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ABSTRACT

Network slicing is announced to be one of the key features for 5G infrastructures enabling network
operators to provide network services with the flexibility and dynamicity necessary for the vertical
services, while relying on Network Function Virtualization (NFV) and Software-defined Networking
(SDN). On the other hand, vertical industries are attracted by flexibility and customization offered
by operators through network slicing, especially if slices come with in-built SDN capabilities to
programmatically connect their application components and if they are relieved of dealing with
detailed technicalities of the underlying (virtual) infrastructure.

In this paper, we present an Intent-based deployment of a NFV orchestration stack that allows
for the setup of Qos-aware and SDN-enabled network slices toward effective service chaining in
the vertical domain. The main aim of the work is to simplify and automate the deployment of
tenant-managed SDN-enabled network slices through a declarative approach while abstracting the
underlying implementation details and unburdening verticals to deal with technology-specific low-
level networking directives. In our approach, the intent-based framework we propose is based on an
ETSI NFV MANO platform and is assessed through a set of experimental results demonstrating its
feasibility and effectiveness.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The digital transformation and novel vertical applications and
services are leading to a rapid growth in the volume and re-
quirements of traffic forwarded by underlying networks and data
centers [1]. Enabled by Network Function Virtualization (NFV)
and Software-Defined Networking (SDN), network slicing is the
telco operators’ best answer on how to build and manage a
customized network, that meets such emerging requirements
from a wide range of vertical industry applications, e.g., industrial
automation, telemedicine, self-driving cars [2,3].

Through network slicing, vertical industries (herein after ver-
ticals) can benefit from virtualized infrastructure assets to flexi-
bly run their application platforms with resource capacity (e.g.,
amount of virtual CPU and disk capabilities, virtual link band-
width) and network functions (e.g., virtual EPC, security func-
tions) tailored to their business or service operation needs (e.g.,
user demands to serve, preventing specific security threats).
On top of that, verticals are attracted by SDN programmability
into the deployed slices to adaptively establish and manage
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their service graphs based on dynamic context information (e.g.,
user location, service availability, service response time) and
toward maximizing user satisfaction and service continuity [4].
However, verticals are not inclined to handle virtual infrastruc-
ture technicalities and to specify low-level network configuration
parameters, such as virtual machine parameters, network con-
figurations, topology and protocols (e.g., VLAN tags, connection
points), needed to realize their business goals and address their
programmability requisites through network slices established in
the underlying virtual infrastructure [5].

An effective approach to address this challenge is to leverage
Intent-Based Networking (IBN), a work in progress presented
in the Internet Engineering Task Force (IETF) Internet-Draft [6].
IBN was conceived as a novel approach in network manage-
ment to enable a loosely-coupled interworking between network
and application layers. Applications (i.e., customer applications
or service management applications) are able to express desired
operational goals using more congenial terms for them, i.e., de-
scriptive high-level specifications known as intents [7]. On the
other side, network layers (i.e., network operators) are left the
flexibility of meeting those goals based on their own optimization
targets (e.g., consolidating the usage of resources).

Originally targeted to increase automation in network man-
agement and simplify the process of network configurations [8],
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recently IBN enlarged the scope to cover different levels of intents
(i.e., service intent, operational intent) to address multi-layer
business relationship among multiple involved stakeholders in
the emerging NFV ecosystems (i.e., application providers, net-
work operators, service providers, application developers) [9].
As for service-level intent specifications, the SDN capabilities at
the slice control plane level are pretty attractive for verticals to
dynamically steer the traffic among Virtual Network Functions
(VNFs) and flexibly realize their service operational and business
goals (e.g., context-aware service workflows) [10].

However, addressing those goals poses a number of challenges
in particular in terms of (i) defining rich semantics to express
(and possibly change) the intent of verticals for a tenant-managed
SDN-enabled network set-up into a slice, (ii) translating intents
into a set of networking actions, and (iii) assuring the established
intent performance during the service lifecycle.

From a thorough analysis of the state-of-the-art, we can state
that, on the one hand, there are several works dealing with the
Intent-based networking concept in general, and some works
with intents in SDN/NFV environments. On the other hand, just
a few works discuss the adoption of intents in network slicing
contexts. However, in all cited works, the provisioning of SDN
programmability has not been considered. Moreover, in most of
the works, the intent concept is only discussed while there are
no prototyping efforts of intent-based frameworks. In addition,
no concrete implementations of the assurance phase including
the verification of the slice intents after their execution are tack-
led. Regarding the adoption of SDN in tenant-managed domains,
there are several works dealing with the management of tenant-
side SDN connectivity for the provisioning of services in the
application domain, given the need for service and application
providers to have elasticity of the network that connects the
service nodes. Those works however do not consider the network
slicing context.

In this work, we propose an IBN-based framework for NFV
network slicing to allow verticals to specify customized high-
level specifications and their connectivity needs through an intent
while getting benefits from SDN programmability within their
service domains; and network operators to effectively establish
network slices with SDN capabilities that are also assured, in
line with the expressed intent during the slice lifecycle. More
specifically, the proposed intent-based SDN network slicing ad-
dresses the following challenges: (i) the expression of high-level
SDN network requirements for vertical network slices through a
declarative model using intents; (ii) the automated deployment
of tenant-managed SDN-enabled network slices using an ETSI
NFV MANO platform; (iii) the provision of a reliable network
service supporting the specified slice in a virtualized telco cloud
environment, and (iv) the continuous check of the current status
of the slices to guarantee their correct behavior with respect
to the objectives, during the whole lifecycle of the intent. Our
framework is fully inline with the IBN functional framework
defined at the Internet Research Task Force (IRTF) Network Man-
agement Research Group (NMRG) [6] and all its building blocks
are implemented and assessed.

This paper extends the preliminary work presented in [11]
with (i) a thorough overview on Intent-based networking and
network slices orchestration and management in NFV environ-
ments, (ii), an expansion of the description of the proposed
Intent-based framework and the vertical service scenarios that
might be attracted by it, (iii) and a more comprehensive eval-
uation of the intent layer considering two different virtualized
testbeds and a richer set of metrics.

The remainder of the paper is organized as follows. Section 2
gives a background on the intent-based networking, orchestration
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of network services and management of network slices in NFV en-
vironments. Section 3 elaborates on service scenarios that are rel-
evant for QoS-aware and SDN-based network slices in the vertical
domain. Section 4 introduces the intent model adopted for the
expression of SDN network slices. Section 5 presents the IBN ap-
proach in NFV and the intent-layer design for NFV environments.
Section 6 describes the intent layer implementation details of
the proposed framework and presents a preliminary evaluation
of it. Section 7 provides a review of recent research studies on
IBN and network slicing. Section 8 provides the challenges and
future directions, to motivate more innovative research in this
field. Finally, Section 9 draws the conclusions.

2. Background
2.1. Intent-based networking

The IBN concept represents a new approach to network man-
agement conceived by the IETF as an advance to network man-
agement where users at an Application Layer (e.g., vertical’s Op-
erations Support System/Business Support System (OSS/BSS)) or
a service layer (e.g., network operator OSS/BSS) can express their
business, service or operational goals through high-level prescrip-
tive directives (i.e., intents) thus unburdening applications to deal
with technology-specific low-level networking directives needed
to achieve those goals. Examples of intents are: “set a connection
as a high availability network service”, “always maintain high qual-
ity of service and high bandwidth for gold level users”. On the other
hand, the network operators are left the flexibility of addressing
the expressed goals based on their own optimization decisions in
the light of a loosely-coupled interworking with applications [6].

