Towards a Holistic Cloud System with End-to-End
Performance Guarantees

Remo Andreoli* and Tommaso Cucinottal
Sant’Anna School of Advanced Studies
Pisa, Italy
name.surname@santannapisa.it

* PhD Candidate
t Supervisor

Abstract—Computing technologies are undergoing a relentless
evolution from both the hardware and software sides, incorporat-
ing new mechanisms for low-latency networking, virtualization,
operating systems, hardware acceleration, smart services orches-
tration, serverless computing, hybrid private-public Cloud solu-
tions and others. Therefore, Cloud infrastructures are becoming
increasingly attractive for deploying a wider and wider range of
applications, including those with more and more stringent timing
constraints, like the emerging use case of deploying time-critical
applications. However, despite the availability of a number of
public Cloud offerings, and of products (or open-source suites) for
deploying in-house private Cloud infrastructures, still there are
no solutions readily available for managing time-critical software
components with predictable end-to-end timing requirements in
the range of hundreds or even tens of milliseconds. The goal
of this discussion is to present the multi-domain challenges
associated with orchestrating a holistic Cloud system with end-
to-end guarantees, which is the subject of my current PhD
investigations.

Index Terms—Cloud Orchestration, Cloud System, End-to-End
Performance

I. INTRODUCTION & BACKGROUND

The emerging use case of deploying time-critical appli-
cations in the Cloud is a challenging task due to stringent
requirements in terms of system availability and service
quality. Contrary to conventional cloud-based use cases, the
correctness of a time-critical system depends not only on the
computation’s results but also on the time at which the indi-
vidual results are produced. Time-criticality covers a plethora
of heterogeneous use cases: from industrial control systems to
media streaming platforms [2]. Depending on the “criticality”
degree of the use case, a disruption or lateness in service
response times may lead to simple customer dissatisfaction
(i.e., stuttering in a virtual reality multiplayer environment) as
well as catastrophic consequences in the physical world (i.e., a
cloud-controlled autonomous vehicle that detects a pedestrian
too late). As of today, no cloud provider stipulates a Service-
Level Agreement (SLA) for individual request guarantees,
but rather for a number of requests over a wide time period
(i.e., months, years). For instance, AWS DynamoDB [10] and
Google BigTable [9] are two fully-managed cloud service that
claim to guarantee single-digit millisecond per-request latency;

Applications Faa$S / SaaS

S

B Services > PaaS

pas =

5

g

ﬁ Resource Virtualization 0 laas

o

Network Compute Storage

Fig. 1. Cloud computing architecture stack.

nevertheless, their SLAs are defined in terms of the “usual”
monthly service availability'2.

The adoption of cloud technologies for time-criticality is
hampered by two problems: A) performance uncertainties
are inherent of today’s conventional cloud and networking
infrastructures; B) the goal of typical cloud orchestration
operations (e.g., placement, provisioning, run-time scaling,
and monitoring) is to maximize throughput and utilization of
shared resources. Such a best-effort Quality-of-Service (QoS)
approach does not apply to time-critical applications, which
require more granular, per-request QoS guarantees. The two
problems are highly correlated: proper orchestration is unfea-
sible without a cloud infrastructure with time-critical capa-
bilities; improved predictability is worthless without adequate
resource orchestration. The construction of a comprehensive
cloud system that incorporates time-critical guarantees across
the entire cloud stack (Figure 1), requires addressing the two
problems to the same extent.

Many academic studies focus on improving the predictabil-
ity of cloud services and infrastructures (problem A) and
provide integrations with production-grade cloud technologies.
Conversely, very few papers investigate proper orchestration
for the time-critical use case (problem B), nor do they provide
practical implementations on real-world cloud orchestrators.
For instance, every orchestration tool deploys one-by-one
the components of a complex application, without taking

Uhttps://aws.amazon.com/dynamodb/sla/
Zhttps://cloud.google.com/bigtable/sla

into account structural requirements (or just supporting the
specification of simple affinity/anti-affinity constraints); this
may lead to a suboptimal initial placement which is hardly
able to guarantee a specific response time. On a similar note,
there is a lack of proper monitoring tools for correcting a time-
critical deployment at run-time. My current research direction
is focused on filling these gaps on the orchestration side. The
rest of this section briefly presents the current state-of-the-art
for problem A (Section I-A) and problem B (Section I-B),
including my contributions to both categories.

A. Performance predictability

There has been plenty of academic research investigating
the predictability of system performance at different levels
of the cloud stack. At the infrastructure level, the recent
developments in the 5G community have been instrumental
to the emergence of deterministic networking technologies
for end-to-end latencies, such as Time-sensitive Networking
(TSN) [11]. A lot of academic works integrate predictable
real-time CPU scheduling and resource isolation for popular
hypervisors and container orchestrators, such as rt-Xen [19]
and rt-Kubernetes [12]. On the storage area, the zoned storage
model [7] for flash-based SSDs promises an optimized 1/O
subsystem for isolation, predictable latency, intelligent data
placement, and I/O scheduling.

