Network service chaining, originally conceived in the network function virtualization (NFV) framework for software defined networks (SDN), is becoming an attractive solution for enabling service differentiation enforcement to microflows generated by data centers, 5G fronthaul and Internet of Things (IoT) cloud/fog nodes, and traversing a metro-core network. However, the current IP/MPLS-over optical multi-layer network is practically unable to provide such service chain enforcement. First, MPLS granularity prevents microflows from being conveyed in dedicated paths. Second, service configuration for a huge number of selected flows with different requirements is prone to scalability concerns, even considering the deployment of a SDN network. In this paper, effective service chaining enforcement along traffic engineered (TE) paths is proposed using segment routing and extended traffic steering mechanisms for mapping micro-flows. The proposed control architecture is based on an extended SDN controller encompassing a stateful path computation element (PCE) handling microflow computation and placement supporting service chains, whereas segment routing allows automatic service enforcement without the need for continuous configuration of the service node. The proposed solution is experimentally evaluated in segment routing over an elastic optical network (EON) network testbed with a deep packet inspection service supporting dynamic and automatic flow enforcement using Border Gateway Protocol with Flow Specification (BGP Flowspec) and OpenFlow protocols as alternative traffic steering enablers. Scalability of flow computation, placement, and steering are also evaluated showing the effectiveness of the proposed solution.

Network service chaining using segment routing in multi-layer networks

Paolucci, Francesco
2018-01-01

Abstract

Network service chaining, originally conceived in the network function virtualization (NFV) framework for software defined networks (SDN), is becoming an attractive solution for enabling service differentiation enforcement to microflows generated by data centers, 5G fronthaul and Internet of Things (IoT) cloud/fog nodes, and traversing a metro-core network. However, the current IP/MPLS-over optical multi-layer network is practically unable to provide such service chain enforcement. First, MPLS granularity prevents microflows from being conveyed in dedicated paths. Second, service configuration for a huge number of selected flows with different requirements is prone to scalability concerns, even considering the deployment of a SDN network. In this paper, effective service chaining enforcement along traffic engineered (TE) paths is proposed using segment routing and extended traffic steering mechanisms for mapping micro-flows. The proposed control architecture is based on an extended SDN controller encompassing a stateful path computation element (PCE) handling microflow computation and placement supporting service chains, whereas segment routing allows automatic service enforcement without the need for continuous configuration of the service node. The proposed solution is experimentally evaluated in segment routing over an elastic optical network (EON) network testbed with a deep packet inspection service supporting dynamic and automatic flow enforcement using Border Gateway Protocol with Flow Specification (BGP Flowspec) and OpenFlow protocols as alternative traffic steering enablers. Scalability of flow computation, placement, and steering are also evaluated showing the effectiveness of the proposed solution.
2018
File in questo prodotto:
File Dimensione Formato  
jocn17-sc-REV.pdf

accesso aperto

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Creative commons (selezionare)
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/523749
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
social impact