Nitrogen-nitrate, while being fundamental for crop production, is of particular concern in the agricultural sector, as it can easily leach to the water table, worsening groundwater quality. Numerical models and Geographic Information System may support the estimation of nitrate leaching rates in space and time, to support sustainable agricultural management practices. In this paper, we present a module for the simulation of the processes involved in the nitrogen cycle in the unsaturated zone, including nitrate leaching. This module was developed taking steps from the ANIMO and EPIC model frameworks and coupled to the hydrological models integrated within the FREEWAT platform. As such, the nitrogen cycle module was then included in the FREEWAT platform. The developed module and the coupling approach were tested using a simple synthetic application, where we simulated nitrate leaching through the unsaturated zone for a sunflower crop irrigated district during a dry year. The results of the simulation allow the estimation of daily nitrate concentration values at the water table. These spatially distributed values may then be further used as input concentration in models for simulating solute transport in aquifers.

A spatially distributed, physically-based modeling approach for estimating agricultural nitrate leaching to groundwater

De Filippis G.;Ercoli L.;Rossetto R.
2021-01-01

Abstract

Nitrogen-nitrate, while being fundamental for crop production, is of particular concern in the agricultural sector, as it can easily leach to the water table, worsening groundwater quality. Numerical models and Geographic Information System may support the estimation of nitrate leaching rates in space and time, to support sustainable agricultural management practices. In this paper, we present a module for the simulation of the processes involved in the nitrogen cycle in the unsaturated zone, including nitrate leaching. This module was developed taking steps from the ANIMO and EPIC model frameworks and coupled to the hydrological models integrated within the FREEWAT platform. As such, the nitrogen cycle module was then included in the FREEWAT platform. The developed module and the coupling approach were tested using a simple synthetic application, where we simulated nitrate leaching through the unsaturated zone for a sunflower crop irrigated district during a dry year. The results of the simulation allow the estimation of daily nitrate concentration values at the water table. These spatially distributed values may then be further used as input concentration in models for simulating solute transport in aquifers.
2021
File in questo prodotto:
File Dimensione Formato  
hydrology-08-00008-v2.pdf

accesso aperto

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Dominio pubblico
Dimensione 6.9 MB
Formato Adobe PDF
6.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/536858
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
social impact