The IBN approach is possible through the mediation of an
Intent Orchestration Layer (or Intent Layer) that allows to (i)
automate the implementation of network configurations required
to realize the goals expressed by applications, and (ii) regu-
late the lifecycle of the established configurations in line with
expressed goals. Overall it manages and regulates the lifecy-
cle of intent demands from applications through fulfillment and
assurance operations in a closed loop workflow. More specifically:

o fulfillment operations deal with processing intents from
their origination by a user to their realization in the net-
work, including translation and any required orchestration
of coordinated configuration operations;

e assurance operations deal with ensuring that the network
actually complies with the desired intent once it has been
fulfilled also based on real-time collection, aggregation and
assessment of monitoring data.

These two kinds of operations are realized through the inter-
working of the following main functional blocks: (i) the Transla-
tion which parses the application’s intent and translates it into
a set of networking actions, mainly configurations; (ii) the Man-
agement and Decision which is responsible of identifying the
needed actions to ensure that the intent is achieved including
derivation of the algorithm to be used, learning on how to op-
timize outcomes over time, and coordination of configurations
and deployment actions, e.g., rendering of high-level abstractions
into lower-layer parameters, (iii) the Analyses/Verification which
continuously verifies the status of the intent, and if necessary
triggers corrective actions leveraging on the Management and
Decision block, and finally (iv) the Intent Repository which is a
database that interacts with the intent Management and Trans-
lation modules to provide mapping between the “intent” and its
“configuration”.

IBN allows application layers to interact with the Intent Layer
avoiding to learn the technical-specific language of the underly-
ing system. On the other hand, it also allows network providers
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Fig. 1. (a) Intent-based networking architecture and (b) NFV MANagement and Orchestration (NFV MANO) framework.

to (i) improve the network agility and availability, (ii) manage
networks holistically at a higher level of abstraction, and (iii)
continuously verify that tenant goals are met. Hence, IBN not
only contributes to increase network automation and flexibility
to upper layers but also to improve the robustness of the network
thanks to closed-loop operations and continuous learning so as to
improve automation and maintenance and reduce costs [8].

2.2. Network slice orchestration

Network slices are flexible partitions caved out from a shared
virtualized infrastructure while leveraging NFV and SDN to (i)
deploy network functions (e.g., router, firewall, intrusion de-
tection systems) as software components in virtual machines
(i.e., VNFs) and (ii) dynamically and programmatically intercon-
nect them via software network controllers [12] under the ETSI
NFV MANagement and Orchestration (NFV MANO) architectural
framework [13]. As shown in Fig. 1(b), the framework is based on
decoupling the levels of (i) NFV Infrastructure (NFVI), i.e., the pool
of physical/virtual computing, storage and network capabilities
operated on top of distributed telco clouds; (ii) VNFs, i.e., the
pool of individual network functions running in virtual machines
deployed in the NFVI; (iii) end-to-end Network Services (NSs),
i.e., combination of connected VNFs in a self-consistent network
service. Correspondingly, each level has the respective control
and management functionalities: (i) Virtual Infrastructure Man-
ager (VIM) for compute and storage resources in telco clouds,
and WAN Infrastructure Manager (WIM) for networks to connect
multiple resources across different clouds in NFVI; (ii) VNF Man-
ager (VNFM) responsible for VNF lifecycle management under
the control of the orchestrator, i.e., instantiation, configuration,
scaling, termination operations at VNFs: (iii) NFV Orchestrator
(NFVO) that dynamically composes and orchestrates VNFs and
virtual links to automatically establish end-to-end (E2E) NSs un-
derpinning the network slices. The NFVO also takes care that
VNFs have adequate compute, storage and network resources
throughout the entire lifecycle and, if needed, trigger proper
scaling operations at VNFs to assure service integrity according
to specified requirements.

In order to perform E2E NS and VNF orchestration, the NFVO
does not just need the VNFs software images but also data models
(i.e., descriptors) specifying the deployment and the operational
behavior of VNFs and NSs. For this purpose, the ETSI NFV MANO
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specifies, among others, the VNF Descriptor (VNFD) and the Net-
work Service Descriptor (NSD) [14,15]. The NSD is the top-level
deployment template that defines the pool of VNFs composing
the E2E NS, their connection points and how they are connected
to form the network service. The VNFD is a deployment template
that describes the attributes, requirements, and capabilities of a
single VNF and related relevant components, i.e., external connec-
tion points, internal components and connectivity, performance
and resource requirements and monitoring parameters.

As service delivery (data) models, NSD and VNFD involve a cer-
tain degree of abstraction to cope with heterogeneity of network-
ing devices and systems. However, they differ from intents in the
prescriptive nature they still have while specifying, e.g., service
technical parameters, corrective actions and life-cycles. Instead,
intents are declarative in nature (i.e., specify operational or busi-
ness goals of the user or network operator) and do not specify
how those goals should be achieved. In intent-based systems,
the algorithm or the rule to apply are not pre-defined but they
can be automatically derived from the intent or even learned,
e.g., through machine learning techniques.

3. SDN network slices in vertical service scenarios

Network slices are not merely established for the provisioning
of virtual connectivity and computing capabilities but also, and
especially, to run vertical services to the extent of the assigned
(virtual) resource chunks. Hence, network slices can be also seen
under the perspective of a virtualized service infrastructure assets
offered by network operators to verticals [ 16]. Regarding slice ser-
vice capabilities, verticals are highly attracted by leveraging SDN
within slices to programmatically establish connectivity, e.g., ser-
vice chains, among software service and application components
(e.g., content caches, edge servers) in a flexible and scalable man-
ner. In such a case, the service chains are established on top of a
virtual network of nodes within the slice and, hence, within the
tenant domain [17]. This scope of operation and control of slices
from tenants is referred to as tenant-managed slice, with tenants
having the full control of the resources and functions allocated
into the slice [18], e.g., controlling the data plane forwarding
rules into SDN switches composing the virtual tenant network
established into the slice.

As shown in Fig. 2, three different service scenarios can be
considered where verticals are interested in SDN-based network
slices featuring different structure and deployment set-ups.



B. Martini, M. Gharbaoui and P. Castoldi

SDN Slice
lo Edge |ntent
Local SDN  sensors/Gw %’
Network .'7'/7: ) <:|
Scenario i
Metro SDN

Network Scenario

i £ lf,;;;: __ Cloud server R 4 ® )
Edge - 7 + Y
serveri l/ﬁl
loT sensors/Gw
E-Health
Wide SDN
Local cloud

Network Scenarlo Central cloud

. .@ Hﬂh@?a

IoT

Edge cloud
sensors/Gw

Smart City

Future Generation Computer Systems 142 (2023) 101-116

)))

System Controller

(SDN controller)
Sensors- 0o

Sensors/ to-Edge 4
Actuators P
A Gateway @Edge Cloud

(SDN swmchLv Server
="

(C

Control flows

Momtormg Service

.% ..*'f;

= u

0

/ . . Edge
Server

g. (((,a - Rescue service

N -
m Sensors

Monitored
Patients

Edge
Server

= @
Yo
«=’

'ﬁm\\‘ — ,‘,"'

Sensors . a))

Fig. 2. Service scenarios for SDN network slices and intents.

