
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2023 1

One-shot imitation learning with Graph Neural Networks for
Pick-and-Place manipulation tasks

Francesco Di Felice, Salvatore D’Avella, Alberto Remus, Paolo Tripicchio and Carlo Alberto Avizzano

Abstract—The proposed work presents a framework based
on Graph Neural Networks (GNN) that abstracts the task to
be executed and directly allows the robot to learn task-specific
rules from synthetic demonstrations given through imitation
learning. A graph representation of the state space is considered
to encode the task-relevant entities as nodes for a Pick-and-
Place task declined at different levels of difficulty. During
training, the GNN-based policy learns the underlying rules of
the manipulation task focusing on the structural relevance and
the type of objects and goals, relying on an external primitive
to move the robot to accomplish the task. The GNN-policy has
been trained as a node-classification approach by looking at the
different configurations of the objects and goals present in the
scene, learning the association between them with respect to
their type for the Pick-and-Place task. The experimental results
show a high generalization capability of the proposed model in
terms of the number, positions, height distributions, and even
configurations of the objects/goals. Thanks to the generalization,
only a single image of the desired goal configuration is required
at inference time.

Index Terms—Learning from Demonstration, Imitation Learn-
ing, Task and Motion Planning

I. INTRODUCTION

When robots appeared in the industry back in the 90s, the
most popular programming method for the first decades was
online programming due to its simplicity and intuitiveness [1].
Online programming is still nowadays the first choice for small
and easy tasks, but when the tasks become more complex,
offline programming is the preferred and most effective alter-
native. However, even though robotic research advances have
grown very fast in the last few years, industrial robots execute
mostly pre-programmed tasks. And if something changes,
they still need to be programmed again by expert operators.
Programming-by-demonstration [2] has shortened the time
required to set up new procedures, but still, robots do not
present a high level of autonomy. In line with the concept of
flexibility pushed by Industry 4.0 [3], vision-guided robots are
becoming the new generation of robots powered by computer
vision and artificial intelligence techniques trying to shorten
the gap toward autonomous robots capable of adapting to the
changes in the surrounding environment [4].

Task-oriented or Task and Motion Programming (TAMP) [5]
is a framework that tries to abstract at a high-level the robot

Manuscript received: March, 2, 2023; Revised June, 1, 2023; Accepted July,
12, 2023.

This paper was recommended for publication by Editor Hanna Kurni-
awati upon evaluation of the Associate Editor and Reviewers’ comments.
This work was supported by Leonardo Company S.p.A. under grant No.
LDO/CTI/P/0026995/21, July 2nd, 2021

1All the authors are with the Department of Excellence in Robotics &
AI, Mechanical Intelligence Institute, Scuola Superiore Sant’Anna, Pisa, Italy
firstname.lastname@santannapisa.it

Digital Object Identifier (DOI): see top of this page.

Goal configuration Object configuration

Trained GNN-
based policy

Pick and Place
primitive

GNNgoal

GNNobj

Fig. 1. Graphical representation of the proposed approach where a Graph
Neural Network based policy abstracts the Pick-and-Place tasks as pairs of an
object and a goal. Given a scene (goal configuration acquired at the beginning
of the task and the current object configuration), the GNN policy plans at each
time step which object o∗ to move in which goal g∗ to achieve the desired
goal configuration. The GNN policy is composed of two GNNs: one focused
on the goals and the other on the objects. The input is provided to the GNN
through a perception module, while the decision taken by the GNN is executed
by an external PickAndPlace primitive.

programming process and the improvements in computer vi-
sion and machine learning boosted the development. Anyway,
all the aforementioned methods, even if they allow adapting
to the target changes, are able to employ just the single policy
encoded in the execution of a task, and they should be re-
programmed from scratch to satisfy other needs, which can be
inefficient and tedious. In this context, imitation learning [6],
i.e., the ability of the robot to acquire knowledge by imitating
humans, can be a key feature since it can enable the operator
to dynamically program the robot without leveraging on strong
programming skills.

There exist three main approaches to imitation learning for
robotics based on the way the knowledge is transferred to
the robot [2]: kinesthetic teaching, teleoperation, and passive
observation. The last one is the easiest for the operator since
the human has to show the actions to be performed by the robot
in a more human-like approach [7]. With regard to passive
observations, a key characteristic would be to endow the robot
with the ability to learn the rules of the task without the need to
equip the human operator with on-body sensors [8]. However,
the main problem is how to make the robot able to acquire
knowledge about task rules for the planning process from the
perception of the environment.

In this direction, the proposed work provides a framework
based on Graph Neural Networks (GNNs) for Pick-and-Place
tasks, exploiting the GNN’s ability to capture relational in-
ductive biases [9]. By abstracting the task to be executed,
the GNN-based policy directly allows the robot to learn task-
specific rules from abstract synthetic demonstrations in train-
ing and to one-shot generalize to unseen tasks in inference.
Therefore, it is possible to consider a graph representation
of the state space that encodes the task-relevant entities as
nodes, in such a way the GNN-based policy could exploit

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3301234

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2023

the intrinsic information present between the nodes of the
graph for the acquisition of the task-specific rules. Basically,
the GNN holds the role of orchestrating the steps for com-
pleting the manipulation task at a high-level, choosing which
entities of the graph are relevant and should be passed to
the externally encoded PickAndPlace motion primitives. The
policy has been trained with a node-classification approach
by looking at the different configurations of the objects and
goals present in the scene. In Pick-and-Place tasks, especially
in the industrial sector, recognizing the type of target objects is
crucial. The developed GNN-based policy has been designed
to take explicitly into consideration the types of objects present
in the scene. Therefore, it is able to learn the association
between objects to pick and goals positions for placing with
respect to the object type, even for complex tasks like object
stacking. Several experiments have been carried out to assess
the performance of the proposed approach. The framework
requires synthetic demonstrations to train the network, and the
experimental results show a high generalization capability of
the proposed model in terms of the number of objects/goals,
objects/goals’ stacks, heights distributions, planar position on
the table, and configurations of objects/goals used during the
training demonstrations.

