Inter-subject variability in accelerometer-based activity recognition may significantly affect classification accuracy, limiting a reliable extension of methods to new users. In this work we propose an approach for personalizing classification rules to a single person. We demonstrate that the method improves activity detection from wrist-worn accelerometer data on a four-class recognition problem of interest to the exercise science community, where classes are ambulation, cycling, sedentary, and other. We extend a previously published activity classification method based on support vector machines so that it estimates classification uncertainty. Uncertainty is used to drive data label requests from the user, and the resulting label information is used to update the classifier. Two different datasets - one from 33 adults with 26 activity types, and another from 20 youth with 23 activity types - were used to evaluate the method using leave-one-subject-out and leave-one-group-out cross validation. The new method improved overall recognition accuracy up to 11% on average, with some large person-specific improvements (ranging from -2% to +36%). The proposed method is suitable for online implementation supporting real-time recognition systems.

Classifier Personalization for Activity Recognition using Wrist Accelerometers

Mannini, Andrea
;
2019-01-01

Abstract

Inter-subject variability in accelerometer-based activity recognition may significantly affect classification accuracy, limiting a reliable extension of methods to new users. In this work we propose an approach for personalizing classification rules to a single person. We demonstrate that the method improves activity detection from wrist-worn accelerometer data on a four-class recognition problem of interest to the exercise science community, where classes are ambulation, cycling, sedentary, and other. We extend a previously published activity classification method based on support vector machines so that it estimates classification uncertainty. Uncertainty is used to drive data label requests from the user, and the resulting label information is used to update the classifier. Two different datasets - one from 33 adults with 26 activity types, and another from 20 youth with 23 activity types - were used to evaluate the method using leave-one-subject-out and leave-one-group-out cross validation. The new method improved overall recognition accuracy up to 11% on average, with some large person-specific improvements (ranging from -2% to +36%). The proposed method is suitable for online implementation supporting real-time recognition systems.
2019
File in questo prodotto:
File Dimensione Formato  
nihms-1533914.pdf

accesso aperto

Descrizione: HHS Author Manuscripts
Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Altro
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/524810
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
social impact