3.1. Smart factory (local scenario)

The Smart Factory scenario refers to the fourth stage of in-
dustrialization where emerging technologies such as Internet of
Things (IoT) and edge computing represent the main enabling
factors. In such a scenario, multiple nodes (i.e., sensors, actuators)
are deployed that communicate with a server located beyond the
gateway and local network (i.e., edge server) to send data related
to the state and process information of the smart machines in
the factory and then receive the sequence of operations to be
enforced on the products [19]. In this context, edge comput-
ing provides a very elastic solution since it brings the storage
space and computing ability close to IoT nodes, thus reducing
the response time [20]. Such communication between IoT nodes
and the edge server is characterized by a low throughput. In
addition, reliability is a strict requirement due to criticality of
factory systems and automation. In this scenario, an SDN-based
network slice can suitably support the smart factory services
with a simple SDN topology composed of one (redundant) switch
(coupled with a controller) that connects (i) Virtual Functions
(VFs) representing the IoT sensors and/or gateway and the edge
server. An external cloud could be also used (e.g., enterprise
cloud) to offer centralized services such as data analytics, off-line
process optimizations, informative services.

3.2. E-Health (metro scenario)

The E-Health scenario refers to the delivery of smart-
healthcare services that provide faster and more efficient solu-
tions to patients thanks to IoT and cloud-based technologies [21].
Basically, an E-Health system is generally composed of (i) IoT
wearable medical sensors, (ii) few services deployed at the edge,
and hence closer to the patients, which can provide support for
latency-sensitive operations (such as virtual/augmented reality
(VR/AR) in rescue operations), and (iii) centralized back-end ser-
vices placed in the cloud, which allow for processing the collected
data and making it accessible for the medical staff to analyze it
during normal care situations. This system allows for instance to
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set-up a service for the continuous monitoring of life functions
of patients through wearable devices. Normally, those data are
stored in the cloud for the medical staff from hospital to analyze
them during visits. In case event failures are detected on the vital
signs (e.g., heart attack, seizure disorder), a rescue service can
be timely requested to act earlier on emergency cases. Indeed,
an alarm is triggered to activate an edge server in close area of
the patient to support paramedics services with low-latency and
high-throughput communication as required by AR/VR equip-
ments. In such a situation, the edge server can collect data for a
rapid diagnosis locally or for a more in-depth analysis performed
by a qualified medical staff from the hospital. Hence, reliability
of data transfer is also a strict requirement. This scenario can be
deployed through an SDN-based network slice composed of a set
of switches covering a metro area and a number of VFs connected
to them representing both the monitoring back-end server and
the emergency services at the edge close to the patients [22].

3.3. Smart city (wide scenario)

The Smart City use case refers to a wide range scenario where
thousands of devices for monitoring applications and service
facilitation to the citizens are interconnected. In fact, future smart
cities will be characterized by a dense deployment of sensor
nodes to advance systems and services, including smart buildings,
autonomous vehicles (e.g., V2V, V2X), intelligent transportation
(e.g., traffic signal control systems, container management sys-
tems), just to name a few. Those sensors and nodes need to be
easily interconnected with both edge facilities for time sensitive
applications and either local or central clouds (i.e., storage, com-
putation servers) to process and analyze the collected data at
local and global scale, respectively [23]. The amount of such data
differs from one scenario to the other. Smart buildings for exam-
ple are characterized by sporadic and intermittent transmissions
of very small packets, typically on the order of a few hundred
bytes, while augmented reality applications in the vehicle-to-
vehicle use case require higher throughput values. Other exam-
ples such as smart traffic lighting systems or autonomous driving
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Fig. 3. Network slice descriptors.

might require high reliability features and ultra-low latency. In
this scenario, an SDN-based network slice can be composed of
a high number of switches, which facilitates the management
of the smart infrastructures and allows for the customization
of data flows of the smart city services that can pass through
several VFs. The SDN switches cover a wide area and connect
a relatively high number of VFs representing the sensor nodes
and the several cloud/edge servers. In this scenario, the case of
multiple yet interconnected slices can be considered due to the
higher complexity and wider area extension that needs to be
covered.

4. SDN network slice services as intents

For verticals it is not straightforward to rely on NS lifecycle
management functionalities (and related descriptors and APIs) to
specify their demands on slice capabilities due to the conceptual
distance between parameters of slice deployables (i.e., slice ser-
vice operational settings) and of ETSI NFV descriptors (i.e., NSD,
VNFD) [24]. Indeed, the MANO framework assumes a tight cou-
pling of the slice-related operations to NS APIs which require
verticals to handle virtual infrastructure technicalities in NSDs
and VNFDs to specify slice service demands, such as virtual ma-
chine parameters, network configurations, topology and protocols
(e.g., VLAN tags, connection points).

The semantic gap between the verticals intentions on service
settings and the slice and network configuration parameters han-
dled by NFV MANO orchestrator is shown in Fig. 3. The case
of SDN slice service is considered for Metro Scenario (i.e., E-
health service) as shown on top. In the left-hand side of Fig. 3
we report some extracts from the VNFDs and NSD used to deploy
the given network slice. Each block in the descriptors includes
the details necessary to deploy the requested VFs as well as their
interconnections within the slice. More specifically, in the VNFD
of each VF, the VDU block reports the characteristics of the VM
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that will host the virtual function (e.g., cloud image, configu-
ration file). The Deployment flavors block shows the computing
capabilities of each VM (i.e., vCPU, RAM and storage), while the
Connection-points block details the characteristics of the network
interfaces for each VM. On the other hand, the NSD deals with the
interconnections between the VFs by describing their order in the
forwarding graph, the IP addresses assigned to their interfaces,
etc. In the right-hand side of Fig. 3 we report the set of service-
related operational parameters for the same network slice service
as intended by verticals, i.e., intent. The semantic gap appears
evident since verticals would prefer to mainly focus on (i) overall
required capacity of virtual resources and the set of component
network functions, (ii) connectivity slice requirements in terms
of e.g., kind of network control and programmability, network
topology in the vertical domain [25], and (iii) QoS terms such as
level of reliability, bandwidth demand, latency constraints [26].

To fill this semantic gap, a prescriptive model of a slice ser-
vice should be conceived and an IBN approach adopted in NFV
environments to support slice intents. According to the scenarios
shown in Section 3, in this paper, we consider the case of SDN-
enabled slice service intents which enable verticals to flexibly
establish vertical service connectivity in their slices. In such a
context, the IBN approach for network slicing allows to (i) capture
the demands (intents) of slice services from verticals including
SDN capabilities; (ii) transform those demands into network slice
requests in terms of fully-specified NSD and VNFD coupled with
measurable performance indicators for SDN connectivity; and
(iii) continuously verify the matching between the actual and
the expected slice service state and, in case, adjust the virtual
infrastructure and NS settings accordingly to reflect the vertical
business goals and slice service needs [27].

5. Intent layer for SDN-enabled network slicing

In order to address IBN in NFV environments we present in
this work an Intent Layer designed to run on top of NFV MANO
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Table 1

Slice intents types.
Service scenario Reliability QoS class Topology type Cardinality Number

of VFs

Local scenario Yes Bronze Single Small [1] [2, 4]
(Smart Factory)
Metro scenario Yes Gold Linear-Mesh Medium [3, 10] [2, 4]
(E-Health)
Wide scenario Yes Silver (Smart Linear-Mesh Large [25, 50] [2, 6]
(Smart City) building)/Gold

(Autonomous driving)

orchestrators and able to address vertical operational goals for
network slices. In this section, we describe the Intent specification
and API exposed by the Intent Layer 5.1 and the Intent Layer
design and implementation 5.2.