The paper is organized as follows: Section II provides
an overview of works that address the robotic manipulation
problem; Section III presents the background on the Graph
Neural Networks; Section IV shows the adopted methodology,
while Section V illustrated the results of the experiments
together with an ablation study of the architecture; Section
VI and Section VII summarize the paper concluding the work
and showing future research directions.

II. RELATED WORK

The Task And Motion Planning approach (TAMP) [5] for
solving long-horizon manipulation tasks has proved to be
a powerful tool in robotics, thanks to the combination of
artificial intelligence methods applied to task planning level
and robotics solutions to motion planning [10]. As shown
in [11], the high-level reasoning ability, i.e., the capability
of planning in very different situations, represents a key
challenge. In particular, it is hard to deduce high-level planning
in a world characterized by low-level sensing. One classical
TAMP approach of common use relies on a set of pre-defined
symbolic tasks by defining states, actions, and transition
models that are given to symbolic planners [12]. Such kind of
methods require a precise definition of the domain, and any
modification in the environment requires a re-definition of the
domain by an expert programmer. Another popular approach
that is emerging in TAMP approaches is the integration of
machine learning techniques inside planning [13].

Anyway, all the aforementioned methods, even if they
allow adapting to the target changes, are able to employ
just the single policy encoded in the execution of a task,
and they should be re-programmed from scratch to satisfy
other needs, which can be inefficient and tedious. In this
context, Imitation Learning (IL) can be a key feature since
it can enable the operator to dynamically program the robot

without leveraging strong programming skills. However, the
majority of works in Imitation Learning assume a close match
between train and test environment [14] without the possibility
of transferring knowledge to new situations. For this reason,
One-Shot Imitation Learning (OSIL) tries to overcome the
limitations imposed by classical IL approaches. The goal of
OSIL, first formulated in [15], is to learn a policy that, given
one demonstration of a new unseen task (w.r.t. the training
set), is able to generalize and to act in the unseen instance
of the task. In recent years, several works have addressed the
problem of one-shot imitation learning by exploiting different
techniques like Model-Agnostic Meta-Learning [16], Domain
Adaptation [17], Transformers [18], or Graph Neural Networks
[19]. The common denominator of these works is the use of
visual input through video demonstrations. Instead, the pro-
posed work focuses on the one-shot imitation learning problem
from the planning manipulation point of view exploiting state
space information of the scene. In practice, given a single
demonstration of the desired goal configuration, the robot
should be able to plan long-horizon manipulation sub-tasks,
in a goal-conditioned manner.

Other works addressing the problem of OSIL try to learn
modular task structures to be reused at inference time like
[20] that proposes a graph approach to represent the action
sequence of a task and [21] that formulates one-shot imitation
learning as a symbolic planning problem. In this direction,
[22] provides a combination of symbolic and geometric scene
graphs to achieve symbolic goal specification, and [23] ex-
ploits GNNs to predict inter-objects relationships and a se-
quence of actions that can accomplish the specified symbolic
goal. However, the outputs of these symbolic planners are
highly abstracted in semantic concepts, thus assuming exten-
sive domain knowledge and human-designed priors, and are
not well-suited for those situations where a specific goal pose
is necessary (like the industrial setting that is here considered).

Another approach based on GNN applied to the problem
of robotic manipulation is [24], which exploits Graph Neural
networks to forecast object motion in scenes in combination
with Model Predictive Control but was demonstrated only in
much simpler tasks and scenarios (pushing and falling) w.r.t.
the cases considered in the proposed work. A recent work
[25] uses Gated GNN for robotic grasping to understand the
picking order of the objects, combining the state representation
provided by the GNN with visual feature extractors without
considering a goal configuration. In addition, it requires spe-
cific datasets to train the model in contrast to a purely synthetic
dataset as the proposed work.

Differently from [26], which also exploited state space
information to construct a GNN to tackle the long-horizon
manipulation task, the proposed work focuses on the general-
ization ability of the proposed GNN approach to achieve one-
shot imitation learning capabilities on more complex tasks and
scenarios, even considering the types of the objects involved
in the scene. In particular, the proposed approach is based on
the combination of two different GNNs that, during training,
directly learn task-specific rules and require only a single
goal-configuration demo at inference time to accomplish the
task. Considering the poses and types of objects involved in

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3301234

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

DI FELICE et al.: ONE-SHOT IMITATION LEARNING WITH GRAPH NEURAL NETWORKS FOR PICK-AND-PLACE MANIPULATION TASKS 3

the scene drastically increases the task completion difficulty,
especially in stacking tasks due to the presence of precedence
constraints, i.e., putting the highest object in the lowest goal
corresponding to that type. Respecting such constraints is
compulsory in the industrial sector.

