Imaging Teaching Case

Use of Ultrasound to Assess the Response to Therapy for Secondary Hyperparathyroidism

Mario Meola, MD, PhD,1,2 Ilaria Petrucci, MD,2 Elisa Colombini, MD,2 and Giuliano Barsotti, MD2

Secondary hyperparathyroidism (SHPT) is a common complication in patients with chronic kidney disease. In SHPT, the biology of parathyroid cells changes significantly toward diffuse nodular hyperplasia. Currently, diagnosis of SHPT is based on intact parathyroid hormone serum levels and parameters of mineral metabolism. The morphologic diagnosis of SHPT relies on high-resolution ultrasonography with color Doppler imaging. This report describes a maintenance hemodialysis patient with severe SHPT treated using conventional therapy (phosphate binders and oral/intravenous vitamin D or analogues) and the subsequent addition of a calcimimetic. The role of color Doppler ultrasonography in the diagnosis, clinical follow-up, and assessment of therapeutic response of SHPT is discussed. This case suggests that the availability of calcimimetics has changed the natural history of clinical SHPT and may change the therapeutic utility of parathyroidectomy. Use of color Doppler ultrasonography further supports these therapeutic advances, allowing evaluation of the morphologic and vascular changes in hyperplastic parathyroid glands and aiding clinical, pharmacologic, and surgical strategies.

INDEX WORDS: Parathyroid sonography; neck high-resolution sonography; secondary hyperparathyroidism; calcimimetic cinacalcet; parathyroid hyperplasia.

INTRODUCTION

Secondary hyperparathyroidism (SHPT) is a serious complication of chronic kidney disease and maintenance hemodialysis (HD) therapy. Hypocalcemia, phosphate retention, and 1,25 dihydroxyvitamin D3 deficiency are the stimuli behind the synthesis and release of parathyroid hormone (PTH).1,2 Loss of renal mass results in persistent overstimulation of the parathyroid glands, resulting in changes to their cell biology, triggering cell hypertrophy-hyperplasia, and leading to the selection of cell clones with decreased calcium receptor and vitamin D receptor density.1 Long-term hyperstimulation of the parathyroid glands produces glandular hyperplasia, which is at first polyclonal, then monoclonal and nodular, progressing to a growth disorder (tertiary hyperparathyroidism).3 Nodular hyperplasia does not involve all glands or affect all patients with chronic kidney disease equally; therefore, it can be assumed that unknown genetic mechanisms may be involved.4,5

The identification of healthy parathyroid glands is difficult. However, high-resolution ultrasonography (US) with color Doppler imaging can be used to localize hyperplastic glands. Color Doppler US is the only technique that measures volumetric variations of the hyperplastic glands and provides semiquantitative parameters on glandular perfusion.5

In this report, we describe a maintenance HD patient with severe SHPT treated using conventional therapy (phosphate binders and oral/intravenous vitamin D or analogues), then percutaneous ethanol injection, and finally the calcimimetic cinacalcet. We emphasize the role of color Doppler US to assess the response to therapy for SHPT.

CASE REPORT

Clinical History and Initial Laboratory Data

We present the case of a 51-year-old woman undergoing maintenance HD therapy since 1981 because of bladder exstrophy, urinary obstructive, and reflux uropathy with recurrent urinary tract infections. At 12 years of age, after multiple reconstructive surgeries, serum creatinine was 2.5 mg/dL [221 \(\mu\)mol/L]). Cystography showed bilateral vesicoureteral reflux with grade IV hydrenephrosis. A ureteral-sigmoidal-cutaneostomy was performed, but glomerular filtration rate progressively worsened. At the age of 22 years (serum creatinine, 12 mg/dL [1,060.8 \(\mu\)mol/L], her estimated glomerular filtration rate, calculated using the MDRD (Modification of Diet in Renal Disease) Study equation, was 5 mL/min [0.08 mL/s], so she started maintenance HD treatment. In 1990, after 9 years of maintenance HD therapy and continuous oral therapy with calcium carbonate, 4 g/d, serum calcium level was 11 mg/dL (2.64 mmol/L), serum phosphorus level was 4.9 mg/dL (1.58 mmol/L),
calcium-phosphorous product was 49 mg²/dL² (4.17 mmol²/L²),
intact PTH (iPTH) level was 611 pg/mL (611 ng/L), and alkaline
phosphatase level was 580 U/L.

Imaging Studies

In 1990, color Doppler US showed nodular hyperplasia of the
right inferior parathyroid gland. The gland measured 13 × 10 × 8
mm with a calculated volume of 543 mm³. In 1993, the volume
of the right inferior gland was 4,260 mm³, and a small left hy-
poechoic parathyroid with abnormal size (5 × 3 × 4 mm; volume,
31 mm³) became evident.