At the service layer, there has been a similar focus on
integrating time-criticality within the services’ software. For
instance, [worked on rt-MongoDB [3]-[5], a modified version
of MongoDB which incorporates differentiated performance
capabilities. If such feature get integrated in mainline, a cloud
provider offering a cloud-hosted database service can use it to
serve higher-priority requests with shorter response times and
less variance, with respect to lower-priority requests. Naturally,
a time-sensitive workload will be labeled as high-priority,
whereas a batch-processing workload will be labeled as low-
priority.

B. Time-Critical orchestration

There have been some works focusing on different steps
of the orchestration procedure for time-critical applications in
cloud environments [8], [15], [17]. Cloud-native applications
are often represented as directed acyclic graphs (DAG), whose
composing activities are often represented as microservices.
However, most of these works provide overly complex user-
defined parameters in terms of task-to-task communication
bandwidth, hardware/software requirements, and so on. In
reality, a cloud user overestimates, or is simply unaware, of the
precise resource requirements of his/her application. This leads
to resource and money waste, as well as misunderstandings
with the cloud provider. The cloud user should only specify
the topology that constitutes its cloud-native application, along
with the required end-to-end response time for fulfilling a sin-
gle user request. The cloud provider should be entrusted with
providing the optimal deployment decisions that minimize
the violation of such requirements at design-time and run-
time. Unsurprisingly, Serverless computing seems to be the

Fig. 3. Example of a distributed cloud infrastructure divided into independent
availability zones.

right paradigm to deal with time-criticality, as it relieves the
customers from the burden of provisioning virtual resources.
There are some foundational works [16], [18] on the topic,
but none of them consider complex, distributed application
topologies. Moreover, fault-tolerance and the related reper-
cussions on service availability are often neglected in these
works, despite their relevance in real-world cloud platforms
(and for the proper functioning of time-critical applications).
In this regard, I contributed to a novel performance model
for time-critical, fault-tolerant cloud architectures [1], [6] in
collaboration with Ericsson Research. Our work focuses on
estimating at design-time the worst-case response time for a
set of microservice-based time-critical applications by taking
into account the worst-case workload patterns, as well as the
occurrence of faults.

There is also a lack of recent work on proper monitoring
and actuation methods to guarantee at run-time high availabil-
ity and scalability for time-critical workloads. Conventional
threshold-based approaches are increasingly becoming too
cumbersome due to the complexity and sheer size of modern
distributed cloud infrastructures. An example is Khaleq et
al. [13], which propose a Machine Learning (ML) method
to predict scaling actions and improve response times at run-
time.

II. FUTURE WORKS

This section describes the next steps of my research di-
rection. My current goal is to incorporate novel deployment
strategies for distributed applications with temporal constraints
on a widely adopted, open-source cloud orchestrator like
Kubernetes. As with previous works, a cloud-native appli-
cation is represented as a DAG of cloud-based activities. A
single activity may be a simple computational job, but also
a query to a database service with time-critical capabilities,
such as rt-MongoDB. An activity may also require specialized
hardware, such as an accelerator (Figure 2). The number of
requirements specified by the user is minimal and mainly in
terms of individual response times and service availability
guarantees. Therefore, following the Serverless paradigm, the
whole orchestration burden is left to the cloud provider. A
(non-exhaustive) list of duties that the cloud provider must
perform: i) estimate the worst-case response for each activity,
based on the application topology; ii) plan in advance the
provisioning of the virtual resources and their placement on
the underlying infrastructure (such as the one in Figure 3), so
that the user-defined request response times are guaranteed; iii)
infer if such performance requirements are currently feasible;
iv) monitor and timely react to fault conditions; v) monitor and
dynamically adapt the deployment in order to withstand traffic
bursts with minimal disservice to the time-critical applications.
My previous work, briefly described in Section I-B, is a
step towards facilitating some of these duties, mainly 1), ii)
and iii). However, there is still much work to be done to
properly characterize the underlying infrastructure, especially
network-wise, by introducing geo-distributed infrastructures,
such as edge and fog nodes. I tackled the deployment problem
using approaches based on Mixed-Integer Linear Programming
(MILP) or Mixed-Integer Quadratic Program (MIQCP). How-
ever, the solving time exponentially increases with the size
of the underlying infrastructure, and it becomes even more
cumbersome with probabilistic formulations. Therefore, I’'m
planning to steer away from traditional solvers providing exact
solutions, in favor of heuristics and ML-based approaches.
Furthermore, there is also a growing interest in sustainable
orchestration techniques for energy efficiency; however, I have
not yet investigated in this direction.

Regarding the monitoring part of orchestration, I col-
laborated in the creation of an ML-based detection sys-
tem for cloud operations in OpenStack, extending the work
in [14]. The idea is to overcome the limitations of traditional,
threshold-based detection systems by automatically applying
corrective actions in response to observed anomalies. However,
such work does not address time-criticality.