III. BACKGROUND

Let G = (V,E) be a graph with V being the set of
vertices and E the set of edges between nodes. Each node
v ∈ V has a feature vector f(v) that contains the node’s
specific information. With message passing, neighboring nodes
can exchange information encapsulated into feature vectors,
obtaining updates of the feature vectors for each node in
the graph. One message-passing layer consists of two main
phases: transformation and aggregation. Each node’s feature
is updated through a transformation of the initial feature f(v)
and an aggregation of the feature of the neighboring nodes.
Denoting with hl

i the feature vector of node i at layer l,
the general definition for message passing architectures is
hl+1
i = ϕθ(h

l
i, h

l
j{j∈Ni}

), where θ are parameters of the
network that are optimized during training and j ∈ Ni are
the neighbors of node i. In the beginning it results h0

i = f(v).
Many different architectures exist, and most of them make

different choices in the way they transform and aggregate
information between nodes in the above general formulation.
One key property of GNNs is the fact that, once the network is
trained, the model’s parameters can be shared across all nodes,
giving them inductive learning capability. This means that it
is possible to train the GNN on one graph, obtain parameters
of the graph network, and then apply the same network to
a new graph. In this work, two approaches are analyzed for
training the graph neural network, GraphSAGE [27] and Graph
Attention Networks [28].

GraphSAGE: Most existing approaches are inherently
transductive since they require the presence of all nodes
in a graph, and they do not intrinsically generalize to new
unseen nodes. GraphSAGE takes explicitly into consideration
this problem by constructing a model that, during training,
given a node i, samples a set of neighbors Ni not evaluating
all node’s neighbors. Node’s embeddings are computed by

hl+1
i = σ

(
θ0h

l
i +

θ1
|Ni|

∑
j∈Ni

hl
j

)
where θ0 and θ1 are the

parameters of the network,
∑

j∈Ni
denotes the aggregation of

the feature vectors of each neighbor j of node i, and σ denotes
the nonlinear activation function.

Graph Attention Networks (GAT): This type of architec-
ture takes into consideration how much the feature vector of
node j is important for node i by using coefficients that weigh
the degree of importance. Node’s embeddings are computed by
hl+1
i = σ

(
θ0h

l
l +

∑
j∈Ni

ai,jθ1h
l
j

)
where θ0 and θ1 are the

parameters of the network,
∑

j∈Ni
denotes the aggregation

of the feature vectors of each neighbor j of node i, σ
denotes the nonlinear activation function, and ai represents
the attention coefficients, which are in turn computed by

ai,j =
exp(ai,j)∑

k∈Ni
(exp ai,k)

.

IV. PROPOSED APPROACH

The proposed approach uses a GNN-based policy that ab-
stracts the task of Pick-and-Place at a higher level. The policy
is meant to find the relationships among objects involved in
the scene that are the targets to be grasped and the goals
corresponding to the targets’ placement positions. Then, an
external low-level PickAndPlace primitive takes as input the
decision of the GNN-based policy π (representing the poses
of chosen object and goal) and it is in charge of moving the
robot to accomplish the task. In particular, the policy combines
two GNNs that orchestrate the long-horizon manipulation task,
choosing which object has to be located in which goal at
each time step of the task execution. Indeed, the policy has
been designed to take explicitly into consideration the type
of objects present in the scene. At each time step t a fully-
connected object-centric graph G of the scene st is constructed
and it is evaluated by the GNN policy π.

A. Problem formulation

We consider goal-conditioned one-shot imitation learning
as a supervised learning problem on a synthetic data set con-
taining Pick-and-Place demonstrations. Each demonstration of
the Pick-and-Place completion is characterized by state-action
pairs (st, at) at each time step t. The state st is converted into
a graph, and the action at represents the connection between
the object o∗ that must be moved in the correct goal g∗ to
achieve the new state st+1 at the time step t+ 1. Each entire
task completion T is composed of a set {(s1, a1), ..., (sT , aT)}
containing state-action pairs until the final time step T of the
single manipulation task is reached. Policy π is trained on a
dataset D = {T1, ..., Tn}.

B. Method

Fig. 2 depicts graphically the proposed approach. From an
image of the scene, a geometric graph is constructed. In the
graph encoding step, the objects and the goals define the set of
nodes. ñτ

o = ñτ
g , where ñτ

o represents the number of objects
for each type τ and ñτ

g represents the number of goals for
each type τ . This assumption implies that the total number
of objects no is equal to the total number of goals ng . The
set of vertices is V = {vol }

no

l=1 ∪ {vgi }
ng

i=1 with cardinality
|V | = no + ng = M . The superscripts and subscripts o and g
denote if the vertex refers respectively to an object or a goal.

The set of edges is E = {ei,j} with i, j = 1, ..., no + ng .
Each node v ∈ V is characterized by a feature vector f(v)
containing the pose, the type, and structural information.
From the geometric graph encoded scene G, the policy π
returns probability distributions over objects and goals. In
the probability computation, the policy π has to capture the
importance of structural relations among the entities and the
importance of correct type association between object and
goal. Denoting with {τol }

No

l=1 the type of the object - where
No represents the total number of objects’ types - and with
{τgi }

Ng

i=1 the type of the goal - where Ng represents the total
number of goals’ types - the study considers No = Ng = N .
The total number of types is No + Ng = 2N . The policy π

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3301234

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2023

Geometric Graph

0.0003

0.002

0.7

0.05

0.86

0.1

Perception
Task Policy

Pick and Place Pose obj
Pose goal

Motion Primitve

Environment

GNNobj
GNNgoal

Fig. 2. Overview of the proposed approach. The scene is captured by the camera, which perceives objects and goals. The perception module has the role of
providing information about the type (τj) and poses ([xj , yj , zj , q0j , q1j , q2j , q3j]) of each object/goal j. The information is encoded in a geometric scene
graph G, where, in the illustration, yellow nodes represent objects, and cyan nodes represent goals. The GNNobj outputs probability distribution over objects.
The objects’ feature vectors are modified such that only the chosen object becomes reachable. Then GNNgoal outputs a probability distribution over goals.
Policy π chooses the object and the goal with the highest probability and extracts pose information from correspondent feature vectors. Finally, the poses are
sent to the motion primitive, which picks the specified object pose and places it in the specified goal pose.

has to learn the mapping {τoj −→ τgj }Nj=1 during the execution.
Pseudo-code of the algorithm is shown in Algorithm 1.

