Zinc (Zn) is an essential micronutrient for plants and animals, and Zn deficiency is a widespread problem for agricultural production. Although many studies have been performed on biofortification of staple crops with Zn, few studies have focused on forages. Here, the molecular mechanisms of Zn transport in alfalfa (Medicago sativa L.) were investigated following foliar Zn applications. Zinc uptake and redistribution between shoot and root were determined following application of six Zn doses to leaves. Twelve putative genes encoding proteins involved in Zn transport (MsZIP1-7, MsZIF1, MsMTP1, MsYSL1, MsHMA4, and MsNAS1) were identified and changes in their expression following Zn application were quantified using newly designed RT-qPCR assays. These assays are the first designed specifically for alfalfa and resulted in being more efficient than the ones already available for Medicago truncatula (i.e., MtZIP1-7 and MtMTP1). Shoot and root Zn concentration was increased following foliar Zn applications 0.1 mg plant1. Increased expression of MsZIP2, MsHMA4, and MsNAS1 in shoots, and of MsZIP2 and MsHMA4 in roots was observed with the largest Zn dose (10 mg Zn plant1). By contrast, MsZIP3 was downregulated in shoots at Zn doses 0.1 mg plant1. Three functional gene modules, involved in Zn uptake by cells, vacuolar Zn sequestration, and Zn redistribution within the plant, were identified. These results will inform genetic engineering strategies aimed at increasing the efficiency of crop Zn biofortification.

Transcriptional Regulation of Genes Involved in Zinc Uptake, Sequestration and Redistribution Following Foliar Zinc Application to Medicago sativa

Cardini Alessio;Pellegrino Elisa
;
Ercoli Laura
2021-01-01

Abstract

Zinc (Zn) is an essential micronutrient for plants and animals, and Zn deficiency is a widespread problem for agricultural production. Although many studies have been performed on biofortification of staple crops with Zn, few studies have focused on forages. Here, the molecular mechanisms of Zn transport in alfalfa (Medicago sativa L.) were investigated following foliar Zn applications. Zinc uptake and redistribution between shoot and root were determined following application of six Zn doses to leaves. Twelve putative genes encoding proteins involved in Zn transport (MsZIP1-7, MsZIF1, MsMTP1, MsYSL1, MsHMA4, and MsNAS1) were identified and changes in their expression following Zn application were quantified using newly designed RT-qPCR assays. These assays are the first designed specifically for alfalfa and resulted in being more efficient than the ones already available for Medicago truncatula (i.e., MtZIP1-7 and MtMTP1). Shoot and root Zn concentration was increased following foliar Zn applications 0.1 mg plant1. Increased expression of MsZIP2, MsHMA4, and MsNAS1 in shoots, and of MsZIP2 and MsHMA4 in roots was observed with the largest Zn dose (10 mg Zn plant1). By contrast, MsZIP3 was downregulated in shoots at Zn doses 0.1 mg plant1. Three functional gene modules, involved in Zn uptake by cells, vacuolar Zn sequestration, and Zn redistribution within the plant, were identified. These results will inform genetic engineering strategies aimed at increasing the efficiency of crop Zn biofortification.
2021
File in questo prodotto:
File Dimensione Formato  
plants-10-00476.pdf

accesso aperto

Descrizione: Pdf del paper
Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Dominio pubblico
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/537096
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
social impact