We experimentally demonstrate 50 Gb/s transmission below an uncorrected bit error rate (BER) of 10−3in the C band over a transmission reach that extends from 0 to 20 km using combined amplitude and phase shift (CAPS) codes. The CAPS signal, which is not required to be specifically dispersion compensated for each reach within the 20 km operating range, is amenable for simple direct detection using a single photodetector without any subsequent digital signal processing (DSP). Hence, the presented solution constitutes a potentially attractive low cost solution for mobile Xhaul applications employing single mode fiber interconnects with reaches extending to 20 km. Furthermore, the CAPS signaling is compared to other modulation schemes all delivering 50 Gb/s and is found to outperform on-off-keying (OOK), 4-level pulse amplitude modulation (PAM4) and dispersion precompensated OOK in terms of dispersion tolerance. At a lower reach of 10 km, the maximum bit rate that can be achieved using CAPS coding at a BER below 10−3is found to increase to 67 Gb/s. In addition, using the same testbed, we experimentally tested the IQ duobinary modulation format, which is an alternative format that approximates the CAPS transmitted waveforms in order to omit the need for a power consuming digital-to-analog converter (DAC) to generate the transmitted waveforms at the expense of slightly worse dispersion tolerance. Though the IQ duobinary format can be in principle generated using a simple DAC-less analog transmitter, our proof-of-concept experiment used a DAC to emulate the analog transmitter by generating the corresponding transmitted waveforms due to unavailability of all required analog parts. The IQ duobinary format was found experimentally to enable 50 Gb/s over a reach of ~17 km; that is slightly less than a CAPS signal at the same bit rate. Finally, we verified the excellent performance of the CAPS signaling in an ASE-limited regime where the CAPS signal achieved very low OSNR penalty after 10 km relative to OOK in back-to-back.

50 Gb/s short-reach interconnects with DSP-free direct-detection enabled by CAPS codes

Fresi, Francesco;Forestieri, Enrico;Secondini, Marco;Potí, Luca;
2018-01-01

Abstract

We experimentally demonstrate 50 Gb/s transmission below an uncorrected bit error rate (BER) of 10−3in the C band over a transmission reach that extends from 0 to 20 km using combined amplitude and phase shift (CAPS) codes. The CAPS signal, which is not required to be specifically dispersion compensated for each reach within the 20 km operating range, is amenable for simple direct detection using a single photodetector without any subsequent digital signal processing (DSP). Hence, the presented solution constitutes a potentially attractive low cost solution for mobile Xhaul applications employing single mode fiber interconnects with reaches extending to 20 km. Furthermore, the CAPS signaling is compared to other modulation schemes all delivering 50 Gb/s and is found to outperform on-off-keying (OOK), 4-level pulse amplitude modulation (PAM4) and dispersion precompensated OOK in terms of dispersion tolerance. At a lower reach of 10 km, the maximum bit rate that can be achieved using CAPS coding at a BER below 10−3is found to increase to 67 Gb/s. In addition, using the same testbed, we experimentally tested the IQ duobinary modulation format, which is an alternative format that approximates the CAPS transmitted waveforms in order to omit the need for a power consuming digital-to-analog converter (DAC) to generate the transmitted waveforms at the expense of slightly worse dispersion tolerance. Though the IQ duobinary format can be in principle generated using a simple DAC-less analog transmitter, our proof-of-concept experiment used a DAC to emulate the analog transmitter by generating the corresponding transmitted waveforms due to unavailability of all required analog parts. The IQ duobinary format was found experimentally to enable 50 Gb/s over a reach of ~17 km; that is slightly less than a CAPS signal at the same bit rate. Finally, we verified the excellent performance of the CAPS signaling in an ASE-limited regime where the CAPS signal achieved very low OSNR penalty after 10 km relative to OOK in back-to-back.
2018
File in questo prodotto:
File Dimensione Formato  
OPEX-1807-iqduo.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 3.43 MB
Formato Adobe PDF
3.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/527131
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
social impact