C. Feature encoding

At each time step, the graph is updated with the information
coming from the scene. Each node of the graph has a feature
vector f(v) ∈ R2N+9, where N are the types of objects and
goals encoded as a categorical feature that is then converted
in a one-hot encoded vector. Fig. 3 illustrates the information
encapsulated in the feature vector: three values represent the
x, y, z translational information in the world frame, four values
represent the orientation information in the form of quaternion
q0, q1, q2, q3, one feature encapsulates information about the
reachability of the object/goal considered, and the last feature
is a binary value, denoting if an object is inside a goal of the
same type (1) or not (0), or if a goal is filled with an object
of the same type (1) or not (0).

The reachability term indicates with the value of 1 if the
considered entity can be manipulated by the low-level Pick-
and-Place primitive being the highest free objects with the
type corresponding to one of the types of one of the lowest
free goals. It is worth noticing that such information is not
restrictive since can be derived by the perception module that
gives the input to the GNN.

D. Policy training

The policy π, which acts on G, is composed of two GNNs.
The first one (GNNobj) takes in input the graph representation
and outputs a probability distribution over the objects’ nodes,
while the second GNN (GNNgoal) takes as input both the
graph representation of the state and the object selected by
GNNobj , i.e., the object node with the highest probability, and
predicts a probability distribution over goals’ nodes.

The PickAndPlace manipulation task is considered at each
time-step as a binary classification problem: the GNNobj

Algorithm 1 GNN-based policy for manipulation task
1: for t ≤ T do
2: G ← st
3: po, pg ← π(G)
4: o∗ = argmax po

5: g∗ = argmax pg

6: Execute PickAndPlace with inputs o∗ and g∗

7: end for

takes as input the feature vector f(v) of each node v ∈ V
and, passing inside a sigmoidal function, outputs a choosing
probability for each vertex. Then a value of 1 is assigned to the
object that presents the highest probability and setting 0 to all
the others, thus deciding which object has to be manipulated
at each time step. In this way, each vertex in the graph results
in a 1-dimensional binary vector. The GNNgoal takes as input
both the graph representation and the information about the
chosen object, which is provided by modifying the reachability
feature of the incoming graph representation’s nodes setting all
the reachability features of the objects to 0, except the one of
the chosen object that is instead set to 1. Finally, the GNNgoal

outputs a probability distribution over the goals passing each
vertex value inside the sigmoidal function.

The parameters of the two Graph Neural Networks are
trained to minimize the binary cross-entropy loss. One target
vector per GNN is used in the policy: Pyobj

for GNNobj

contains information about the correct object o∗ and the correct
goal g∗, while Pygoal

for GNNgoal is a modified version of the
first one, where all reachable goals of the same object’s type
g∗τ are set equal to 1. This gives rise to the target zero vector
Pyobj

having 1 where [ok = o∗, gk = g∗] and to target zero
vector Pygoal

having 1 where [ok = o∗, gk = g∗τ]. This design
choice allows GNNobj to choose the object on the basis of
structural information encoded in the graph, and GNNgoal to
focus on those goals matching the type of first GNN’s choice.

Given Pyk
the target label for each node k = 1, ...,M in

the graph and pk the value of probability assigned in output
by the GNN to the k − th node, the loss function L to be
minimized is:

L =
1

M

M∑
k=1

−Pyk
log(pk)− (1− Pyk

) log(1− pk) (1)

Types of objects Types of goals filled/not filled

zyx q0 q1 q2 q3

reachability

Fig. 3. Schematic view of f(v) ∈ R2N+9. The first N -dimensional one-
hot encoding vector refers to the objects while the second one concerns the
goals. The last 9 encompass the world coordinates x, y, z, the quaternion
q0, q1, q2, q3, one binary element to indicate if the actual object/goal is
reachable and another binary element that states if the object has been placed
in the corresponding goal.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3301234

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

DI FELICE et al.: ONE-SHOT IMITATION LEARNING WITH GRAPH NEURAL NETWORKS FOR PICK-AND-PLACE MANIPULATION TASKS 5

The loss function as the Eq. 1 is computed both for GNNobj

as Lobj and GNNgoal as Lgoal, respectively using the target
vector Pyobj

and Pygoal
. The output probability over objects’

nodes computed by GNNobj is then concatenated with the
output probability computed over goals’ nodes by GNNgoal,
obtaining a unique tensor of probabilities denoted by p of
length M . Given po the vector of choice probabilities for
no objects and pg the vector choosing probabilities for ng

goals, the chosen object is computed as o∗ = argmax po, and
similarly the chosen goal is computed as g∗ = argmax pg .

The parameters of the two GNNs are meant to maximize
the generalization behavior: indeed, a binary cross-entropy loss
function has been adopted for each node, differently from the
categorical cross-entropy loss used by [26] to decouple the
single GNN’s prediction made for each node from the full
state’s predictions. This allowed the proposed approach scaling
up over an increasing number of nodes.

The target data used to train the networks are collected by
assigning a label to each node in each graph sampled from the
collected dataset of Pick-and-Place demonstrations D. The two
networks are trained separately, and, in the case of GNNgoal,
the information about the chosen object is taken at training
time from the collected objects’ labels.

V. EXPERIMENTS

We use synthetic data to train and test the policy π by
generating different training Ttrain and testing tasks Ttest.

Once trained with synthetic data, the policy can be trans-
ferred to simulation environments or real-hardware platforms
without further modifications. For simulation, we employed
the ROS-Gazebo physical simulator, while we used the Franka
Emika Panda as the robotic arm equipped with a parallel-jaw
gripper. Objects and goals considered in the experiments are
cubes whose color determines their type. In simulations, goals
are represented with semi-transparent cubes of the same color
as the objects. In real scenarios, a RealSense D435i RGB-D
camera has been used.

