Lockdown and vaccination policies have been the major concern in the last year in order to contain the SARS-CoV-2 infection during the COVID-19 pandemic. In this paper, we present a model able to evaluate alternative lockdown policies and vaccination strategies. Our approach integrates and refines the multiscale model proposed by Bellomo et al., 2020, analyzing alternative network structures and bridging two perspectives to study complexity of living systems. Inside different matrices of contacts we explore the impact of closures of distinct nodes upon the overall contagion dynamics. Social distancing is shown to be more effective when targeting the reduction of contacts among and inside the most vulnerable nodes, namely hospitals/nursing homes. Moreover, our results suggest that school closures alone would not significantly affect the infection dynamics and the number of deaths in the population. Finally, we investigate a scenario with immunization in order to understand the effectiveness of targeted vaccination policies towards the most vulnerable individuals. Our model agrees with the current proposed vaccination strategy prioritizing the most vulnerable segment of the population to reduce severe cases and deaths.

A multiscale network-based model of contagion dynamics: Heterogeneity, spatial distancing and vaccination

Dosi G.;Virgillito M. E.
2021-01-01

Abstract

Lockdown and vaccination policies have been the major concern in the last year in order to contain the SARS-CoV-2 infection during the COVID-19 pandemic. In this paper, we present a model able to evaluate alternative lockdown policies and vaccination strategies. Our approach integrates and refines the multiscale model proposed by Bellomo et al., 2020, analyzing alternative network structures and bridging two perspectives to study complexity of living systems. Inside different matrices of contacts we explore the impact of closures of distinct nodes upon the overall contagion dynamics. Social distancing is shown to be more effective when targeting the reduction of contacts among and inside the most vulnerable nodes, namely hospitals/nursing homes. Moreover, our results suggest that school closures alone would not significantly affect the infection dynamics and the number of deaths in the population. Finally, we investigate a scenario with immunization in order to understand the effectiveness of targeted vaccination policies towards the most vulnerable individuals. Our model agrees with the current proposed vaccination strategy prioritizing the most vulnerable segment of the population to reduce severe cases and deaths.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/542294
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
social impact