5.1. Intent specification and API

The SDN slice service requirements for different scenarios
reported in Section 3 can be reflected into an intent specifica-
tion that captures relevant parameters for verticals to express
their operational goals for SDN-enabled slices. In particular, the
intent specification should allow verticals to express the need
for deploying SDN capabilities to connect VFs (i.e., a network
slice composed of an SDN controller, a set of OpenFlow (OF)
switches connected in a specific topology and a number of VFs
connected to the switches) as well as relevant requirements in
terms of QoS and reliability. Both kinds of features differ from one
service scenario to the other (different SDN topology, throughput
demand, latency constraints, reliability features) as reported in
Table 1.

For the purpose of intent specification, we rely on the Network
Intent LanguagE (Nile) as an intent definition language [28] for
verticals to express their operational goals to the Intent Layer
using a language that resembles the natural one and is easy to
understand. As shown in [29], Nile is used in this work as an in-
termediate intent representation that is congenial for both upper
layers (e.g., Natural Language Processing (NLP) systems) and for
the intent translation purposes toward lower networking layers.
Indeed, Nile as a structured intent language works well as a target
for the learning algorithms, e.g., to map named entities extracted
from unstructured text in natural language through a chatbot. On
the other hand, it allows a straightforward translation to different
target descriptors or policies to carry out needed configurations
in the underlying network. Hence, using Nile in this work opens
the path to smoothly use the proposed Intent Layer with NLP-
based solutions to understand vertical requirements expressed in
natural language.

Consider as an example the following intent: “Set-up an SDN-
based slice where reliable traffic for Gold customers flows from the
gateway to the server with at least 5mbps of bandwidth through an
SDN mesh topology composed of 3 switches and 2 VFs and where
VF_1 is connected to Switch 1 and VF_2 is connected to Switch
3”. This intent can be expressed using the Nile intent shown in
Listing. 1.

Define intent sdnSlicelntent:
from endpoint(’gateway’)
to endpoint(’server’)
for group(’Gold’)
for service(’'reliable ’)
set topology(’'mesh’, ’'medium’)
set size(’'3’)
add node(’s1’), node(’'s2’), node(’'s3’)
add middlebox('VF_1", ’'s1’),
middlebox ('VF_2', ’'s3’),
with throughput(’more or equal’,

’5mbps’)

Listing 1: Nile intent example
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The vertical first needs to specify the Id of the intent. The Id
refers to a unique identifier used to associate the intent to one
vertical and then to link it to the set of operations performed
during its lifecycle (e.g., execute, check status, delete). The intent
contains also the following parameters:

e Endpoint: refers to the Service Access Points (SAPs) required
to connect to the slice;

e Group: it refers to the set of clients that can be grouped
based on the established SLA in terms of QoS, and in par-
ticular, in our case regarding the amount of transmitted
throughput between a given couple of VFs within the net-
work slice. More specifically, a Gold group refers to a QoS
level that guarantees 100% of the amount of throughput
required, Silver to a guaranteed level of 75% of required
throughput, while Bronze to a guaranteed level up to 50%
of the required throughput;

e Service: if set to “Reliable”, it forces the Intent Engine to
continuously check if the network slice is correctly deployed
(e.g., VFs composing the slice are up and running, connectiv-
ity among the VFs is guaranteed), and trigger countermea-
sures if not;

e Topology: refers to the type and cardinality of the SDN-
based topology. This topology is composed of a number
of OF switches and allows for interconnecting the VFs to
each others. The type of topologies allowed can be chosen
among single (i.e., only one switch), linear (i.e., all switches
are linked one after the other in a sequential chain) or
mesh (i.e., each switch is interconnected with one another).
The cardinality refers to the range of network nodes that a
topology can contain (i.e, small, medium or large);

e Size: expresses the extent of the SDN-based topology in
terms of number of OF switches composing it. This number
is directly related to the cardinality of the topology. More
specifically, a Small topology can contain only 1 switch, a
Medium topology can contain between 5 and 10 switches
while the Large one can contain between 25 and 50 switches;

e Node: indicates the identifier of each OF switch composing
the SDN topology. Those ids are necessary for the Middlebox
parameter to indicate which Middlebox is connected to
which switch;

e Middleboxes: in this work we consider that a network slice
is necessarily composed of one SDN-based VF and at least
2 VFs attached to it representing the virtual appliances that
differ according to the considered use case. The parameter
Middleboxes in the intent expresses the id of the VFs and
their number, which is between 2 and 4 in the local and
metro SDN scenarios and between 2 and 6 in the wide SDN
scenario.

e Throughput: refers to the actual amount of data that a verti-
cal wants to transmit between any couple of VFs composing
its network slice. It is expressed in Mbps.

Regarding the syntax of the intent, we leverage on the Nile
grammar presented in [28] to guarantee that the intent contains
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the information necessary for its correct deployment and prompt
verification. More specifically, we used the set of supported op-
erations specified in [29] including the endpoints targeted by the
intent, the group and traffic functions to abstract an aggregation of
customers asking for the same service standards (e.g., reliability,
QoS class) and the set of middleboxes identified by a specific
id that must be connected to the SDN topology. However, to
meet the specificities of the intent presented in this work and to
include also topological specifications, we also extended the Nile
language by introducing two novel functions, which are topology
and size and by adding a novel attribute to the existing middlebox
function referring to the id of the switch referred to as node to
which the VF is connected. For this purpose, we extended the
grammar of Nile, in EBNF notation [30], as shown in Listing 2.

"define intent’ intent_name °’
<commands>

’add’ <middlebox> { (',” | ', ")
<middlebox> }

"middlebox ( 'middlebox_id "’

<intent> =

<middleboxes> ::=

<middlebox>

'node id’)’
<nodes> := ’add’ <node> { (', | ', ")
<node> }
<node> = ’'node(’'node_id’)’
<endpoint> = ’endpoint(’endpoint_id ")’
<topology> = ’topology('type’’,’’cardinality ')’
<type> ::= single|linear |mesh
<cardinality> ::= small |medium|large
<size> = ’'size(’'topology size’)’
<group> = ‘group(’'group_id’)’
<service> = ’'service('service_id ")’
<traffic > = "traffic(’traffic_id ")’ |

‘flow (' [<five_tuple>]+ ")’

Listing 2: Nile grammar extension

Those terms are enough for the Intent layer to allocate the
network resources and deploy the suitable network functions for
the requested SDN-based slice. They are first enforced during the
configuration and execution phase of the intent, and then are
continuously checked to be validated and, in case, corrected, thus
constantly assuring the quality of experience expected by the
verticals.

5.2. Intent layer building blocks and implementation

As shown in Fig. 4, the architecture of the intent-based frame-
work is composed of three main elements: (i) the vertical, which
sends intent requests to the Intent Layer to deploy SDN slices
with specific requirements. The design of the framework also
offers to the vertical the possibility to receive some feedback
regarding the deployment of the slice, which we leave to future
implementations; (ii) the Intent Layer, which represents the core
of the framework; and (iii) NFV MANO, on top of which the Intent
Layer is supposed to run. In this implementation, we considered
Open Source MANO (OSM) [31] as a relevant representative of an
NFV MANO orchestrator.

In the following, we describe the Intent layer main compo-
nents giving some details on their implementation considering
the case of SDN-based slice intents [32]:

e the Intent Engine component plays the role of a front-end
with the vertical, in charge of receiving the intent and pars-
ing it through a specific API to extract the requirements.

