI-driven 5G for Automation in Vertical
Industries,” in 2020 European Conference on Networks and Communica-
tions (EuCNC), 2020, pp. 17–22.

[4] 5Growth RL code repository, https://github.com/5growth/5gr-rl.
[5] 5Growth WIM plugin code repository, https://github.com/5growth/5gr-

rl/tree/master/rl/plugins/WIM/ONOS-OpenFlow-Slicing/onos-plugin.
[6] Multus CNI code repository, https://github.com/intel/multus-cni.
[7] Performance Isolation for 5G Network Slicing,

https://www.youtube.com/watch?v=DSGHUBFuvYs.

368Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on August 16,2021 at 12:55:36 UTC from IEEE Xplore. Restrictions apply.