Since the proposed framework is modular, the perception
and motion execution parts (respectively responsible for pro-
viding the necessary information to the GNN and for grasping
the target) can be different, depending on the user’s needs. In
particular, the perception module should provide the types and
poses (translation + orientation) of the objects. The motion
execution module, instead, should be able to synthesize a
feasible grasp for the target object. For the real hardware
experiments, we leveraged a category 6D pose estimator [29]
to obtain the pose of each object/goal along with a simple
computer vision component that determines the type of the
objects through the HSV color map filtering. Instead, for
the execution module, i.e., the Pick and Place primitive, we
exploited the Moveit! framework in ROS.

It is worth noticing that in real hardware, for the sake of
simplicity, the orientation of the objects has been ignored
since it would have added only complexity in the grasping
phase without affecting the GNN decision-making behavior.
Experiments have been designed such that both GAT and
SAGE models employ MLP-based mapping in the message-

passing layers with the Relu activation function and 100
neurons for each layer.

A. Synthetic data generation and tasks

In this work, an instance of the task is designed to be
a sequence of Pick-and-Place actions from the starting con-
figuration of objects and goals until all the goals have been
filled. Task instances can differ from each other depending on
the variables of the task instance itself: the number of types,
objects, goals (here we assume equal to the number of objects),
objects’ stacks, goals’ stacks, position in the x− y plane, and
height distribution of both objects and goals stacks.

It is worth clarifying some nomenclature that can help
in understanding the following description. Objects can be
stacked in multiple stacks. One highest free object is an object
that is the highest item in its stack. One lowest free goal
is a goal in the lowest position in its stack. The main rule
underlying the task that GNN-policy has to learn is to choose
at each time step one highest free object and to place it in one
lowest free goal of the same type. From this characterization,
it appears clear that there is a strong dependency constraint
on types among objects and goals that must be respected
to accomplish the whole task correctly. Indeed, it is not
guaranteed that the absolute highest object (i.e., the highest
object considering all the stacks) is the one that satisfies the
type constraint for the available lowest free goals at each step
of a task instance.

The dataset D = {T1, ..., Tn} used for training has been
generated synthetically. For each Ti, once all the variables
have been set up, the synthetic code provides a generation of
feature vectors like the one in Fig. 3 and the correct update
for each state-action pair belonging to Ti. Each object/goal has
been considered as a cube of length 0.02m and has a position
on the plane randomly generated with x ∈ (0.3m, 0.7m) and
y ∈ (−0.2m, 0.2m), leaving out all positions that were inside
a circle of radius 0.1m and center in (0.5m, 0.0m) to be used
in the testing phase. The height of the x − y plane has been
considered starting at 0.2m. The number of types present in
each Ti varies in [1, ntype max] between demonstrations.

In order to evaluate the performance of the policy, a
different set of variables has been provided at testing time.
All test experiments have been considered to evaluate the
generalization performance with respect to variables between
Ttrain and Ttest, except for the higher number of types, for
whose generalization, π was not designed.

B. Performance evaluation

In order to choose the hyperparameters of the networks
to perform the validation of the proposed approach, we per-
form a greedy search varying the network model (GAT and
GraphSAGE), the number of message-passing layers inside the
model, and the number of demonstrations. From experimental
training results, it has been observed that the SAGE model
is always able to converge to good training accuracies. Given
the same training conditions, the same does not happen when
the employed architecture is GAT, failing to reach the training

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3301234

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2023

Fig. 4. Results of accuracy with replay (left) and accuracy with end-of-episode
(right) w.r.t. the varying number of objects, showing three models trained on
four types and a maximum of four, eight, and twelve objects respectively,
as reported by the legend. The x-axis of the plots represents the number of
objects used to test the generalization performance of the models, performing
300 runs per num obj. The number of stacks for both objects and goals
randomly varies across runs to obtain diverse configurations. The graphics
show the mean value of accuracies over the 300 runs. The three models are
able to generalize to a number of objects higher than the one presented at
training time.

accuracies achieved with the SAGE model. For this reason, in
the following training, the SAGE model has been used.

During training, three different variables of the task instance
concerning the number of objects have been considered gener-
ating a scenario with 4, 8, and 12 maximum number of objects,
respectively. In each scenario, the number of objects per type
and the number of objects for each demonstration within the
maximum value have been randomly generated. The number
of stacks for both objects and goals varies in the range of [1-4]
in each run to obtain diverse configurations. The accuracy has
been computed as the total number of correct classifications
(i.e., the correct association at each time step between the
highest free object into the lowest free goal of the same type)
over the total number of predictions. It is worth noticing that
the accuracy is computed following two types of metrics that
spot two different salient aspects:
• accuracy with replay for which if the policy π selects an

object or a goal that is not reachable, or the type of object
and the goal does not match, the choice is considered
incorrect, but the state at the subsequent time step is
shown with the correct object placed in the right goal
to continue the demonstration till the end;

• accuracy with end-of-episode for which, if the policy’s
choice is wrong, the Ttest is stopped, and the remaining
choices to complete the task instance are all considered
incorrect for the computation.

In both cases, (unfeasible) situations, in which the policy
is unable to choose a reachable object matching the type
of one of the free lowest goals, are not considered in the
computation. The first metric evaluates the correctness of the
policy’s choices independently of the impact it might have on
the continuation of the task. The second one considers that
an error in the policy automatically makes it unfeasible to
complete the task as the number of objects per type and the
number of goals for the corresponding type is equal. The latter
metric is more stringent and best suited for industrial tasks
where for example, it is relevant that all the objects of a given
type are located in the right place, and an error in a situation
where there are precedence constraints dictated by the type of
the objects can jeopardize the whole task. The complexity of
these kinds of tasks, where the different numbers of stacks and
the different numbers of objects per type are present, can lead

TABLE I
ACCURACY WITH REPLAY FOR HYPERPARAMETERS’ CONFIGURATION.

