Poplar (Populus spp.) is a tree species considered for the remediation of soil contaminated by metals, including zinc (Zn). To improve poplar’s capacity for Zn assimilation and compartmentalization, it is necessary to understand the physiological and biochemical mechanisms that enable these features as well as their regulation at the molecular level. We observed that the molecular response of poplar roots to Zn excess overlapped with that activated by hypoxia. Therefore, we tested the effect of Zn excess on hypoxia-sensing components and investigated the consequence of root hypoxia on poplar fitness and Zn accumulation capacity. Our results suggest that high intracellular Zn concentrations mimic iron deficiency and inhibit the activity of the oxygen sensors Plant Cysteine Oxidases, leading to the stabilization and activation of ERF-VII transcription factors, which are key regulators of the molecular response to hypoxia. Remarkably, excess Zn and waterlogging similarly decreased poplar growth and development. Simultaneous excess Zn and waterlogging did not exacerbate these parameters, although Zn uptake was limited. This study unveils the contribution of the oxygen-sensing machinery to the Zn excess response in poplar, which may be exploited to improve Zn tolerance and increase Zn accumulation capacity in plants.

Zinc excess induces a hypoxia-like response by inhibiting cysteine oxidases in poplar roots

Shukla V.;Francini A.;Perata P.;Sebastiani L.;Licausi F.
2019-01-01

Abstract

Poplar (Populus spp.) is a tree species considered for the remediation of soil contaminated by metals, including zinc (Zn). To improve poplar’s capacity for Zn assimilation and compartmentalization, it is necessary to understand the physiological and biochemical mechanisms that enable these features as well as their regulation at the molecular level. We observed that the molecular response of poplar roots to Zn excess overlapped with that activated by hypoxia. Therefore, we tested the effect of Zn excess on hypoxia-sensing components and investigated the consequence of root hypoxia on poplar fitness and Zn accumulation capacity. Our results suggest that high intracellular Zn concentrations mimic iron deficiency and inhibit the activity of the oxygen sensors Plant Cysteine Oxidases, leading to the stabilization and activation of ERF-VII transcription factors, which are key regulators of the molecular response to hypoxia. Remarkably, excess Zn and waterlogging similarly decreased poplar growth and development. Simultaneous excess Zn and waterlogging did not exacerbate these parameters, although Zn uptake was limited. This study unveils the contribution of the oxygen-sensing machinery to the Zn excess response in poplar, which may be exploited to improve Zn tolerance and increase Zn accumulation capacity in plants.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/531613
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
social impact