REFERENCES

[1] Luca Abeni, Remo Andreoli, Harald Gustafsson, Raquel Mini, and
Tommaso Cucinotta. Fault tolerance in real-time cloud computing.
In 2023 IEEE 26th International Symposium on Real-Time Distributed
Computing (ISORC), 2023.

[2] Fredrik Alriksson, Lisa Bostrom, Joachim Sachs, Y-P Eric Wang, and Ali
Zaidi. Critical IoT connectivity Ideal for Time-Critical Communications.
Ericsson technology review, 2020(6):2-13, 2020.

[3] Remo Andreoli and Tommaso Cucinotta. Differentiated performance

in nosql database access for hybrid cloud-hpc workloads. In High Per-

formance Computing: 1SC High Performance Digital 2021 International

Workshops, Frankfurt am Main, Germany, June 24—July 2, 2021, Revised

Selected Papers 36, pages 439—449. Springer, 2021.

Remo Andreoli, Tommaso Cucinotta, and Daniel Bristot De Oliveira.

Priority-driven differentiated performance for nosql database-as-a-

service. IEEE Transactions on Cloud Computing (accepted and to be

published).

[5] Remo Andreoli, Tommaso Cucinotta, and Dino Pedreschi. Rt-mongodb:

A nosql database with differentiated performance. In CLOSER, pages

77-86, 2021.

Remo Andreoli, Harald Gustafsson, Luca Abeni, Raquel Mini, and

Tommaso Cucinotta. Design-time analysis of time-critical and fault-

tolerance constraints in cloud services. In 2023 IEEE 16th International

Conference on Cloud Computing (CLOUD), 2023.

Matias Bjgrling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh,

Damien Le Moal, Gregory R Ganger, and George Amvrosiadis. Zns:

Avoiding the block interface tax for flash-based ssds. In USENIX Annual

Technical Conference, pages 689-703, 2021.

Antonio Brogi, Stefano Forti, and Ahmad Ibrahim. Optimising qos-

assurance, resource usage and cost of fog application deployments. In

Cloud Computing and Services Science: 8th International Conference,

CLOSER 2018, Funchal, Madeira, Portugal, March 19-21, 2018, Re-

vised Selected Papers 8, pages 168—189. Springer, 2019.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deb-

orah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and

Robert E. Gruber. Bigtable: A distributed storage system for structured

data. ACM Trans. Comput. Syst., 26(2), jun 2008.

[10] Mostafa Elhemali, Niall Gallagher, Bin Tang, Nick Gordon, Hao Huang,
Haibo Chen, Joseph Idziorek, Mengtian Wang, Richard Krog, Zongpeng
Zhu, et al. Amazon DynamoDB: A Scalable, Predictably Performant,
and Fully Managed NoSQL Database Service. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22), pages 1037-1048, 2022.

[11] Norman Finn. Introduction to time-sensitive networking. IEEE Com-
munications Standards Magazine, 2(2):22-28, 2018.

[12] Stefano Fiori, Luca Abeni, and Tommaso Cucinotta. Rt-kubernetes:
containerized real-time cloud computing. In Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing, pages 36-39, 2022.

[13] Abeer Abdel Khaleq and Ilkyeun Ra. Intelligent autoscaling of microser-
vices in the cloud for real-time applications. IEEE Access, 9:35464—
35476, 2021.

[14] Giacomo Lanciano, Filippo Galli, Tommaso Cucinotta, Davide Bacciu,
and Andrea Passarella. Extending OpenStack Monasca for Predictive
Elasticity Control. Big Data Mining and Analytics, 2023.

[15] Li Liu, Qi Fan, and Rajkumar Buyya. A deadline-constrained multi-
objective task scheduling algorithm in mobile cloud environments. /EEE
Access, 6:52982-52996, 2018.

[16] Hai Duc Nguyen, Chaojie Zhang, Zhujun Xiao, and Andrew A. Chien.
Real-Time Serverless: Enabling Application Performance Guarantees. In
Proceedings of the 5th International Workshop on Serverless Computing,
WOSC °19, page 1-6, New York, NY, USA, 2019. Association for
Computing Machinery.

[17] Polona §tefanié, Matej Cigale, Andrew C Jones, Louise Knight, Ian
Taylor, Cristiana Istrate, George Suciu, Alexandre Ulisses, Vlado
Stankovski, Salman Taherizadeh, et al. Switch workbench: A
novel approach for the development and deployment of time-critical
microservice-based cloud-native applications. Future Generation Com-
puter Systems, 99:197-212, 2019.

[18] Mark Szalay, Peter Matray, and Laszlo Toka. Real-time faas: Towards
a latency bounded serverless cloud. [EEE Transactions on Cloud
Computing, 2022.

[19] Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. Rt-xen:
Towards real-time hypervisor scheduling in xen. In Proceedings of the
ninth ACM international conference on Embedded software, pages 39—
48, 2011.

[4

[l

[6

=

[7

—

[8

=

[9

	Introduction & Background
	Performance predictability
	Time-Critical orchestration

	Future Works
	References