In our prototype, the Intent Engine is composed of two
elements: a Graphical User Interface (GUI), which allows
verticals to express their goals in a user friendly manner
and an Intent Processor, which extracts the values specified
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by the vertical and provides them to the Translation &
Execution component. Upon the reception of an Intent re-
quest, the Intent Engine checks the eligibility of each intent
by verifying the feasibility of its deployment according to
the current status of the deployment infrastructure. More
specifically, it makes sure that there are enough resources
available to answer the request (i.e., an intent can be directly
blocked if for example no enough computational and/or
network resources are available to deploy the requested
VNFs), thus guaranteeing that the deployment of the intent
with its specific requirements (e.g., number of VNFs, amount
of throughput) will not impact the existing intents in the
system [25].

the Translation & Execution component analyzes the intent
and translates the vertical goals into a set of configura-
tion constraints. Such parsing and translation effort strictly
depends on the way the intent is expressed (e.g., natural
language, template-based approach). The component is also
in charge of verifying the effectiveness of the intent, and
in case of conformity, triggers the automated deployment
of the slice. This component is inline with the execution
verification component described in [8].

In our prototype, the Middlebox parameter is translated
into N applicative VNFDs where each VNFD corresponds to
the specified Middlebox id, while the throughput value is
updated within the cloud-init file of each descriptor. For the
sake of simplicity, we consider that all the VFs have the
same type. The topology type and size are mainly used to
associate the intent to a specific NSD. The Intent ID is used
as a parameter for the creation of the NS.

the Slices Management Engine component is responsible for
interacting with the NFV MANO layer for the purpose of the
automated deployment of the slices supporting the intent.
Such interaction is performed through the REST API of NFV
MANO which allows for either selecting the necessitated
configuration files (e.g., blueprints) from a specific catalogue
or uploading them after having created them in a custom
way. Those files mainly aim at determining the deployment
and operational behavior of each VF composing the slice.
They are then sent to the NFV MANO layer which provides a
set of functionalities for the orchestration of the VFs and E2E
NSs underpinning the network slices. The Slices Manage-
ment Engine component can be part of an extended set of
functionalities at network provider’s OSS/BSS for slice-aware
service management operations [33].

In our prototype, the Slices Deployment Engine sends a set
of RESTful commands to the northbound interface of OSM.
Once the descriptors are onboarded and validated, it re-
ceives an acknowledgment which allows it to effectively
trigger the deployment of the network slice. To do so, OSM
interacts with the VIM (i.e., OpenStack in our implementa-
tion) to start the creation of the VFs and their configuration.
the Monitoring & Validation component continuously verifies
the status of the slices through different possible approaches
(e.g., polling of specific metrics, comparison to known base-
lines). If the validity of the slice is not verified, it interacts
with the Intent Engine to perform countermeasures regard-
ing the execution of the intent. This component is inline
with the validity verification component described in [8].
In our prototype, the Monitoring & Validation component
continuously inspects the behavior of the network slice in
terms of connectivity and QoS (e.g., effective transmitted
throughput), and in case of non compliance of the network
slice with the specified requirements (e.g., non respected
throughput) receives an alarm from the deployed slice and
triggers the Intent Engine to perform corrective actions. In
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Fig. 4. Intent-based framework architecture and GUIL

such a way, automated intent refinements are possible in
case of misconfiguration of the intent or sudden service
degradation to restore the performance to the level required
by the intent and assure its correct execution without any
intervention from the vertical and/or the network operator.

A preliminary implementation of the GUI is shown in the right
side of Fig. 4. The verticals only need to specify few operational
objectives of the intent they want to deploy (e.g., throughput,
topology, number of VFs) and then click on “Execute Intent”. The
Intent framework parses the provided parameters, maps them to
a set of descriptors, which are then sent to OSM to deploy the
slice.

In the workflow shown in Fig. 5 we depict the interactions
between the different components of our intent framework and
we highlight the main operations performed during the deploy-
ment of a given network slice. More specifically, the Intent layer
receives a request from a vertical through the API for the deploy-
ment of a network slice. Since the request is expressed through
the simple NILE language, the Intent Engine with the help of
the Translator filter the key words and extract the actual slice
parameters. The intent is then mapped to a set of descriptors,
namely (i) VNFDs, which define the behavior of each type of
VF specified in the intent (e.g., VF image, storage, memory, CPU
and networking resources), and (ii) one NSD, which mainly de-
fines the logical graph of the network service (i.e., how the VFs
are connected in the network provided in the slice). Once the
descriptors are correctly associated to the vertical’s intent, the
Intent Engine interacts with OSM via its REST API to onboard the
descriptors and deploy the NS. The OSM then processes the NS
and if no errors are found, the slice instance is created. This fi-
nalizes the slice deployment process, which does not require any
technical expertise or manual intervention from the vertical [6].
Once the network slice is deployed, the Monitoring & Validation
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component comes into play to periodically check its status and,
in case of non conformity with the intent goals, perform remedial
actions.

6. Experimental set-up and validation results

In this work, we focus on the design, the implementation and
validation of the intent layer. Out of the 3 scenarios described
in Section 3, we specifically focus on the metro scenario. The
performance evaluation aims at determining the feasibility of
our approach and assessing the operation of the whole network
slice (and not the performance of the single VFs composing it)
in terms of instantiation, connectivity and throughput, thereby
validating the intent under different conditions. To this purpose,
we leverage on open source tools capable of the deployment of
the network slices. More specifically, as shown in the right side
of Fig. 6, our testbed consists in the IBN layer we developed, the
OSM platform [31], which represents the NFV MANO framework
and Openstack [34], which plays the role of the VIM. As depicted
on the left side of the figure, OSM MANO and Openstack are
separately installed on 2 different bare metal servers hosted on
the Virtual Wall (VW) testbed [35], while the Intent Layer’s code
and the GUI used as a northbound interface to access it run on a
third server also hosted by the VW testbed. The characteristics of
the testbed components are summarized in Table 2.

Our intent framework connects the OSM north-bound inter-
face to the verticals/applications to facilitate the deployment of
the network slices. OSM starts by onboarding the descriptors and
then deploys the requested slice with the help of the Openstack
VIM. As shown in the bottom of Fig. 6, any slice is composed of
one SDN-based VF (which contains the SDN controller and the
emulated network topology) and other N VFs that are connected
to the SDN-based one (N corresponds to the number of virtual
functions specified by the vertical in the intent’s GUI).
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Table 2 6.1. Slice intent deployment time
Testbed components characteristics.
Component Characteristics

Ubuntu 16.04

CPU: 3 core i7-3770 at 3.40 GHz
RAM: 8 GB

Disk storage: 250 GB

Ubuntu 18.04 LTS
CPU: 4 core E3-1220v3 at 3.1 GHz

IBN layer/GUI

OSM RAM: 16 GB

Disk storage: 500 GB

Ubuntu 18.04 LTS

CPU: 4 core E3-1220v3 at 3.1 GHz
Openstack

RAM: 16 GB
Disk storage: 500 GB

In this section, we only considered one scenario to validate our
framework (i.e., the E-health application in the metro scenario)
and we fixed some values that we consider to be realistic. More
specifically, we varied the number of switches from 5 to 50 and
the number of VNFs from 2 to 6. Those numbers are in our
opinion compatible with metro scenarios as reported in [36-38].
Regarding the throughput, we fix it between 1Mbps and 10Mbps.
This is in our opinion a reasonable compromise mainly because,
as reported in the Refs. [37,39,40], the throughput values in metro
scenarios vary between 0.1 and 50 Mbps.

