The paper proposes an approach to the design of the chemical composition of steel, which is based on neural networks and genetic algorithms and aims at achieving a desired hardenability behavior possibly matching other constraints related to the steel production. Hardenability is a mechanical feature of steel, which is extremely relevant for a wide range of steel applications and refers to the steel capability to improve its hardness following a heat treatment. In the proposed approach, a neural-network-based predictor of the so-called Jominy hardenability profile is exploited, and an optimization problem is formulated, where the optimization function allows taking into account both the desired accuracy in meeting the target Jominy profile and other constraint. The optimization is performed through genetic algorithms. Numerical results are presented and discussed, showing the efficiency of the proposed approach together with its flexibility and easy customization with respect to the user demands and production objectives.

Automatic steel grades design for Jominy profile achievement through neural networks and genetic algorithms

Vannucci M.;Colla V.
2021-01-01

Abstract

The paper proposes an approach to the design of the chemical composition of steel, which is based on neural networks and genetic algorithms and aims at achieving a desired hardenability behavior possibly matching other constraints related to the steel production. Hardenability is a mechanical feature of steel, which is extremely relevant for a wide range of steel applications and refers to the steel capability to improve its hardness following a heat treatment. In the proposed approach, a neural-network-based predictor of the so-called Jominy hardenability profile is exploited, and an optimization problem is formulated, where the optimization function allows taking into account both the desired accuracy in meeting the target Jominy profile and other constraint. The optimization is performed through genetic algorithms. Numerical results are presented and discussed, showing the efficiency of the proposed approach together with its flexibility and easy customization with respect to the user demands and production objectives.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/538910
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
social impact