Peripheral nerves are very complex biological structures crucial to linking the central nervous system to the periphery of the body. However, their real behaviour is partially unknown because of the intrinsic difficulty of studying these structures in vivo. As a consequence, theoretical and computational tools together with in vitro experiments are widely used to approximate the mechanical response of the peripheral nervous tissue to different kind of solicitations. More specifically, particular conditions narrow the mechanical response of peripheral nerves within the small strain regime. Therefore, in this work, the mechanical response of nerves was investigated through the study of the relationships among strain, stress and displacements within the small strain range. Theoretical predictions were quantitatively compared to experimental evidences, while the displacement field was studied for different values of the tissue compressibility. This framework provided a straightforward computational assessment of the nerve response, which was needed to design suitable connections to biomaterials or neural interfaces within the small strain range.

A quantitative investigation on the peripheral nerve response within the small strain range

Sergi, Pier Nicola
2019-01-01

Abstract

Peripheral nerves are very complex biological structures crucial to linking the central nervous system to the periphery of the body. However, their real behaviour is partially unknown because of the intrinsic difficulty of studying these structures in vivo. As a consequence, theoretical and computational tools together with in vitro experiments are widely used to approximate the mechanical response of the peripheral nervous tissue to different kind of solicitations. More specifically, particular conditions narrow the mechanical response of peripheral nerves within the small strain regime. Therefore, in this work, the mechanical response of nerves was investigated through the study of the relationships among strain, stress and displacements within the small strain range. Theoretical predictions were quantitatively compared to experimental evidences, while the displacement field was studied for different values of the tissue compressibility. This framework provided a straightforward computational assessment of the nerve response, which was needed to design suitable connections to biomaterials or neural interfaces within the small strain range.
2019
File in questo prodotto:
File Dimensione Formato  
JHS_applsci-09-01115-3.pdf

accesso aperto

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Creative commons (selezionare)
Dimensione 8.5 MB
Formato Adobe PDF
8.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/528112
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
social impact