In Fig. 6 we consider a metro SDN network scenario composed
of 3 VFs and a topology composed of 3 switches. The whole slice
creation process is totally automated including the configura-
tion of the VFs composing the slice and their inter-connectivity.
Once the slice is deployed, an automated monitoring process is
triggered to periodically check its compliance with the vertical
goals (e.g., established connectivity, guaranteed throughput) and
operate in case of issues.
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We first consider the overall slice intent deployment time,
measured as the time from when a vertical requests an intent to
the time when data begins to flow between at least a couple of
VFs. We take the example of the metro service scenario where a
vertical requests an intent to create an SDN network composed
of few switches to which two VFs are attached, and then to
guarantee their inter-connectivity and the amount of throughput
transmitted among them.

The intent is characterized by a network slice composed of
3 VFs: one SDN-based VF containing an OF Mesh topology of
a Medium size and 2 others VFs connected to it. We fix the
QoS level to gold which corresponds to a guaranteed throughput
equal to 5 Mb/s. The 3 VFs have the following characteristics in
terms of computational resources. The SDN based one requires
2vCPU, 2572MB of RAM and 20GB of storage, while each one of
the other 2 VFs requires 1vCPU, 512 MB of RAM and 10 GB of
storage. We repeat the deployment of the slice 10 times under
the same experiment conditions, then we take the average of our
measurements. Results show that traffic starts flowing across the
network after around 282.7 s in the virtual wall testbed.

In order to check the impact of the bare metal servers charac-
teristics on the performance, we repeated the same experiment
using the same Openstack version but installed on a server from
the CloudLab testbed [41] having the following characteristics: 8
64-bit ARMvS cores at 2.4 GHz, 64 GB of RAM and 500 GB of disk
storage. Results show that the overall slice intent deployment
time is reduced to an average of 179.47 s which represents a de-
crease of about 65% with respect to the Virtual Wall testbed. This
shows the impact of the physical infrastructure on the overall
performance of the framework. This time can be further reduced
by tens of seconds by using pre-configured VM images where
the required software has been priorly downloaded and installed
offline.
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6.2. Components of the slice intent deployment time

In this paragraph, we detail the main components of the slice
intent deployment time and assess the average time taken by
each element of our intent framework to perform its task. In
Fig. 7, we plot the average execution time values in the two
testbeds: the Virtual Wall testbed and CloudLab. Results show
that the main component of the overall execution time is due
to the slice deployment time in Openstack (around 77% of the
overall time) while the remaining time is mainly divided between
the NS instantiation time in OSM MANO (around 22%) and the
descriptors onboarding time (around 1%). The parsing time of the
intent is negligible (less then 1 s). Moreover, we can notice that in
the CloudLab testbed, the main impact of the servers character-
istics regards the deployment time, while the instantiation and
onboarding times undergo a minor decrease. The parsing time
remains the same since the Intent layer is unchanged and runs
on the same VM for both cases.

6.3. Impact of the number of virtual functions

In this paragraph, we fix the number of OF switches in the SDN
network to 10 and then we vary the number of virtual functions
required in the intent. To do so, we have generated 5 different
NSDs characterized by an increasing number of VFs, ranging from
2 to 6. For each case, 10 iterations have been performed and
then the average value of the overall slice deployment time has
been evaluated. Fig. 8 plots the average deployment time of the
network service. The measurement of the deployment time starts
at the creation, on the VIM, of the virtual machines on which
the VNFs composing the NS will be deployed and ends after
the fulfillment of their configuration. The configuration steps are
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Fig. 7. Average execution time of the Intent framework elements: Virtual Wall
vs. CloudLab.

the following: (i) the creation of a virtual machine using the
VM image specified in the VNF descriptor, (ii) the performance
of access-oriented configurations such as SSH keys, hostname,
network interfaces, which mainly permit the access and the com-
munication with the VM, (iii) the execution of the script defined
in the cloud-init file of each VNF, which mainly consists in down-
loading the necessary software packages, their installation and
the execution of the desired service. While the first two steps are
almost identical for all the VNFs (except the number of network
interfaces to be activated), the third step strictly depends on the
type of VNF that will be deployed (e.g., SDN, Firewall, DPI, NAT).
Fig. 8 shows that as the number of VFs increases, the overall
deployment time linearly increases. This is mainly due to the
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characteristics of the OSM MANO NS process which handles the
creation and the configuration of the VNFDs that constitute the
NSD sequentially following the order of their appearance in the
descriptor. Most of this time is dedicated to the configuration of
the VM that contains the SDN controller and network (around
180 s) while each VF connected to the network increments the
deployment time by around 53 s. This time is reduced to less than
10 s if we perform the experiments on the CloudLab testbed.

6.4. Impact of service scenario complexity

We then assess the impact of the SDN network complexity
on the overall deployment time by varying the number of OF
switches in the topology while keeping the number of VFs equal
to 2. We repeat the experiment 10 times and we take the average
of the overall deployment time. It is worth pointing out that in
the Local service scenario, we considered an OvS switch [42] that
we automatically configured to allow the connectivity between
the VFs attached to it, while in the other cases we chose to use
the Mininet topology emulator [43]. In fact, instead of focusing
on the linear behavior of the deployment time due to the con-
figuration of the OvS switches, in this paragraph we evaluate the
impact of the topology complexity on the time necessary for the
intent configuration. Fig. 9 shows that the most increase in the
deployment time happens when we pass from 1 to 5 switches.
This is explained by the fact that the adoption of Mininet requires
the installation of further packages in the virtual machine hosting
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Fig. 10. Average throughput measured in the deployed slices.

the SDN-based topology, which is illustrated by this increase in
the overall deployment time. Varying the number of switches in
Mininet then does not have a significant impact on the results
since the overall deployment time increases by around 7 s while
expanding the SDN topology from 5 switches to 50 switches. It
is worth pointing out that the SDN topology can be implemented
either using a cluster of OF virtual switches (OvS) or the Mininet
simulator. In this proof-of-concept we opted for Mininet. Indeed,
the VF hosting it still needs to be deployed and configured in an
automatic way like any other VFs.

6.5. Intent verification process

When expressing the intent, verticals can specify a throughput
value that must be guaranteed between the VFs and the network
topology. If the vertical does not specify anything, the value of
the throughput is automatically assigned to 5 Mb/s, while we
consider that the QoS level for all intents is fixed to “Gold”. Once
the slice is deployed, the connectivity among its different com-
ponents is checked and the value of the throughput is measured.
If the connectivity is not guaranteed (i.e., reliability issue) or the
values of the throughput are not respected (i.e., the actual amount
of throughput does not match the value specified in the intent
objectives), an alarm is automatically sent to the intent layer to
resolve the issue. This test is periodically performed to verify the
status of the intent and carry out corrective actions if necessary.

In this paragraph, we send a request for the setup of 2 different
slices with fixed throughput values: 1 Mb/s and 5 Mb/s. Both
slices are composed of a simple SDN-based topology and two VFs
connected to it. Once the slices are deployed, we automatically
check the connectivity among the VFs and measure the through-
put. To do so, we use Iperf, which is an open source and real-time
network throughput measurement tool [44]. The first test is per-
formed immediately after the deployment of the slices and the
result is automatically sent to the intent layer, while the other
verification tests are carried out periodically every 5 minutes.
In average, this operation takes around 51 s to be completed.
This time includes the configuration of the network interfaces,
the connectivity establishment and the Iperf test which, in this
example for consistency purposes, is performed over a 25 s time
period. The overall verification time can be significantly reduced
if we reduce the Iperf test time period (i.e., can be reduced up to
15s).