MODELS TRAINED ON MAX. 4, 8, AND 12 OBJECTS. EACH VALUE
COMPUTED (ON 18 OBJECTS, VARYING THE NUMBER OF STACKS) AS THE

MEAN ACCURACY OVER 300 SEPARATE TEST RUNS.

N. Demos 2 M.P.L. 4 M.P.L. 8 M.P.L.

4 8 12 4 8 12 4 8 12

20 0.56 0.52 0.47 0.56 0.47 0.52 0.53 0.49 0.48
300 0.61 0.70 0.51 0.61 0.79 0.92 0.65 0.80 0.97
1000 0.49 0.76 0.93 0.70 1.0 1.0 0.76 1.0 1.0

to particular situations in which the choice of a certain object
could unlock a feasible path (since another object can become
reachable), otherwise, a deadlock can occur (since the lowest
free goal’s type does not match the highest free objects’ type
forcing the policy to fail).

For the hyperparameters’ configuration, we consider only
the accuracy with replay since we want to find the more ap-
propriate training setup, while for generalization performance
evaluation, we consider both accuracies. In Table I, the results
of the different hyperparameters’ configurations are reported.
Once the model is fixed, each accuracy value in the table is
computed as the mean value of accuracies over a total number
of 300 runs. For each model, we consider the same Ttest, with
18 objects of 4 types varying the number of objects/goals’
stacks between each demonstration. The number of objects
per type in each demo has been randomly generated.

From the performance measures, it is clear that a given
number of demonstrations and a suitable architecture (in
terms of message-passing layers) are needed to obtain a good
generalization. Indeed few demonstrations are not sufficient to
obtain good results independently from the number of training
objects and message-passing layers. However, by increasing
the number of demonstrations, also the accuracies increase in
proportion to the number of message-passing layers and the
number of training objects. The maximum accuracy is obtained
with 4 or 8 message-passing layers and 1000 demonstrations
using either a maximum of 8 or 12 objects during the
demonstrations. Fig. 4 shows the generalization performances
of the 3 models trained with 8 message-passing layers and
1000 demonstrations with respect to the varying number of
objects. The way the accuracy measure is computed on Ttest
is equal to the one used for Table I. The required number of
training demonstrations is also strictly related to the number
of types. As depicted in Table II, when the number of types
increases, the number of training demonstrations required to
have a high accuracy increases as well. Table II also confirms
that the policy’s generalization performance can deteriorate
with the decrease in the number of training demonstrations.

C. Baseline comparison

We compared our approach against IL-GNN [26] and two
RL baselines (RL-GNN and RL-GNN-Seq) on block stack-

TABLE II
MEAN AND STANDARD DEVIATION RESULTS ON 18 OBJECTS TEST TASK

AND VARYING STACKS OVER 300 RUNS PER N. TYPES WITH 600 AND
1000 TRAINING DEMONSTRATIONS.

N
.t

ra
in

in
g

de
m

os N. types 3 4 5 6 7 8

60
0 Acc. with replay 1.0 ± 0.0 0.99 ± 0.01 0.99 ± 0.03 0.89 ± 0.10 0.87 ± 0.1 0.11 ± 0.12

Acc. end-of-ep. 1.0 ± 0.0 0.97 ± 0.16 0.91 ± 0.28 0.40 ± 0.4 0.34 ± 0.37 0.04 ± 0.12

10
00 Acc. with replay 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.99 ± 0.003 0.99 ± 0.014 0.87 ± 0.11

Acc. end-of-ep. 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.98 ± 0.06 0.95 ± 0.21 0.34 ± 0.3

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3301234

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

DI FELICE et al.: ONE-SHOT IMITATION LEARNING WITH GRAPH NEURAL NETWORKS FOR PICK-AND-PLACE MANIPULATION TASKS 7

TABLE III
COMPARISON RESULTS BETWEEN IL-GNN [26] AND OUR APPROACH.

6-Pyramid 3-block 3-stack 40-Block Stacking

IL-GNN 1.0 ± 0.0 1.0 ± 0.0 0.75 ± n.a.
RL-GNN 0.2 ± n.a 0.13 ± n.a n.a
RL-GNN-Seq 0.19 ± n.a 0.14 ± n.a n.a.
Ours 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

ing and pyramid scenarios. These RL baselines have been
designed and trained in [26] to highlight the generalization
abilities of GNN policy over RL.

IL-GNN uses a single geometric Graph Neural Network to
predict at each time step which object and which goal have
to be chosen (using information encoding similar to ours).
The model is trained by collecting expert demonstrations of
bin packing and unpacking (opening a box cover, displacing
the cubes inside or outside the box, and finally closing the
box) with a Cross-entropy Loss minimization and considering
only two types of objects (blocks and cover). Therefore, cubes
are all considered to be of the same type regardless of their
color, resulting in a simpler scenario w.r.t. the experimental
tasks addressed by the proposed approach in which the type
is considered for each cube entity.

RL-GNN is IL-GNN trained using RL on stacks of size 2
to 9, and RL-GNN-Seq is IL-GNN trained using sequential
training curriculum described in [30]. For such a comparison,
we replicated the same conditions of the tests performed in
[26], training our policy on a set of 20 task instances consisting
of a maximum of 4 objects of 1 type, with a number of
stacks ranging from 1 to 3. In particular, we compare the
proposed method against the 6-Pyramid having a pyramid-
like goal configuration with 6 cubes in total and 3 layers, and
block stacking, i.e., size-variable stacks of objects and goals.
The latter is characterized by 3-block 3-stack, and 40-block
stacking configurations.

