This article presents the application of a recent neural network topology known as the deep echo state network to the prediction and modeling of strongly nonlinear systems typical of the process industry. The article analyzes the results by introducing a comparison with one of the most common and efficient topologies, the long short-term memories, in order to highlight the strengths and weaknesses of a reservoir computing approach compared to one currently considered as a standard of recurrent neural network. As benchmark application, two specific processes common in the integrated steelworks are selected, with the purpose of forecasting the future energy exchanges and transformations. The procedures of training, validation and test are based on data analysis, outlier detection and reconciliation and variable selection starting from real field industrial data. The analysis of results shows the effectiveness of deep echo state networks and their strong forecasting capabilities with respect to standard recurrent methodologies both in terms of training procedures and accuracy.

A Deep Learning-based approach for forecasting off-gas production and consumption in the blast furnace

Dettori S.
;
Matino I.;Colla V.;
2021-01-01

Abstract

This article presents the application of a recent neural network topology known as the deep echo state network to the prediction and modeling of strongly nonlinear systems typical of the process industry. The article analyzes the results by introducing a comparison with one of the most common and efficient topologies, the long short-term memories, in order to highlight the strengths and weaknesses of a reservoir computing approach compared to one currently considered as a standard of recurrent neural network. As benchmark application, two specific processes common in the integrated steelworks are selected, with the purpose of forecasting the future energy exchanges and transformations. The procedures of training, validation and test are based on data analysis, outlier detection and reconciliation and variable selection starting from real field industrial data. The analysis of results shows the effectiveness of deep echo state networks and their strong forecasting capabilities with respect to standard recurrent methodologies both in terms of training procedures and accuracy.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/538346
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
social impact