Electrically conductive polymer (CP) based ionic electromechanically active polymer composites (IEAP-s) are attractive as bending and linear actuators in compliant and miniature devices due to low operating voltage. Ink-jet printing is a promising technology for fabrication of microscale CP-based IEAP-s with customized shapes and geometries. The current study investigates tailoring of the mechanical and electromechanical properties of the actuators by controlled growth of ink-jet printed poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) based electrodes on commercial poly(vinylidene fluoride) (PVdF) membranes. In parallel with PEDOT:PSS, hybrid actuators with ink-jet printed PEDOT:PSS and activated carbon aerogel electrodes were investigated. Cumulative growth of electrodes with each deposited layer was achieved in the case of both electrode materials. The strain, blocking force and capacitance of the actuators were in linear correlation with the thickness of the electrodes. Simple method of control encourages implementation of ink-jet-printing technology for manufacturing of IEAP micro-actuators with desired mechanical and electromechanical properties.

Mechanical and electro-mechanical properties of EAP actuators with inkjet printed electrodes

Greco F.;
2018-01-01

Abstract

Electrically conductive polymer (CP) based ionic electromechanically active polymer composites (IEAP-s) are attractive as bending and linear actuators in compliant and miniature devices due to low operating voltage. Ink-jet printing is a promising technology for fabrication of microscale CP-based IEAP-s with customized shapes and geometries. The current study investigates tailoring of the mechanical and electromechanical properties of the actuators by controlled growth of ink-jet printed poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) based electrodes on commercial poly(vinylidene fluoride) (PVdF) membranes. In parallel with PEDOT:PSS, hybrid actuators with ink-jet printed PEDOT:PSS and activated carbon aerogel electrodes were investigated. Cumulative growth of electrodes with each deposited layer was achieved in the case of both electrode materials. The strain, blocking force and capacitance of the actuators were in linear correlation with the thickness of the electrodes. Simple method of control encourages implementation of ink-jet-printing technology for manufacturing of IEAP micro-actuators with desired mechanical and electromechanical properties.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/544063
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
social impact