In Table III, we show that our method can outperform
the IL-GNN baseline approach in the generalization behavior
considering one type. The improvement in performance can be
appreciated most for the 40-Block stacking scenario in which
we reach the maximum accuracy. For the two RL baseline’s
performances on 6-pyramid and 3-block 3-stack scenarios, RL-
GNN reaches 0.2 and 0.13, respectively, while RL-GNN-Seq
obtains 0.19 and 0.14. Indeed, in [26], RL methods on block
stacking tasks have already been shown to have much lower
performance than the baseline, demonstrating the advantage
of the GNN-based approach in such tasks.

D. Architecture ablation

By removing the reachability information from the feature
vector, the networks should still be able to learn the different
structural importance of the cubes to be manipulated from the
z-value during training time, but this adds more complexity to
the training process and affects the robustness of the policy.
Indeed, the reachability factor helps the networks learn the
correct structural behavior and generalize to height distribu-
tions not seen during training, giving much more robustness to
real-world applications. The model trained with a maximum
of 12 objects, 4 types, 1000 demonstrations, and 8 message-
passing layers without the reachability features achieved a

mean accuracy with replay of 0.18 and 0.06 with a std of 0.12
and 0.06 on test tasks presenting 4 and 8 objects respectively.

In addition, the use of the two GNNs, one after the other, is
fundamental for the successful completion of the task. Training
experiments have shown that the type matching rule is not
respected most of the time if only GNNobj or only GNNgoal

is employed, as it is not able to predict both the object and goal
to be manipulated at the same time. The same model used in
the reachability analysis has been evaluated by employing one
GNN at a time on testing tasks with 18 objects. The GNN obj
achieved a mean accuracy with replay of 0.49 with a std of
0.18, and the GNN goal achieved a mean accuracy with replay
0.75 with a std of 0.16, thus showing performance that is lower
than the one obtained with the cascade of the two GNNs.

E. Hardware results

Once the GNN policy has been trained on synthetic data, it
can be directly deployed on robot hardware without any mod-
ifications. In real-world experiments, the information about
the scene is obtained from the RGB-D images provided by
the camera, which is mounted on the wrist of the robotic
arm. The perception module makes use of the i2c-net [29]
opportunely trained on a synthetic dataset containing equally-
sized cubes, rendered through pose, background, and texture
randomization and an additional computer vision component
that detects the type of the object through the HSV color
map filter. The experiments require an operator to show the
desired goal configuration, which is captured by the camera
and memorized. Then objects are randomly displaced in the
scene. The trained GNN-based policy, given the information
of the scene, decides which of the cubes has to be placed
in the corresponding goal configuration. Finally, the external
high-level PickAndPlace primitive executes the task exploiting
the Moveit! framework. The employed model has been trained
on 5 types with 1000 training demonstrations and 12 objects.

It is worth noticing that the cubes employed in real scenarios
are bigger (length equal to 0.025m) than the ones used in
the simulation, and the height distribution is different from
the one seen at training time. A total number of 30 Ttest
runs have been conducted by varying the number of objects,
objects/goals’ configurations, and the number of objects per
type, achieving a mean accuracy with replay and with end-of-
episode equal to 1.0 with 0.0 standard deviation in both cases.
It is not required that all the types should be present in each
demonstration.

The real-hardware performance results show to be consistent
with synthetically computed ones since the policy is not related
to the perception modules. In addition, the policy has proved
to be robust to cases in which the stacks or cubes can fall
during robot execution due to inaccurate perception values or
robot grasping because the new state is perceived again as
being able to continue the task until all goals are filled.

VI. DISCUSSION

We presented an approach based on Graph Neural Network
for one-shot imitation learning in the robotic manipulation
domain. As shown by experimental results, the method is able

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3301234

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2023

to generalize to different aspects of the tasks: position in the
x − y plane, numbers, and height distribution of stacks, and
the number of objects. For the latter, the diagrams in Fig. 4
show that the policy is able to generalize to a total number of
objects quite far from the one seen during training.

The modular structure of the proposed approach is a key
advantage allowing to exploit the perception and grasp module
that best fits the task to be executed since the GNN policy
has the capability of abstracting the underlying rule of the
task and being agnostic to the specific objects involved in the
scene. Being modular the perception module can be substituted
following the progress in the computer vision field as far as
it provides the translation and quaternion information of the
objects. Therefore, errors coming from the perception module
reflected in wrong decisions of the GNN policy could not be
ascribed to the proposed method.

It is worth noticing that, even if the GNN policy has not
been designed to generalize over a number of types higher than
the one employed in training, the policy can handle lower or
equal numbers of types present at inference time. This happens
because the number of types in the training dataset varies
between demonstrations.

VII. CONCLUSIONS

In this paper, a goal-oriented graph policy architecture for
one-shot imitation learning of Pick-and-Place manipulation
tasks is presented. The policy learns the underlying rules
of the task by synthetically generated demonstrations and
shows good generalization behavior, and can be transferred
in real situations without further modifications. In particular,
the proposed framework is modular, and the GNN component
takes the required information from a perception module and
outputs the decision to a motion execution module. The GNN
component actually exploits two GNNs, one for the goals and
the other for the objects involved in the scene. Future works
consist in extending the decision-making policy to cluttered
scenarios and expanding the capabilities of the policy to
multiple actions like push/pull or open/close rather than only
Pick-and-Place to make the approach more versatile.