In 1994, color Doppler US showed a further increase in volume
of the right inferior parathyroid (23 × 19 × 20 mm; volume, 4,556
mm³) and the left gland (81 mm³). Subtraction scintigraphy
showed only hyperaccumulation of radiotracer near the right
inferior pole of the thyroid. From 1997 to 2003, both glands
increased in size (5,299 and 210 mm³) and an enlarged parathyroid
gland (65 mm³) was noted at the inferior pole of the left thyroid
lobe.

In January 2005, color Doppler US showed 4 hyperplastic
parathyroid glands. On the right side, the biggest gland was 22 ×
20 × 21 mm with a volume of 4,827 mm³ and appeared hypervas-
cularized. The second gland was in the superior mediastinum on
the right side and measured 9 × 7 × 5 mm with a volume of 164
mm³. On the left side, there were 2 parathyroid glands measuring
11 × 8 × 7 mm with a volume of 321 mm³ (superior) and 9 × 8 ×
7 mm with a volume of 263 mm³ (inferior). Color Doppler showed
a hypervascularized pattern.

In 2006, color Doppler US showed a small volume increase in
the right inferior parathyroid gland due to cyst-like involutions
and widespread hypovascularization. The decrease in volume of
the other glands was not significant; however, intraglandular cyst-like
areas were noted in the bigger glands.

In 2007, color Doppler US showed wide cystic degeneration of
the largest gland, which appeared completely avascularized on
color Doppler. A decrease in volume and structural alterations of
the smaller gland (cystic areas and loss of color Doppler signal)
became more evident. To evaluate the functional significance of
the cyst-like involutions, technetium 99m (⁹⁹mTc) methoxyisobut-
yl isonitrile scintigraphy was performed. This showed an area of
early and late hyperaccumulation of tracer near the inferior pole
of the thyroid, but did not identify other glands.

In January 2010, color Doppler US showed that the right inferior
gland was 22 × 17 × 20 mm with a volume of 3,979 mm³, and its
morphologic and vascular patterns were unchanged. The mediasti-
nal gland was hyperechoic and measured 6 × 5 × 3 mm with a
volume of 47 mm³, the left superior gland was 9.9 × 5.3 × 4.2 mm
with a volume of 214 mm³ and absence of vascularization, and
the left inferior gland was no longer distinguishable (Fig 1).

Diagnosis

SHPT in a maintenance HD patient.

Clinical Follow-up

Laboratory data, imaging findings, and therapeutic interventions
are listed in Table 1.

![Image](image-url)

Figure 1. Volumetric variations of the parathyroid glands from 1990 to 2010.
Ultrasound in Secondary Hyperparathyroidism

Table 1. Clinical History of Patient With SHPT

<table>
<thead>
<tr>
<th>Year</th>
<th>Clinical and Laboratory Findings</th>
<th>Parathyroid Gland Imaging*</th>
<th>Treatment Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>Ca, 11 mg/dL; P, 4.9 mg/dL; Ca × P, 49 mg²/dL²; ALP, 580 U/L; iPTH, 611 pg/mL</td>
<td>RIG, 543 mm³</td>
<td>PEI of the only hyperplastic parathyroid gland detectable on US</td>
</tr>
<tr>
<td>1990</td>
<td>9 mo after PEI treatment: ALP, 952 U/L; iPTH, 795 pg/mL</td>
<td>RIG, 4,260 mm³; LSG, 31 mm³</td>
<td>Vitamin D (4 μg 3×/wk); CaCO₃ decreased to 2.5 g/d</td>
</tr>
<tr>
<td>1993</td>
<td>ALP, 500 U/L; iPTH, 700 pg/mL</td>
<td>RIG, 4,556 mm³; LSG, 81 mm³</td>
<td>Oral calcitriol replaced by IV calcitriol, 1.5 μg 3×/wk; CaCO₃ stopped; Al(OH)₃ added (3 tablets 2×/wk)</td>
</tr>
<tr>
<td>1997-2003</td>
<td>Ca, 12.3 mg/dL; P, 5.6 mg/dL; Ca × P, 68.8 mg²/dL²; ALP, 326 U/L; iPTH, 1,350 pg/mL; symptoms: itching, severe osteoarticular/muscle pain, lumbosacral tenderness, walking difficulties</td>
<td>RIG, 5,299 mm³; LSG, 210 mm³; LIG, 65 mm³</td>
<td>Calciotil therapy interrupted due to episodes of hypercalcemia and hyperphosphatemia; parathyroidectomy indicated, but patient refused; calciotil therapy reintroduced</td>
</tr>
<tr>
<td>2005</td>
<td>Ca, 10.1 mg/dL; P, 6 mg/dL; Ca × P, 60.6 mg²/dL²; ALP, 740 U/L; iPTH, 1,480 pg/mL; symptoms: hematuria, severe osteoarticular/muscle pain, lumbosacral tenderness, walking difficulties</td>
<td>RIG, 4,827 mm³; RMG, 164 mm³; LSG, 321 mm³; LIG, 263 mm³; vascular pattern 3 for all</td>
<td>Cinacalcet (maximum dosage, 150 mg/d) added to conventional therapy</td>
</tr>
<tr>
<td>2005</td>
<td>Ca, 10.5 mg/dL; P, 5 mg/dL; Ca × P, 52.5 mg²/dL²; ALP, 1,243 U/L; iPTH, 1,600 pg/mL; symptoms: hematuria, severe osteoarticular/muscle pain, lumbosacral tenderness, walking difficulties</td>
<td>RIG, 3,979 mm³ (cystic degeneration; vascular pattern 0); RM, 47 mm³ (vascular pattern 0); LSG, 214 mm³ (vascular pattern 0); LIG³</td>
<td>Cinacalcet (120 mg/d), paricalcitol (5 μg 3×/wk) associated with sevelamer (4,800 mg/d) and CaCO₃ (2 g/d)</td>
</tr>
</tbody>
</table>

