Adequate cellular transport of ascorbic acid (AA) and its oxidation product dehydroascorbate (DHA) is assured through specific carriers. It was shown that vitamin C is taken up as DHA by most cell types, including cancer cells, via the facilitative GLUT transporters. Thus, AA oxidation to DHA can be considered a mechanism favoring vitamin C uptake and intracellular accumulation. We have investigated whether such an AA-oxidizing action might be provided by plasma membrane g-glutamyltransferase (GGT), previously shown to function as an autocrine source of prooxidants. The process was studied using two distinct human metastatic melanoma clones. It was observed that the Me665/2/60 clone, expressing high levels of membrane GGT activity, was capable of effecting the oxidation of extracellular AA, accompanied by a marked increase of intracellular AA levels. The phenomenon was not observed with Me665/2/21 cells, possessing only traces of membrane GGT. On the other hand, AA oxidation and stimulation of cellular uptake were indeed observed after transfection of 2/21 cells with cDNA coding for GGT. The mechanism of GGTmediated AA oxidation was investigated in acellular systems, including GGT and its substrate glutathione. The process was observed in the presence of redox-active chelated iron(II) and of transferrin or ferritin, i.e., two physiological iron sources. Thus, membrane GGT activity—often expressed at high levels in human malignancies—can oxidize extracellular AA and promote its uptake efficiently.
Plasma membrane gamma-glutamyltransferase activity facilitates the uptake of vitamin C in melanoma cells.
FRANZINI, Maria;
2004-01-01
Abstract
Adequate cellular transport of ascorbic acid (AA) and its oxidation product dehydroascorbate (DHA) is assured through specific carriers. It was shown that vitamin C is taken up as DHA by most cell types, including cancer cells, via the facilitative GLUT transporters. Thus, AA oxidation to DHA can be considered a mechanism favoring vitamin C uptake and intracellular accumulation. We have investigated whether such an AA-oxidizing action might be provided by plasma membrane g-glutamyltransferase (GGT), previously shown to function as an autocrine source of prooxidants. The process was studied using two distinct human metastatic melanoma clones. It was observed that the Me665/2/60 clone, expressing high levels of membrane GGT activity, was capable of effecting the oxidation of extracellular AA, accompanied by a marked increase of intracellular AA levels. The phenomenon was not observed with Me665/2/21 cells, possessing only traces of membrane GGT. On the other hand, AA oxidation and stimulation of cellular uptake were indeed observed after transfection of 2/21 cells with cDNA coding for GGT. The mechanism of GGTmediated AA oxidation was investigated in acellular systems, including GGT and its substrate glutathione. The process was observed in the presence of redox-active chelated iron(II) and of transferrin or ferritin, i.e., two physiological iron sources. Thus, membrane GGT activity—often expressed at high levels in human malignancies—can oxidize extracellular AA and promote its uptake efficiently.File | Dimensione | Formato | |
---|---|---|---|
2004_3098.pdf
accesso aperto
Tipologia:
Altro materiale
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
627.41 kB
Formato
Adobe PDF
|
627.41 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.