REFERENCES

[1] Z. Pan, J. Polden, N. Larkin, S. Van Duin, and J. Norrish, “Recent
progress on programming methods for industrial robots,” Robotics and
Computer-Integrated Manufacturing, vol. 28, no. 2, pp. 87–94, 2012.

[2] H. Ravichandar, A. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 3, 05 2020.

[3] E. Oztemel and S. Gursev, “Literature review of industry 4.0 and related
technologies,” Journal of intelligent manufacturing, vol. 31, pp. 127–
182, 2020.

[4] S. D’Avella, C. A. Avizzano, and P. Tripicchio, “Ros-industrial based
robotic cell for industry 4.0: Eye-in-hand stereo camera and visual
servoing for flexible, fast, and accurate picking and hooking in the
production line,” Robotics and Computer-Integrated Manufacturing,
vol. 80, p. 102453, 2023.

[5] K. Zhang, E. Lucet, J. A. D. Sandretto, S. Kchir, and D. Filliat,
“Task and motion planning methods: applications and limitations,” in
19th International Conference on Informatics in Control, Automation
and Robotics ICINCO 2022). SCITEPRESS-Science and Technology
Publications, 2022, pp. 476–483.

[6] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters
et al., “An algorithmic perspective on imitation learning,” Foundations
and Trends® in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[7] V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human–robot
collaboration in industrial settings: Safety, intuitive interfaces and appli-
cations,” Mechatronics, vol. 55, pp. 248–266, 2018.

[8] R. Skoviera, K. Stépánová, M. Tesar, G. Sejnova, J. Sedlár, M. Vavrecka,
R. Babuska, and J. Sivic, “Teaching robots to imitate a human with
no on-teacher sensors. what are the key challenges?” CoRR, vol.
abs/1901.08335, 2019.

[9] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F.
Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, and A. Santoro,
“Relational inductive biases, deep learning, and graph networks,” CoRR,
vol. abs/1806.01261, 2018.

[10] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling,
and T. Lozano-Pérez, “Integrated task and motion planning,” CoRR, vol.
abs/2010.01083, 2020.

[11] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “From skills
to symbols: Learning symbolic representations for abstract high-level
planning,” J. Artif. Int. Res., vol. 61, no. 1, p. 215–289, 2018.

[12] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob: Leveraging
symbolic planning for efficient task and motion planning,” CoRR, vol.
abs/1608.01335, 2016.

[13] M. Mansouri, F. Pecora, and P. Schüller, “Combining task and motion
planning: Challenges and guidelines,” Frontiers in Robotics and AI, p.
133, 2021.

[14] M. Zhao, F. Liu, K. Lee, and P. Abbeel, “Towards more generalizable
one-shot visual imitation learning,” CoRR, vol. abs/2110.13423, 2021.

[15] Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider,
I. Sutskever, P. Abbeel, and W. Zaremba, “One-shot imitation learning,”
CoRR, vol. abs/1703.07326, 2017.

[16] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-shot visual
imitation learning via meta-learning,” CoRR, vol. abs/1709.04905, 2017.

[17] T. Yu, C. Finn, A. Xie, S. Dasari, T. Zhang, P. Abbeel, and S. Levine,
“One-shot imitation from observing humans via domain-adaptive meta-
learning,” CoRR, vol. abs/1802.01557, 2018.

[18] S. Dasari and A. Gupta, “Transformers for one-shot visual imitation,”
CoRR, vol. abs/2011.05970, 2020.

[19] M. Sieb, X. Zhou, A. Huang, O. Kroemer, and K. Fragkiadaki, “Graph-
structured visual imitation,” CoRR, 2019.

[20] D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese,
and J. C. Niebles, “Neural task graphs: Generalizing to unseen tasks
from a single video demonstration,” 06 2019, pp. 8557–8566.

[21] D. Huang, D. Xu, Y. Zhu, A. Garg, S. Savarese, L. Fei-Fei, and
J. C. Niebles, “Continuous relaxation of symbolic planner for one-shot
imitation learning,” CoRR, vol. abs/1908.06769, 2019.

[22] Y. Zhu, J. Tremblay, S. Birchfield, and Y. Zhu, “Hierarchical planning for
long-horizon manipulation with geometric and symbolic scene graphs,”
CoRR, vol. abs/2012.07277, 2020.

[23] Y. Huang, A. Conkey, and T. Hermans, “Planning for multi-object
manipulation with graph neural network relational classifiers,” 2022.

[24] H. F. Tung, X. Zhou, M. Prabhudesai, S. Lal, and K. Fragkiadaki,
“3d-oes: Viewpoint-invariant object-factorized environment simulators,”
CoRR, vol. abs/2011.06464, 2020.

[25] M. Ding, Y. Liu, C. Yang, and X. Lan, “Visual manipulation relationship
detection based on gated graph neural network for robotic grasping,”
in 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2022, pp. 1404–1410.

[26] Y. Lin, A. S. Wang, E. Undersander, and A. Rai, “Efficient and
interpretable robot manipulation with graph neural networks,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 2740–2747, 2022.

[27] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” CoRR, vol. abs/1706.02216, 2017.

[28] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in International Conference on
Learning Representations, 2018.

[29] A. Remus, S. D’Avella, F. D. Felice, P. Tripicchio, and C. A. Avizzano,
“i2c-net: Using instance-level neural networks for monocular category-
level 6d pose estimation,” IEEE Robotics and Automation Letters, pp.
1–8, 2023.

[30] R. Li, A. Jabri, T. Darrell, and P. Agrawal, “Towards practical multi-
object manipulation using relational reinforcement learning,” in 2020
IEEE International Conference on Robotics and Automation (ICRA),
2020, pp. 4051–4058.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2023.3301234

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