Note: Conversion factors for units: serum Ca in mg/dL to mmol/L, ×0.2495; serum P in mg/dL to mmol/L, ×0.3229; Ca × P in mg²/dL² to mmol²/dL², ×0.077. No conversion necessary for PTH in pg/mL and ng/L.

Abbreviations and definitions: Al(OH)₃, aluminum hydroxide; ALP, alkaline phosphatase; Ca, calcium; Ca × P, calcium-phosphorus product; CaCO₃, calcium carbonate; iPTH, intact parathyroid hormone; IV, intravenous; LIG, left inferior parathyroid gland; LSG, left superior parathyroid gland; P, phosphorus; PEI, percutaneous ethanol injection; RIG, right inferior parathyroid gland; RMG, right mediastinic parathyroid gland; SHPT, secondary hyperparathyroidism; US, ultrasonography.

Superscript: aVolume and (when applicable) vascular pattern assessed using color Doppler US.

bNo longer distinguishable.

dNo longer distinguishable.

eVolume and (when applicable) vascular pattern assessed using color Doppler US.

DISCUSSION

Color Doppler US of the parathyroid glands has a pivotal role in the diagnosis of SHPT, assessing the severity of disease and evaluating response to medical treatment. However, in clinical practice, color Doppler US is not commonly performed and SHPT diagnosis is based on iPTH serum levels and parameters of mineral metabolism.

Because parathyroid glands normally are heavily populated with adipose cells, they can be difficult to distinguish from thyroid parenchyma even with the use of high-resolution probes. However, cellular hyperplasia makes the glands diffusely hypoechoic and easily detectable in the thyroid lodge. There is no set size threshold above which a parathyroid gland is identified as pathologic; however, if each of 2 diameters is >5 mm, a hypoechoic gland is judged hyperplastic (Fig 2). Glandular volume (in cubic millimeters) is calculated using the formula of an irregular ellipsoid \((4/3 \pi \times ½ \text{ anteroposterior diameter} \times ½ \text{ laterolateral diameter} \times ½ \text{ craniocaudal diameter})\).

The increase in glandular volume suggests increased PTH secretion and worsening of SHPT. Studies that correlate glandular volume with histologic features of the excised glands at parathyroidectomy show that glands <500 mm³ are affected mainly by diffuse and polyclonal hyperplasia, whereas glands >500 mm³ are affected by monoclonal nodular hyperplasia in 80% of cases. Moreover, because there is wide variation in glandular volume, the overall sensitivity of color Doppler US in SHPT diagnosis is 74%-75% (<50% in the localization of parathyroids <500 mm³ and >90% in glands ≥500 mm³).

The ability to assess changes in glandular volume gives color Doppler US a unique advantage over SPECT (single-photon emission computed tomogra-
The increase in parathyroid gland volume is associated with a widespread increase in vascularity, evident histologically.11-13 Usually color Doppler distinguishes 3 different patterns,10 as shown in Fig 2D-F.