In Fig. 10, we show the outcome of the Iperf tests for the 2
slices immediately after their deployment. The plot confirms the
establishment of the connectivity among the VFs composing each
slice. Moreover, we can clearly notice that for the whole duration
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of the test (i.e., 25 s), the throughput is almost equal to the value
requested in the intent.

During the periodical validation tests, the connectivity could
suffer from sudden degradations that are automatically reported
to the Intent Layer thanks to the Monitoring & Validation compo-
nent. Those degradations can happen during the validation test,
as shown in Fig. 11 or before its execution. Once such deteriora-
tion in the performance is detected, an alarm is sent to the Intent
engine, which undertakes a set of actions to fix the issue and
restore the performance to the level required by the intent. As a
preliminary implementation, our intent engine sends a Terminate
command to NFV MANO to stop the execution of the slice, then
it deploys the slice again considering the initial requirements of
the intent. Such operation takes around 200 s in the CloudLab
testbed and allows to restore the connectivity among the slice’s
components. In Fig. 12 we plot the time taken by each phase of
the validation process to restore the performance. More specifi-
cally, we can clearly notice that most of the time (almost 90%) is
devoted to the re-setup of the slice while the rest is taken by the
deletion of the VMs and the communication messages between
the OSM and Openstack.

7. Related works
7.1. Intent-based networking

IBN was conceived as a novel approach in network manage-
ment to enable a loosely-coupled interworking between appli-
cations (i.e., tenant applications or service management appli-
cations) and network operators. Recently, IBN has attracted in-
creasing attention from research works, which provided solutions
addressing different aspects and challenges of IBN systems [45].
The concept of intent has also been introduced in the context
of autonomic networks [46]. However, while both autonomic
networks and Intent-based networking are driven by the need to
simplifying network management through automation and under
an end-to-end view, there is still a deep difference among them.
In fact, the intent concept in autonomic networks is basically a
kind of policy used to express instructions to operate the net-
work, hence, not aware of the goals the network providers and
service instances have to address like in intent-based networks.

In [47] authors present a high-level description of a slice intent
for the creation and dynamic management of an application-
aware network slice. Although only theoretical, the concept is
presented within a smart city use case. In [48] authors introduce
an IBN approach based on machine learning techniques to en-
sure network automation and self-assurance on top of SDN and
NFV platforms. Some implementative aspects of the automated
platform are described but not assessed. In [49], authors present
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an intent management system for VNF modeling and end-to-end
orchestration. The system is tested using 2 different open source
orchestrators showing its efficiency in creating network slices and
providing a seamless service orchestration. However, after the
deployment of the intents, the implementation lacks a monitoring
and assurance module to check their correct setup and execution.

With respect to the workflow presented in Section 2.1, the IBN
fulfillment operations have been tackled in [50-53][54], while
the assurance operations have been addressed in [55-57]. More
specifically, intent representation is considered in [50], where a
service description framework, namely iNDIRA, is used to con-
verse with users in a natural manner by adopting an ontology-
based approach. The intent translation is tackled in [51] where
authors use specific mechanisms to translate their intent into a
set of configurations across SDN, IoT and Cloud domains while
allowing to satisfy the QoS requirements. In [52], authors pro-
pose the NEtwork MOdeling (NEMO) language to be used for
intent-based NBIs. NEMO provides a simple model definition that
facilitates intents description and translation. The automation of
resources management for SDN applications is addressed in [53]
where an intent-driven approach is presented providing high-
level APIs that allow to express the requirements of various
applications simultaneously. A concrete implementation of the
automation feature can be shown through the network pro-
grammability as stated in [54] where an end-to-end intent is
deployed using the P4 programming language.

The assurance operations have been addressed in [55-57].
More specifically, [55] addressed the challenge of monitoring the
status of deployed intents and adapting them to the changes in
the underlying network by checking the current network status
and then automatically rerouting services in order to dynami-
cally align network flows to the desired intent. [56] developed
an IBN framework which contains a machine learning module
that continuously monitors the network resources statistics and
decides whether upcoming requests can be admitted or not. [57]
implements an intent-based control loop for video service as-
surance that triggers policy driven actions (e.g., functions place-
ment, bitrate changes) to dynamically respond to service-specific
requirements and improve the QoS.

All these works address IBN in different kinds of networks and
on top of network control or management systems. In this paper,
we address IBN in virtualized infrastructures whose resources
are orchestrated through ETSI MANO framework. We present a
comprehensive framework where all the building blocks of the
Intent Orchestration Layer are implemented and assessed. Our
work tackles all the aspects of IBN operations, going from the
translation to the execution and the verification.

7.2. Intent-based networking in SDN/NFV

IBN in SDN/NFV infrastructures including 5G (and beyond)
technologies, has been recently tackled in several works [58].
[59,60] present an intent-based provisioning framework with
proper abstractions and intent engine operation to address the
required set-up of 5G mobile backhauling services and cloud ra-
dio access network slices, respectively. The potentiality of IBNs for
6G wireless networks is elaborated in [27] where architectures,
key techniques and emerging new products are comprehensively
described as well as open issues and challenges. Finally, the VNF
placement problem and the automated deployment of VNFs in
cloud-based infrastructures through an intent-based approach is
tackled in [61].

IBN in network slicing orchestration and service chaining is
also considered in several works. [48] provides an IBN solu-
tion for network slice orchestration on top of NFV platforms,
which allows to support high-level service requirements that are
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Fig. 12. Break-down of intent validation process phases.

then converted into low-level TOSCA configurations. Moreover,
assurance operations are provided through monitoring and a ma-
chine learning model to guarantee a stable service provisioning.
In [49], authors present an intent-based system for end-to-end
network service orchestration on top of Mobile Central Office
Re-architected as Data Center (CORD) and Open-Source Man-
agement and Orchestration (OSM) orchestrators. [62] proposes
the usage of the intents to request transport network slices as
part of an end-to-end slice for 5G vertical services. The work
mainly focuses on the set of mechanisms required to translate
the user’s intent into a transport slice. [63] implements a north-
bound interface (NBI) supporting intents in plain text that are
translated into pre-compiled network policies. The policies are
then bound to the underlying Software-Defined Infrastructure
management tool which interacts with a cloud platform and
SDN controllers to enforce the low-level rules. The approach has
been validated through a service function chaining and dynamic
firewall programming use cases. [64] introduces an IBN-based
solution, INSpIRE, which translates intents into a set of config-
urations to deploy specific service chains while meeting QoS and
security requirements. INSpIRE relies on a score and clustering
mechanism to determine the suitable set of VNFs required by the
intent and allows for automatically performing traffic steering
among them. It is based on the ETSI NFV MANO framework
which has been extended to include novel elements that help in
enforcing VNFs ordering preferences.

All these works address IBN in network slicing and orchestra-
tion on top of an NFV platform as our proposed system does.
However, our work focuses on SDN-based network slices as a
solution toward flexible delivery of vertical services.

