Motivation: Coexpression networks are data-derived representations of genes behaving in a similar way across tissues and experimental conditions. They have been used for hypothesis generation and guilt-by-association approaches for inferring functions of previously unknown genes. So far, the main platform for expression data has been DNA microarrays, however the recent development of RNA-seq allows for higher accuracy and coverage of transcript populations. It is therefore important to assess the potential for biological investigation of coexpression networks derived from this novel technique in a condition-independent dataset. Results: We collected 65 publicly available Illumina RNA-seq high quality Arabidopsis thaliana samples and generated Pearson correlation coexpression networks. These networks were then compared with those derived from analogous microarray data. We show how Variance-Stabilizing-Transformed (VST) RNA-seq data samples are the most similar to microarray ones, with respect to inter-sample variation, correlation coefficient distribution and network topological architecture. Microarray networks show a slightly higher score in biology-derived quality assessments such as overlap with the known protein-protein interaction network and edge ontological agreement. Different coexpression network centralities are investigated; in particular, we show how betweenness centrality is generally a positive marker for essential genes in Arabidopsis thaliana, regardless of the platform originating the data. In the end, we focus on a specific gene network case, showing that, although microarray data seem more suited for gene network reverse engineering, RNA-seq offers the great advantage of extending coexpression analyses to the entire transcriptome.

Comparative study of RNA-seq- and Microarray-derived coexpression networks in Arabidopsis thaliana

LICAUSI, Francesco
2013-01-01

Abstract

Motivation: Coexpression networks are data-derived representations of genes behaving in a similar way across tissues and experimental conditions. They have been used for hypothesis generation and guilt-by-association approaches for inferring functions of previously unknown genes. So far, the main platform for expression data has been DNA microarrays, however the recent development of RNA-seq allows for higher accuracy and coverage of transcript populations. It is therefore important to assess the potential for biological investigation of coexpression networks derived from this novel technique in a condition-independent dataset. Results: We collected 65 publicly available Illumina RNA-seq high quality Arabidopsis thaliana samples and generated Pearson correlation coexpression networks. These networks were then compared with those derived from analogous microarray data. We show how Variance-Stabilizing-Transformed (VST) RNA-seq data samples are the most similar to microarray ones, with respect to inter-sample variation, correlation coefficient distribution and network topological architecture. Microarray networks show a slightly higher score in biology-derived quality assessments such as overlap with the known protein-protein interaction network and edge ontological agreement. Different coexpression network centralities are investigated; in particular, we show how betweenness centrality is generally a positive marker for essential genes in Arabidopsis thaliana, regardless of the platform originating the data. In the end, we focus on a specific gene network case, showing that, although microarray data seem more suited for gene network reverse engineering, RNA-seq offers the great advantage of extending coexpression analyses to the entire transcriptome.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/382254
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 83
social impact