According to international guidelines, SHPT diagnosis is based on iPTH serum levels and parameters of mineral metabolism. However, the optimal values for iPTH in maintenance HD patients are still uncertain,14,15 and hormone levels show great variability.16 Because levels are influenced by drug therapy, iPTH level does not provide information for grading hyperplasia. Color Doppler US evaluates the degree of hyperplasia and number of glands involved, completing the biochemical diagnosis. We routinely perform color Doppler US of the parathyroid glands when iPTH values are consistently >400 pg/mL (>400 ng/L) and repeat this study annually in maintenance HD patients to evaluate the progression of disease. B-Mode parameters important for the assessment of SHPT progression include: (1) the gland’s echogenicity, (2) gland diameter17 and volume, (3) appearance of anechoic areas with no vascularization suggesting involutive cystic phenomena, and (4) presence of fibrocalcifications.13

In our case, nodular hyperplasia of a single gland appeared after a long period of maintenance HD therapy. Color Doppler US was used to perform chemical ablation with percutaneous ethanol injection, but biochemical/morphologic results were poor. Afterward, other hyperplastic glands appeared, showing the slow but continuous progression of SHPT despite oral/intravenous vitamin D treatments. At this stage, the evidence of nodular hyperplasia on color Doppler US, severity of SHPT, and refractoriness to therapy with vitamin D/binders indicated the necessity of parathyroidectomy, which was refused by the patient.

The role of color Doppler US in the presurgical evaluation of SHPT is very different from primary hyperparathyroidism. The sensitivity of color Doppler US in the localization of adenoma/carcinoma is very high (90%-92%) for primary hyperparathyroidism, similar to that of conventional parathyroidectomy (93%-99%).18 In a patient with SHPT, the role of imaging is less critical because parathyroidectomy is performed using conventional cervicotomy. Moreover, because there is wide variation in glandular volume and the overall sensitivity of color Doppler US for SHPT is lower than for primary hyperparathyroidism, the role of color Doppler US therefore should

Figure 2. Progression of parathyroid gland hyperplasia. (A) Long-term hyperstimulation of parathyroid glands causes hyperplasia that makes the glands enlarged and diffusely hypoechoic (arrows), easily distinguishable in the thyroid lodge. (B, C) Glandular hyperplasia is at first diffuse and polyclonal, then monoclonal and nodular. The increase in parathyroid gland volume is associated with a widespread increase in vascularity. Color Doppler distinguishes 3 different patterns: (D) glands lacking Doppler signal, (E) hypovascularized glands with only a few color spots in the hilar/endoendodular region (weak Doppler signal), and (F) hypervascularized glands fed by an enlarged hilar artery that have a peripheral arc of vascularity and/or ray-like endonodular vessels. Abbreviations: Cc, common carotid; T, thyroid.
not be to localize the glands, but instead to determine surgical timing. Parathyroidectomy is indicated when color Doppler US evidences one or more hyperplastic glands \(\geq 500 \text{ mm}^3 \), serum iPTH level is \(>700 \text{ pg/mL} \) (\(>700 \text{ ng/L} \)), and calcium, phosphorus, and calcium-phosphorous product values are no longer controlled using conventional therapy.19,20

Glandular volume is related directly to the number of glands detected; it also may be highly variable and not entirely correlated with iPTH level at greater than a certain size/volume threshold. Calculated volume shows a linear correlation with iPTH value only when gland volume is \(<2,000 \text{ mm}^3 \) (ie, \(<2 \text{ g} \)).8,21 This observation suggests that the biggest glands tend to disengage from receptor control mechanisms (ie, up-regulation of calcium receptor and vitamin D receptor) and grow independently.

In conclusion, if iPTH serum levels are constantly \(>400 \text{ pg/mL} \) (\(>400 \text{ ng/L} \)), color Doppler US can be performed to evaluate the presence of hyperplastic glands and complete the clinical diagnosis. This can be repeated once a year to evaluate disease progression. The availability of calcimimetics is changing the natural history of SHPT and may change the therapeutic utility of surgical parathyroidectomy. Use of color Doppler US further supports these therapeutic advances, allowing evaluation of morphologic and vascular changes in hyperplastic glands and aiding clinical, pharmacologic, and surgical strategies.

Figure 3. Right inferior parathyroid gland of clinical case before and after cinacalcet therapy. (A) Before cinacalcet therapy, diameters were \(22 \times 20 \times 21 \text{ mm} \) (volume, \(4,827 \text{ mm}^3 \)) and the gland was diffusely hypoechoic. (B) The vascular pattern was rich (type 3) and showed a vascular hilum. (C) After 2 years of cinacalcet combined therapy, the gland was \(21 \times 21 \times 21 \text{ mm} \) (\(4,838 \text{ mm}^3 \)) and color Doppler ultrasonography showed wide cystic degeneration (D) with disappearance of vascularization. Abbreviation: T, thyroid.
ACKNOWLEDGEMENTS

We thank Sara Samoni, MD, for collecting clinical data.
Support: An unrestricted grant from Amgen Europe GmbH funded English translation by Apothecom ScopeMedical Ltd.
Financial Disclosure: The authors declare that they have no relevant financial interests.

REFERENCES