7.3. European initiatives for intent-based networking

Several efforts have been carried out in the area of service
management to provision network slices with vertical-specified
features and to allow their set-up in automated way as much
as possible. More specifically, the EU-funded 5G-TRANSFORMER
project considers a set of simple slice service blueprints that
allow for the deployment of vertical services without the need
to specify the slice details [65,66]. The blueprint offers an ab-
straction of a VNFD and is translated, through mapping, to a
NSD which allows for the slice deployment [67]. MATILDA is
another EU-funded project where an intent-oriented approach
has been considered [68]. A slice intent is specified as a ser-
vice data model used to express the terms and constraints of
the slice services, e.g., required network functions, maximum
latency. Then, the overall intent information is mapped to the
MATILDA metamodel, aiming to represent all the requirements
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that should be satisfied by a telco provider during the creation of
a slice [47]. Although in both cases a vertical-oriented approach is
used, they cannot be indicated as intent-based solutions. In fact,
they formulate a slice service data model that is still strongly
dependent on the NSD data models and they do not express
neither business nor operational goals desired by the verticals,
e.g., high-available slice service with redundant slice links. On
the contrary, an intent-based approach has been considered in
the 5G EVE project [69], where a flexible 5G end-to-end infras-
tructure is offered [70]. The platform extends the concept of
blueprints already presented in the 5G TRANSFORMER project to
allow vertical industries to deploy their services automatically.
The intent-based tool translates text input introduced by users to
the most suitable blueprints and parameters. The validation of the
services execution is also performed through monitoring and KPI
results are then summarized in a report. However, no real-time
corrective actions are performed as we do in this work. Moreover,
unlike in our proposed approach, those initiatives did not focus on
slices with SDN capabilities and rather tackled the provisioning of
vertical-oriented slices that do not require SDN features.

7.4. SDN in tenant managed domains

The importance of tenant-side network through SDN for flex-
ible management of network services in the application (i.e.,
vertical) domain has been attested by number of research ini-
tiatives. [71] proposes a “Bring Your Own Controller” (BYOC)
paradigm and presents a BYOC VISOR, an SDN virtualization plat-
form that provides a customized, secure and scalable SDN services
to cloud users. [72] proposes an integrated management and
orchestration architecture for multi-tenant transport networks
with tenant SDN controllers deployed as VNFs. The system is
presented as a possible improvement of the ETSI NFV orchestra-
tion platform [15] in terms of fast connectivity establishment and
decreased recovery time in case of failures. In both cases, the
proposed solutions do not provide a fully tenant-side network
management capabilities and still rely on the integration with
management features of the underlying (virtual) infrastructure.
In [17], authors propose a platform that provides tenants with
latency-aware service function chaining management capabili-
ties. Although truly tenant-side network control capabilities are
provided along with abstraction and programmability features
to some extent, the solution does not rely on OF nor offers full
SDN-based network control capabilities to tenants. [73] presents
an NFV platform that aims at automating the management and
configuration of virtual networks based on high level tenant
requirement specifications. The platform also plays the role of an
SDN controller, which provides abstraction and control capabili-
ties for independent, isolated and multi-tenant virtual networks.
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With respect to our work, the main difference resides in the
provisioning of the SDN features to tenants. In fact, while in [73]
the platform relies on a unique SDN controller that handles
network abstractions and control capabilities to all virtual net-
works, in our proposal we provide each tenant with a separate
SDN controller that manages network configurations within the
slice. Such approach guarantees more flexibility, efficiency and
isolation among tenants. In [74], authors present a workload
slicing scheme to handle data-intensive applications in a multi-
edge cloud environment using an SDN controller designed to
provide optimal traffic scheduling to VMs with minimum energy
consumption. Moreover, in order to handle the huge amount
of traffic, authors propose to extend the physical network into
virtual SDN networks (vSDNs) managed by virtual controllers.
The scheme has been also validated for a healthcare ecosystem
in [75]. In [76] authors propose an architecture that integrates
cloud and fog computing in the 5G environment using SDN and
NFV technologies. A network service chaining model is presented
where the focus is on high-level architectural issues related to
virtualization and security. Although the papers discuss the inte-
gration of SDN and NFV in different architectures and scenarios,
the presented work is not sufficiently focused on the network
slicing concept as we do in this paper.

8. Future work and challenges

The intent-based framework that we propose in this paper
presents a step forward in the adoption of intent-based network
slicing for SDN vertical services, which is still not a well explored
research area. However, the proposed intent layer is still under
development and some of its aspects still need to be improved.
Moreover, there are several challenges and open issues regarding
IBN that will be discussed in the following.

8.1. Future work

First, as future work, we intend to extend our framework by
incorporating further details related to a wider range of scenar-
ios and applications. To do so, we plan to expand the intents
template, add more fine-grained options and develop the formal-
ized intent language expression to cover more parameters. The
security area can be also covered using intents with an extension
of the preliminary management framework shown by authors
in [77].

Second, to increase the efficiency of the assurance phase,
we look for the adoption of more sophisticated parameters and
mechanisms. More specifically, several remediation actions can
be stipulated according to the nature of the deterioration issue
and its potential causes. In our work, as a preliminary imple-
mentation, we have already considered the deletion of the intent
and the deployment of the slice once again considering the initial
requirements of the intent. However, other technologies can be
considered for this purpose, such as Artificial Intelligence and
Machine Learning to predict users/applications behavior and con-
sequently prepare remediation actions in an optimal manner,
thus fully automating the configuration in the network.

Finally, regarding the performance evaluation of the frame-
work, we plan to enhance our approach by investigating different
network topologies in the SDN-based VNF, and testing the im-
pact of the use of more realistic data sets and traffic patterns
(e.g., Google workload).

8.2. Open challenges

The IBN concept has been recently presented by the IETF as a
novel approach in network management to increase automation
and simplify the process of network configurations. However,
there are still several challenges and open issues that have to be
investigated and addressed, which we discuss below [78].
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8.2.1. Complexity

With the evolution of networks toward 6G and beyond, the
complexity of network operation and management is increasing
and accordingly business needs are changing making it manda-
tory for IBN to evolve in order to keep pace with the requirements
of the new scenarios.

8.2.2. Integration with Al and machine learning

Although the integration with Al and Machine Learning tech-
nologies will improve the performance of IBN frameworks by
increasing automation and flexibility, those technologies are still
at their early stage and require further research efforts before
reaching the maturity necessary for their integration with IBN.

8.2.3. Conflicting intents

The management of conflicting intents is one of the most
important challenges that have to be considered given the impact
that intents dependencies can have on the performance [79].
In fact, syntactically and semantically valid intent can still be
infeasible due to inconsistency or conflicts with existing intents.
Due to the complexity of service scenarios and network configu-
rations, such dependencies are hard to predict and detect at the
reception of intents requests and necessitate the implementation
of sophisticated mechanisms to mitigate their effects.

9. Conclusions

In this paper, we presented an intent-based framework that
allows for customized specifications and effective establishment
of QoS-aware and SDN-enabled network slices toward flexible
delivery of vertical services. Our approach offers a straightforward
way for verticals to express their business and operational goals
using a simple approach based on the NILE language while the
technical details for their implementation are left to the network
operation system. Our system includes an intent layer integrated
with an ETSI NFV MANO platform thus providing the necessitated
flexibility and dynamicity. The system is put in relation with dif-
ferent service scenarios where network slicing and SDN can foster
the flexible delivery of vertical services. Moreover, intent specifi-
cations are detailed that reflect those service scenario goals. We
have also reported a preliminary proof-of-concept implementa-
tion of the proposed intent layer. The obtained results show its
feasibility and ability to easily deploy the intents while guaran-
teeing tenants objectives. As future work, we plan to improve the
expressiveness of our intents by leveraging more sophisticated
programming languages or libraries. We also envisage to add
more features to the validation process to make the provision of
the network slices more reliable.
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